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Inverse problems in deterministic

We are  now  going  to  be  talking  about  inverse  problems  for  deterministic  dynamic

models. In particular we are going to be talking about the well known 4 dimensional

variational assimilation method called 4 DVAR, which is also otherwise known as first

order  adjoint  methods.  Before  starting  on  statement  of  deterministic  dynamic  model

based inverse problems let us quickly review where we are and how we got here we first

started  with what  is  data  assimilation  why data  assimilation.  Then we looked at  the

mathematical  preliminaries  from final dimensional  vector  space matrix theory, then a

multivariate calculus then optimization theory.

After that we introduced to the broad class of static inverse static deterministic inverse

problems then we talked about matrix methods as well as direct iterative optimization

minimization  methods  for  solving  static  deterministic  inverse  problems.  That  is  the

sequence of topics we covered that nee natural leads to an extension of deterministic

models, but instead of static models we are going to be talking about dynamic models,

we are going to be talking about inverse problems that occur within the framework of

deterministic dynamic models.
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So, it is useful to talk about that useful classification of dynamic models let X k be the

state  of  a  dynamical  system dynamical  system is  something  that  evolves  in  time  as

supposed to static models that is that remains constant with respect to time. Dynamic

models  can  be  either  linear  or  non-linear  in  a  linear  model,  the  state  X  k  evolves

according to X k plus 1 is equal to M times X k where M is a n by M matrix. It is called

the state transition matrix. So, the dynamic models are essentially given by the transition

matrix M and an initial  condition x naught if the matrix M is given and x naught is

known computing X k plus 1 using M times X k is the forward problem, but here we are

going to consider the inverse problem that assumes x naught is not known. 

So, that is where the inverse problem comes in. So, I would like to be able to distinguish

between inverse problem and a forward problem in the dynamical context. If x naught is

known computing the states is called the forward problem for the linear model likewise

for the non-linear model I should be given yet a state transition map M is a vector valued

function of a vector M is from R n to R n here the state at time k plus 1 is given by M of

X k as supposed to M times X k that is the difference between linear and the non-linear

models.

Again given X naught whether it is a linear model or a non-linear model computing the

future states is a forward problem now we are interested in the inverse version within the

context of dynamical models.
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So, the in the inverse problem of interest to us it is assumed that x naught the initial

condition is not known our goal is to be able to estimate x naught based on noisy indirect

information about a finite subs sets of states at time k greater than one that is inverse

problem of interest, I would like to pictorially represent this like this. This is k, I have

been given observations at various instances in time k 1, k 2, k i k let us say capital

noise; kn I have been given observations which are not directly state, but some functions

of the state. So, I have been given some observations at this time at this time at this time

at this time our aim is to be able to find the initial condition x naught.

Such that the sequence of state computed using a dynamical model is such that the model

trajectory fits the observation in the least square sense and what is meant by least square

sense, if I fixed x naught the model solution can be computed using the given model

which is either linear or non-linear. So, that is a forward problem. So, given x naught

compute the forward solution given the forward solution and observations  which are

induct measurements of this state, we get the difference between the observation and the

state the observation and the state observation and the state observation and the state. 

We are going to compute the sum of squares of the errors between observation on the

state you can readily see the sum of squares of errors is the function of x naught because

once x naught is given the solution is given for all time therefore, our job is to be able to

adjust x naught such that the solution calculated from x naught best fits the observation



in  the sense of the sum of the squared errors is  a  minimum.  So,  that  is  the inverse

problem of interest; that means, given information about the solution at time k greater

than 1, I would like to be able to infer the state at time 0 that best starting from which the

solution best matches the observations given.

So, the basic idea is essentially the same we are still going to pursue the least square

framework. So, we are going to in we are going to formulate the least square criterion

and look at ways by which I we can minimize the least square criterion the techniques

are slightly involved that is largely due to the fact that the model is not static by dynamic.

So, the basic principles of dynamic inverse problem is not much different from that of

the static inverse problem except that we need to be able to handle the nuances exhibited

by the dynamics.
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So, we saw model can be linear or non-linear now we also said we have been given a

finite subset of observations the observations themselves have to depend on the state if

the observation do not depend on the state, then it does not have information about the

state that is what we said that observation contain indirect information about the state. It

is from this indirect information our job is to be able to extract information about the

initial condition that is the inverse problem of interest in here again there are 2 cases to

consider the observation vector zee with now functions of time. So, in the static problem



we said zee belong to R m. Now we say zee k belong to R m what is zee k zee k is the

observation at time k.

So, observation at time k may be a linear function of the state matrix H is i M by n

matrix,  but observations are now assumed to be corrected by noise V k is called the

observation noise. So, this is the case of linear observation or the observation or linear

functions of the state in in the non-linear case, I have been given a non-linear map H. H

is a map from R n to R m. So, zee k is equal to H of X k we are going to again consider

additive noise V k; V k or the observation noise it is generally model as mean 0 Gaussian

noise  with  the  pre  specified  covariance  structure  in  the  context  of  geophysical

applications the matrix H and the map H are called forward operators. 

So, you can think of the model space which is R n you can think of the observation space

which is R m the model state is X k the observation is zee k, I can relate this using H or I

can  relate  this  using  H  1  is  the  linear  map  another  is  the  non-linear  map.  So,  the

information about the state is not directly known when H is an identity matrix then the

observations are really measurements of the states if H is not an identity matrix or the

map H is not a simple function the observations are complicated functions of the state of

the system it is from this complicated information we have to unwind the information

about the state using which I can estimate the initial condition by formulating a suitable

inverse problems you can readily see in the case of a static problem. 

We considered zee is equal to Hx as a linear problem we considered zee is equal to H of

x  as  a  non-linear  problem  the  only  difference  between  the  static  problem  and  the

dynamic  problem  is  that  we  have  to  keep  track  of  that  time  in  disease  at  which

observations were given to us. So, that is the primary difference between the static and

the dynamic cases.
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Now, I  am going  to  give  examples  of  function  H  just  to  give  you  a  feel  that  this

formulation is for real and it captures the spirit of what happens in practice, suppose I am

interested in modeling the sea surface temperature of an ocean. So, let T be a sea surface

temperature for example, in the analysis of el nino, we are interested and understanding

the changes in the sea surface temperature at the equatorial pacific west of a Hawaii it is

very difficult to go and make measurements. 

So, we tried to infer the temperature of the sea surface by looking at the energy radiated

from  the  hard  surface  by  measuring  the  radiated  energy  from a  satellite  and  I  am

recovering the temperature. So, if temperature is a state variable temperature T is a state

variable if the observation zee is measured the observation is the energy E measured by

the satellite the observation zee and the state are related by the equation called a Planck

Stefan’s law which is given by E is equal to alpha times T to the power of 4.

So, the status x the state x is T the observation zee is E and the function H the forward

operator H takes the form E is equal to alpha to the power alpha times T to the power of

4, in another problem your yours models state variable could be the rate of rainfall,  I

would like to be able to predict how much rain will occur the next 24 hours. In order to

estimate that I need to understand and make a measurement of the rate of rainfall often

times their rate of rainfall the state variable is not directly observable as in the case of the

energy radiated.



I can only measure indirectly the indirect measurements comes on reflectivity from the

cloud as measured by the radar the radar sends out the beam towards the cloud the cloud

consists of lot of droplets the droplets reflect the energy the energy radiated the radiated

the reflected energy received by the radar is the measure of the amount of water content

in the cloud the relation that relates the reflectivity to the rainfall rate is an empirical is

an empirically derived non-linear law. This law was essentially derived at the national

severe  storms  lab  who specialize  in  applications  of  radar  meeting  to  meteorological

problem essentially  a radar meteorology this  was this  was obtained as a result  of an

empirical curve fitting.

Another example could be if I in the design of cruise control of cars I would like to be

able to measure the speed of the car speed of the car essentially measured in terms of

voltage generated they put a voltmeter on a shaft that rotates. So, the voltage generated is

proportional to the speed the depth the relation between voltage generated and the speed

of a car is given by faradays law. So, you can see how the real states of the model and the

actual  observations  are  related  using  these  examples  I  have  given  examples  of  the

forward operator in the first 2 cases, it is non-linear the third case is linear. 

So, identifying the forward operator H is not a trivial problem it depends on what is the

state variable of interest to you in your analysis how the state variable can be measured is

it  directly  measurable or it  can only be in indirectly  measured for example,  pressure

temperature wind velocity these are all directly measurable state variable,  but if your

model consists of state variables such as vorticity; vorticity cannot be measured directly.

So, vorticity has to be inferred from certain observables that inference is done through

certain  well  known  mathematical  relation  those  mathematical  relation  constitute  the

forward operator in question.

So, I would like to now summarize I have a model; model could be linear or non-linear I

have in indirect information about the state; from the observation the observation could

be again a linear function of the state or a non-linear function of the state.
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We talked about  observation  noise V k when we dealt  with the static  problem even

though we recognize that you can never make an observation without an error while we

were cognizant of the fact that observations have errors we purposefully to simplify the

problem assume that there is no error we simply close our eyes to reality and consider it

to be a deterministic case.

So, in principle observations are riddled with errors one way to be able to model the error

right from the days of gauss is to be able to model the observation error as a white

Gaussian noise; that means, at a given time, the noise is Gaussian distributed, but if you

consider  2  different  times  there  is  no  correlation  there  is  no  temporal  or  spatial

correlation between the observation noise that affect the observation at 2 different times

are 2 different points in space these are the key assumption that are made to be able to

simplify your analysis . So, V k is the observation noise that affects the observation at

time k. So, V k is a vector of random variables it has 0 mean and a covariance Rk, it is

assumed the covariance matrix is known Rk is a covariance matrix of size M by M it is

also assumed Rk is symmetric and positive definite in most of the cases.

In general we will assume Rk is R; that means, our instruments are identical. So, even

though I may be making measurements at various times the instrument that make the

measurements in different times are identical. So, their error properties are same. So, I

am going to assume Rk is R with a loss of generality one further simplification is that Rk



is a diagonal matrix for a given class of observations. So, what does this mean I have zee

k as my observation? Zee k is a vector which is zee k 1 zee k 2 zee k m. So, what is that

we are going to assume zee k 1 has its variance zee k 2 has its variance zee k M has its

variance but zee k 1 and zee k 2 are uncorrelated zee k i; that means, the ith component

of  the  observation  and  the  jth  component  of  the  observation  are  uncorrelated  not

correlated.

This implies that the matrix R is essentially a diagonal matrix sigma one square sigma 2

square  sigma  M  square  where  sigma  i  square  is  the  variance  associated  with  the

measurement  of  the  ith  component  of  the  observation,  but  these  are  simplifying

assumptions these assumptions are pretty close to reality again I would like to emphasize

the  variance  depends  on  the  nature  and  the  type  of  the  instruments  used  in  the

observations. So, here comes the challenge when it comes to satellite we generally do not

know too much about the error properties especially if a satellite has been around for a

long time the proper the measurement the quality of the measurements change in time. 

So, one probably has to make approximations one approximation that is generally made

is that Rs is equal to sigma square i; that means, it is a diagonal matrix where all the

diagonal elements are the same; I am not going to distinguish it because I just do not

know if you do not know something, but still you want to be able to include the nice

covariance one way to assume is a simple case is that R is a diagonal matrix with a

constant diagonal elements. So, what is it what is the implication all the measurements

are equally accurate no 2 component of the measurements are correlated and. So, this is a

much simplifying assumption. 

So, one can assume R to be a general symmetric positive read matrix to the level of

being R is  equal  to sigma square i.  So,  that  is  the range of variation these range of

variations  are  allowed  because  we  generally  may  not  know  the  error  properties  of

observation from radar we may not know error properties of observation from satellites

we may not know error properties of certain buoys if they have been around for long

after a long time.

So, that is the dilemma that one has to deal with. So, we want to be as close to reality

without making the problem too difficult to solve. So, the compromise here are covered

in these basic assumptions about the observation noise.
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So, now, I am going to formally state the problem let k 1, k 2, ki kN be the n times at

which observations are available for n being some finite number it could be 1 2, I do not

think it should be less than or equal it to be strictly less than infinity finite now finite

number of observations. So, given a finite set of n observe noisy observations of the

state. So, these are noisy observations about the state means what this now this may be

direct  measurements  it  may  be  indirect  measurements  we just  do  not  know, but  we

should be ready for it. So, zee contains information about the state either through the

matrix H or through the map H the non-linear map H.

So, given the model equation. So, here is the problem given the model equations linear

non-linear and the set of observation the observation could be linear or non-linear the

inverse problem is to estimate the initial condition that best fits the observation that is the

statement of the inverse problem in here.
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So, before I go further there are 4 different formulations of this  inverse problem the

model could be linear non-linear observation could be linear non-linear in case one both

model and observations are linear in case 4 both are non-linear the other 2 one is linear

another  is  non-linear. So,  the  simplest  possible  case  in  both are  linear  one the  most

complex  case  is  4  which  is  both  the  model  and  observations  of  non-linear.  So,  we

consider  these 2 extreme cases if  we understand how to solve these 2 problems the

extreme cases the intermediate case 2 and 3 would become obvious I would like to I

would like to open up the class of all problems that one could consider. So, that is what

we have we have done this far, we have essentially stated all the basic information one

needs.

So, please remember we need ton of information I need to know the model, I need to

know the function that relates observation to the state we need to know properties of the

observation  noise,  we  need  to  know the  times  and  the  values  of  the  observation  at

specific finite number of times given all these we can then state the inverse problem in a

most in a more formal way as we will see right now.
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So,  I  am  going  to  start  with  case  one  model  is  linear  observations  are  also  linear

functions of time, I am sorry linear functions of state not time state, I am sorry.

So, we are going to define a cost functional the cost functional is J the J is a scalar valued

function of a vector J is the weighted sum of squared errors J is given by zee ki minus H

X k i transpose R ki inverse zee ki minus x ki this looks like this should be very familiar

to all of us we considered zee minus H of x transpose w zee minus H of x this is the

weighted version of the least square criterion that we use for the static problem instead of

zee I have zee k i instead of x i have x ki instead of w i have Rk i inverse I am simply

still considering R is depend on time why is this kind of a waiting I would like to talk

about it for a moment before I go further to that end let me consider what we normally

do in basic statistics.
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Let x be a normal random vector with mean M and variance sigma square if I want to

normalize this I am going to consider a new random variable y which is equal to x minus

M divided by sigma because I am divide; I am subtracting M y is going to be normal

with 0 mean and unit variance. So, subtracting the mean and dividing by the square root

of variance is essentially normalization therefore, if I want to be able to consider y times

y this will be x minus M divided by sigma times x minus M divided by sigma which is

equal to x minus M square divided by sigma square which I can write as x minus M

times sigma square to the power minus 1 x minus M x minus M is a scalar sigma square

is the inverse of the variance x minus M is a scalar. 

So, without loss of generality the transpose of a scalar is a scalar; I can put a transpose

here. So, you can readily see x minus M transpose sigma square inverse x minus M what

is that it is a square of the normalized random variable with 0 mean and unit variance.

So, this is the form that is replicated here. So, divide. So, this is the error this is the error

this is the error this is the weight function the weight function in here is. So, chosen that

it normalizes to be similar to what we have done. So, we are interested in a normalized

form of the error in the error which is a measure of the difference between zee and hx zee

and hx is call the residual in our old notation from static problem. So, what is that one

you can you can see this is the weighted sum of squared errors or square residuals; I am

using the word error and residual in the same fashion and that is what it is I have this



quantity  at  each  time  instant  I  have  n  time  instance  at  which  the  observations  are

available. So, I am summing this up from 1 to n, I have added a multiplying factor one

half and that is a technical thing I will explain that in a moment before we go further I

hope the reason behind the choice of the weight function which is the inverse of the

covariance matrix is clear from this basic idea of normalization of errors.

Now I would like to I would like to be able to talk about why half to understand half I

want to be able to go back to in some basic principles let me make some space by erasing

some of the unwanted things from here. So, let us suppose I have a function f of x.
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Let us suppose; I have the function f of x plus c as it a; suppose I have the function 8

times f of x plus c. So, f of x could be as an example could be x square. So, this is equal

to x square plus c this is equal to eight times x square plus c; let us graph these functions

now.

This is x square, if c is positive this is c this is x square plus c if c is positive and a is

positive this is going to be this is going to be a x square plus c. So, let us assume a is 2

now look at this. Now I have 3 functions which are one is x square another is x square

plus  c  another  a  times  x square  plus  c  even though the  shapes  of  the  functions  are

different you see the point at which the minimum occurs has not changed; that means,

the minimizer the minimum value of x or the x that minimizes f of x for f is also the

same minimizer for f of x plus f of x plus c is also the same minimizer for eight times f



of x plus a. So, what does it mean if I multiply a function by a constant the location at

which the minimum occurs does not change if I add a constant to a function the location

at which minimum occurs does not change if I add a const; if I multiply by a constant

and add a constant the location at which minimum occurs does not change; that means,

the  minimizing  value  of  x  is  invariant  with  respect  to  addition  of  a  constant

multiplication by a constant. So, given this property I am multiplying this function the

summation by half. So, the half plays the role of a why do I add a half in here the add a

factor half in here.

You can see zee minus H of x transpose Rk inverse zee minus H of x that is a quadratic

function when you differentiate the quadratic function to compute the gradient there is a

annoying  factor  2  coming  in  the  2  can  be  cancelled.  So,  it  is  simply  an  algebraic

simplification in the ultimate formula that I would get; anticipating that I do not want to

deal with that factor 2, when I differentiate quadratic functions I simply added the 2 to

simplify some of the expressions. 

So,  multiplying by a constant  does not change the result  adding a constant  does not

change the result, without loss of generality I can multiply a function to be minimized by

any positive constant without altering any of the properties of the minimizer, we would

like to. So, J L is the weighted sum of squares in the linear case J N is the counterpart for

the non-linear case. Now look at the difference now the difference is essentially in this

term, the difference is essentially in this particular term, you can readily see the this term

converts to H of x this term converts to H of x everything else remains the same.

So, if the states are non-linear if the observations are non-linear function of the state I use

J  N if  the  observations  are  linear  functions  of  the  state  I  use  J  L.  So,  we have  an

expression to minimize. So, this is. So, the value of J is a measure of the set when J takes

the minimum the fit is the best. Now J is a function of x naught on the right hand side,

you do not see x naught directly on the right hand side x naught comes indirectly through

X k; X k is the state of the system at time k, but X k is a state of the dynamical system

the state of a dynamical system at any given instant is a function of the initial state. So, X

k depends on x naught implicitly. 

So, I would like to add a comment to say that J L of x naught or J N of x naught are

implicit functions of time and our job is to be able to minimize this implicit functions of



time I am sorry implicit functions of the state the state being the initial state that is the

that is the challenge associated with this formulation in the dynamic case.

Now, let us go back. So, I am going to have to minimize this with respect to x naught x

naught does not occur, but x not occur implicitly through X k; X k is related to x naught

through the model therefore, the model equations are inherent within this expression; that

means, that means X k are not free variables X k are related to x naught through the

model.  So,  the model is  to  become is  to become constraint  is  to  be considered as a

constraint and that is what our next.

(Refer Slide Time: 36:30)

Realization is all about while x naught is free J of x naught depends on x naught only

implicitly through the model state xki that what we just talked about. So, there are 2

approaches to handle this implicit minimization problem one is to express xki explicitly

as a function of x naught using the model equation and solve the resulting unconstrained

minimization problem that is approach one that is the approach one that is the approach

one or else you would like to be able to solve this as a constraint problem where we are

going to force X k to be related to x naught through the model equations. So, the model

equations would constitute the so called equality constraint.

 these are the 2 equivalent ways of looking at this minimization problem these are 2

approaches one can utilize both the approaches are meaningful; however, this approach

on the left the first approach, I would like to call is more suitable for linear system this



approach second it  is  suitable  for both the linear  and non-linear  systems,  I  hope the

formulation is very clear. Now I have to minimize J L of x naught or J N of x naught as

an implicit minimization problem where you relate X k to x naught through the model

equations. 

So, either you use the model express X k in term of x naught explicitly and solve an

explicit unconstrained problem or simply use the model as a constraint and formulate it

as  an  equality  constraint  problem  we  already  know  equality  constraint  problem  are

solved using Lagrangian multiplier we have already come across the use of Lagrangian

multiplier  constrained  optimization  problem in  the  context  of  under  determine  static

deterministic inverse problems. So, the techniques are very familiar to us. So, the same

kind of techniques are going to be applied in the dynamic case as well. So, you can see

the methodology is  very similar  between static  and dynamic problems except that  in

dynamic problem we simply need to be able to take time into account.
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So, a comment about some classification of strategies for solving this problem whenever

we assume the model is deterministic; what is the implicit assumption we assume the

model is perfect.

So, in any analytic problem when we assume the model to be deterministic there is an

implicit assumption about our belief of the model being the best, but I know is the best or

I have utilized the best model known to mankind there is nothing better than available.



So, I am going to assume the model is perfect; if the model is perfect if I want to be able

to use the model as a constraint I would like to force the constraints strongly. So, I would

force the problem as a strong constraint  strong equality  constraint  problem you may

remember strong constraint and weak constraint we have already talked about within the

contrast of constrained optimization. 

So,  perfect  model  assumptions.  So,  let  me  underlined  this  now  perfect  model

assumptions  and strong constraint  formulation  why strong constraint  formulation  if  I

assume the model is perfect I want the model to have the final say in what I do because I

believe a model. So, much that model has the last say to provide a variety we will use

Lagrangian multiplier technique to solve the linear model problem as a strong constraint

problem. So, you can see there are number of formulations.

The formulations of the problem the model assumption linearity nonlinearity, we can see

the  tree  of  potential  ways  to  be  able  to  mix  and  match.  So,  I  will  use  Lagrangian

multiplier techniques as a strong constraint formulation to solve the linear model for the

non-linear  model  I  will  use  the  so  called  adjoint  method  why  do  we  use  different

techniques to solve different versions of the problem to be able to expose the richness of

the class of methods that has come to be known for solving these kinds of dynamic

problem. 

Later  we will  also  say  solve  the  same problem using  a  new class  of  method called

forward sensitivity method which was developed by as some five six years ago. So, you

can  see  the  variety  of  techniques  now  model  being  perfect  strong  constraint  using

Lagrangian multiplier model being perfect non-linear case using adjoint method model

being perfect we will use forward sensitive method to solve the same set of problems.

So, I am going to illustrate 3 types of techniques to solve the inverse problem within the

context  of the assumption that the model  is perfect  I am going to use it  as a strong

constraint.
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So, let us start with the linear case to get the ball rolling in the solution process. So,

model is X k plus 1 is equal to M of X k x naught is a initial condition observations are

zee k is equal to H of X k plus V k the cost functional is given by this. So, what is the

easiest? So, before I utilize Lagrangian multiplier techniques and other things I am going

to now simply use the model to be able to express X k in terms of x naught the simplest

possible exercise this is simply method of elimination you can you can you can think of

it.

So, I express as a function of x naught by iterating the model you can readily see X k is

equal to M to the power k x naught. So, I have expressed here solution model state at

time k to the model state at time 0 through the kth power of this state transition matrix;

yes multiple M to the power of k involves matrix; matrix multiplication we know matrix

matrix  multiplication  is  very expensive computationally  even though computationally

this could be very expensive; I want to provide a basis for comparison for later methods

that is why we are going to indulge in this so called method of elimination.

So, look at this; now this is x k. So, x ks are needed here look at this. Now xks are xks

are needed here sorry, x ks are needed here X k is given in here. So, I am going to use

this X k in 3. So, substituting X k is equal to M to the power of k x naught in expression

for 3.
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I get the following. So, this is H of X k with M to the power of k x naught H of M to the

power of k x naught. So, the right hand side is an explicit function of x naught I can now

multiply this is a constant term this is a linear term x naught this is the quadratic term in

x naught even though the expressions are little bit more complicated than the ones in the

static case essentially we are dealing with a constant term a linear term and a quadratic

term. So, the essential structure has not changed even though the form of the expressions

have changed my job is to be able to minimize x naught belonging to that it must be R to

the power of n. So, minimize J of x naught where x naught belongs to R to the n.

So, this is an unconstrained minimization problem unconstrained minimization problem.

So, how do I solve this I compute the gradient of J with respect to x naught we know

how to compute the gradient of a linear function we know how to compute the gradient

of a quadratic function this is what we saw in the module on multivariate calculus. So,

we are going to draw our exp from our experience in multivariate calculus and so, to be

able to do that I am going to simplify this expression. So, that it looks much simpler than

this.
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So, I am going to rewrite that as a expression like this which is much more simpler in

this case you can readily see a is given by this sum of these matrices b is given by some

of these and c is given by this. So, I would like you to be able to look at this now J. So,

this is a sum of quadratic function this is some of linear functions this is some of constant

functions. So, I can express J x naught by using these substitutions defining a b and c

express J x naught as follows I am sorry J x naught as follows. So, this is the expression

where the new variables a b c are given in here if I the reason for writing at a six because

is the quadric function if a is symmetric positive definite J naught is convex if J naught is

convex again from basic optimization theory we know the unique minimum exists.
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I can compute the gradient which is equal to A x naught plus A x naught minus b and that

is equal to 0. So, I get the optimal x naught to be a inverse b the hessian is essentially a

which is SPD. So, this, I have essentially I have essentially solved the problem and I

have computed the solution of form of the solution the optimal initial condition is given

by this even though I have an expression for the optimal initial condition this approach is

far from being practical why because it involves matrix; matrix product. Let us look back

that a matrix it consists of M; M to the power k transpose and M to the power k. 

So, if I have a matrix M if I have a matrix M; M square M cube M to the power k plus 1

is equal to M to the power k times M. So, we are going to have to compute these things

recursively each one involves matrix; matrix multiplication this is M square times M and

so on. And matrix matrix multiplication takes of the order of n cube and yesterday we

saw n cube complexity when n has the order of the million would take a very long time

therefore, this method while is giving you a very beautiful like mathematical expression

it is far from being our practical.

The reason for doing this is not because it is practical, but because it brings the essence

of  the  problem  the  essence  of  the  problem  is  that  when  the  model  is  a  linear  the

observations are linear functions of the time the J function. So, concocted reduces to a

convex functional a quadratic convex functional standard quadratic convex functional

which is  a unique minimum therefore,  optimize  are exists  I  can in  principle  give an



expression for the optimizer. So, I have theoretically solve the problem, but this way is

not practical I would like to now ask you to concentrate on the expression for the matrix

a expressions of the vectors b as well as expressions for the constant z. 

So, these are all computed using very many using all the properties I know M is the

model H is the forward operator Rk is the nice covariance. So, you can see the model

component  the  observation  component  the  observational  error  component  all  these

comes in a hue and it is this hue that makes the matrix a is a combination of various

factors.
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Having  seen  a  simple  method  of  elimination  now  I  am  going  to  come  back  to

formulating,  it  as  a  Lagrangian  multiplier  based  technique  as  a  strong  constraint

Lagrangian multiplier based technique. So, to that end I am now going to construct a

Lagrangian function. So, this is the objective function X k is equal to M of X k minus 1

that is the model. So, X k is equal to X k is equal to M of X k minus 1 is the model I am

going to rewrite this as X k minus M of X k minus 1 is equal to 0 that is the constraint.

Now, please remember X k is the vector M is the matrix X k minus 1 is a vector. So, the

whole thing is the vector this vector belongs to Rn. So, I am going to take the inner

product of this vector by lambda k lambda k transpose X k minus M of X k minus 1 that

is the Lagrangian multiplier term there is one such term for each k summation from one

to n. So, lambdas are called the undetermined Lagrangian multipliers lambda k they are



all  vectors  in  R n.  So,  inner  product  that  is  constant  these quadratics  form that  is  a

constant. So, L of x naught lambda that is a scalar function it is a scalar function of x

naught and lambda when I say lambda lambda is not one lambda lambda is a collection

of all the lambdas lambda one lambda 2 all they up to lambda n each of the lambdas are

vectors in R n each of the vectors are R n therefore, I have n capital n vectors each of

size little n. So, this lambda is this lambda is a vector that belongs to R n n.

Because each of them N n; there are n of them. So, that is the vector of that belongs to n

n. So, you can see x naught belongs to R of x naught belongs to R of n therefore, L is a

function that maps R of n cross R of N n to R yeah that is the function Lagrangian

multiplier  it  takes 2 input the first input is the initial  condition the second input is a

collection of n Lagrangian multipliers each of which has dimension little;  I hope the

structure of the Lagrangian function is clear it is simply an extension of what we have

done previously. So, once the problem is formulated as a strong constraint problem using

Lagrangian  multiplier  the  constrained  optimization  problem  now  is  solved  as  an

unconstrained optimization problem by minimizing L with respect to both x naught and

lambda.

So, compute the derivative of L with respect to x naught compute the derivative of L

with respect to X k compute the derivative which is the gradient of L with respect to

lambda equate each of them to 0 this is a set of necessary conditions one has to satisfy

for the minimum of the Lagrangian function.
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By setting the gradient of lambda with respect to lambda k i get the model equation. So,

X k minus M of X k minus 1 0 essentially means the model is satisfied. So, I am forcing

the model as a strong constraint using 11 at the minimum X k must satisfy the forward

model dynamics X k plus 1 is equal to M of X k minus 1. So, that is what is being given

by this. So, this essentially leads to forcing the model as a strong constraint the model

must always have the last say the model equation must always be satisfy in defining x xs

are not free variables they are constrained by the model.
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Now, I am going to compute the derivative these are this is the mechanics of Lagrangian

method I have to compute the gradient of L with respect to X k and that gives rise to this

equation it is very easy for me to write the equation 13, but it will take couple of minutes

for you to be able to derive I am not going to spend time in trying to derive this equation

from the Lagrangian, but it is an important exercise for you to be able to apply the basic

principles of multivariate calculus to be able to compute the expression for the gradient

of the Lagrangian. 

Again a gradient for the Lagrangian in here equate all of them to 0 now we have to solve

the system of  3 equations  12,  13 and 14.  12 implies,  11 is  satisfied,  13 implies  the

gradient of L with respect to X k is 0 14 implies the gradient of L with respect to x xn is

0 in order to be able to solve this problem I want to be able to concoct a new variable I

do not want to write too many things. So, I am going to combine several variables into

one to that extent I am going to defining, yeah, yeah, yeah variable called f of k sorry I

am going to defining a variable call f of k.

Now let us understand what f of fk is zee k minus H of X k that is the residual if zee k is

equal to H of X k there is no residual the difference between the observation and the H of

X k is  the model counterpart  of the observation actual  observation  minus the model

counterpart of the observation is the residual or the error if I if I divide that by Rk minus

1 that is a form of a normalization I would like to now bring the operator H transpose we

are looking at the first time. 

So, this is R n this is rm. So, zee minus zee k minus H of X k belongs to R M it is in here

I am going to call it ek then I am going to call it eta k which is equal to Rk inverse ek

that is again belonging to rm. So, if this is ek this must be eta k. So, ek is the actual error

eta k is the normalized error H is a map that goes from R n to R m H transpose is a map

that goes from R m to R n therefore, H transpose eta k is f of k.

So, f of k. So, this is E of k; this is eta of k H transpose eta of k is f of k I hope that is

clear therefore, we can interpret f of k as the normalized forecast error. So, zee k minus

H of k is  your forecast  error dividing by Rk minus 1 is  a  form of normalization or

waiting and multiplying that on the left by H transpose I am transferring from the model

space to the ob from the observation space to the model space therefore, f of k is their

normalized forecast error mu viewed from the model space.



So, it is very important to understand why we want to be able to convert the observation

at  the  forecast  error  from  one  space  and  transfer  to  another  space  because  all  the

computations are done in the model space. 

So,  this  is  the  model  space  this  is  the  observation  space  the  data  assimilation

computations are done in the model space model space is R n therefore, when I have a

quantity  which is not in this  space I  have to bring the corresponding version of that

quantity from observation space to the model space. So, that is what f of k is all about

why is f of k is important look at this now let us go to 13 in 13 I have H of X k minus zee

k. So, that is minus z k Rk inverse that is minus eta k H of transpose minus eta k this is

minus f of k. So, you can readily see this quantity is minus f of k again this quantity is

minus f of n.

So, that is the reason why we have defined this term. So, using f of k I can simplify the

expressions for the derivative and handle it with little bit more easily I hope the notations

are clear I hope the reason for defining these newer quantities is also clear. So, with this

in mind I am now going to solve 13 and 14.
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If I solve 13 and 14 let us go back; if I from 13 what do I what do I have minus I am I am

sorry we let lets from 13 what do I have minus f of k plus lambda k I am sorry plus

lambda k minus M to the power of M transpose lambda k plus 1 equal to 0 equal to 0.



So, how can I rewrite this this can be rewritten as lambda k is equal to M transpose

lambda k plus 1 lambda k plus 1 plus f of k.

So, I am relating k plus 1 to k I am going backward in time I am going backward in time

I just want to rewrite this and then explicitly write that k plus 1 this is k plus one. So, if

13 holds good this is the form 13 takes if 14 has to hold good the 14 takes the form

minus f of n plus lambda n is equal to 0 therefore, lambda n is equal to minus f of n that

is what 14 is all about. 

So, this is 14 this is 13. So, 13 and 14 when solve give rise to these 2 equations. So,

lambda n is equal to f of n please remember that that is what lambda n is equal to f of n

that is 14. So, lambda k is equal to M transpose lambda k plus 1 plus f of k is 13. So,

lambda k is equal to M transpose lambda k plus 1 f of k for one less than k less than n

minus 1 lambda n is equal to f of n is the final condition therefore, we have to compute

lambdas backward in time starting from lambda n which is which is the final condition

this is called the backward dynamics.

This  backward dynamics  has  come to be known as  the adjoint  dynamics  that  is  the

adjoint equation we can iterate. So, f fs are known M transpose are known fn is known.

So, I can compute from fn to f of n minus 1 to from lambda n to lambda n minus 1 to

lambda k to lambda one I can compute backward in time using this backward adjoint

equation. 

So, we can compute lambda one by going back now I would like to remind you 2 things

the model is solved forward x naught to x one to x 2 all the way up to xn here is lambda

n is lambda n minus 1 lambda 2 lambda one. So, these are considered backward the

forward dynamics of the model the backward dynamics of that joint backward dynamics

of joint  this  backward dynamic comes very naturally  from the Lagrangian  multiplier

problem.
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So, once lambda n is known froms from the Lagrangian seven we can readily compute

the  gradient  of  L with respect  to  x naught  is  minus M transpose lambda one.  So,  I

computed lambda one by the backward adjoint equation I computed the gradient. Once I

have computed the gradient we can do lot of things with that if this computed whereas,

the gradient is 0, then I am at the minimum because at the minimum the gradient must

vanish  please  understand  I  have  converted  the  unconstrained  minimization  to  a

constrained minimization of L gradient of L with respect to x naught must vanish at the

minimum gradient of L at the point x naught is given by minus M transpose lambda one

lambda one was obtained by computing the backward dynamics. 

So, so if it turns out let me go back if it turns out the x naught I chose from which I

computed f x 1, x 2, x 3, x 4 from which I computed the errors from which I computed f

ns from which I computed the lambdas from which I computed minus M transpose from

which I computed minus M transpose lambda one and if this lambda one happens to be 0

well and good I am done.

But it stands reason to expect this calculation would not in general v naught equal to 0

because I chose x naught arbitrarily. So, for a arbitrarily chosen x naught in general need

not be optimal if in general need not be optimal the gradient of L with respect to x naught

under the constraint is the same as gradient of J with respect x naught I have computed

the gradient of the cost function using the back adjoint method. 



Once I have the gradient what is that I need to do; I can utilize either the gradient method

or  in  the  conjugate  gradient  method  to  be  able  to  minimize  it  gradient  method  and

conjugated methods we have already talked about in the previous modules. So, we are

not going to repeat many of those things we already know. So, the emphasis in here is

essentially computing the gradient to the cost function using forward run of a model and

the backward run of the adjoint. So, what is that how is this algorithm work.
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The algorithm works as follows this algorithm as come to be call the 4 DVAR algorithm

this also call first order adjoint method by whatever name you call the essence of the

method goes as follows.

Start with an arbitrary x naught. So, this is the algorithm 4 DVAR algorithm start with an

arbitrary x naught you are given a model compute the sequence of state computed by the

model you are given a set of observations. So, from the model you know x naught X k

you already know H you already know zee k. So, you can compute z k minus H of X k

that  is  a  forecast  error  you  compute  the  normalization  you  compute  the  model

counterpart of that. So, f of k can be computed explicitly. So, run the model forward

given the observation you can essentially compute the quantities of k set lambda n is

equal to f of fn solve lambda k is equal to M transpose lambda k plus 1 plus f of k iterate

backward in time compute lambda one compute minus M transpose lambda one that



gives you the gradient use this gradient in a minimization algorithm to find the optimal x

naught by repeating the steps one through 4 until convergence.

So, what does it mean you start with an x naught sorry you start with an x naught you

start with an x naught you compute the gradient with respect to x naught of J you go in

the negative of the gradient alpha times J of x naught then you say x naught is new. So,

this  is x naught old you compute the gradient you subtract alpha times gradient of J

define the new x naught then start with this new x naught run the model forward in time

calculate the forecast errors compute the backward and repeat this loop. 

So, there are 2 loops I want you to be able to recognize one is the optimization loop

another is the condition computing the gradient loop one loop feeds into the other. So, to

be able to go from one initial condition value to the next initial condition value I need to

run the model one squadron time and the adjoint backward in time. So, this requires the

model run and the adjoint run.

Plus adjoint run, I am sorry, adjoint run model run and the adjoint run. So, you need to

do both to get one gradient if you get one gradient you can get the new operating point

and you repeat the cycle until convergence that is the key a that is the essence of the 4

DVAR algorithm you can readily see this algorithm is extensive in terms of using the

model in the observation it provides you incremental improvement for their cost function

if I use gradient algorithm and the objective function is convex we have already seen

gradient function converges only asymptotically if the objective function is convex and

quadratic if I use a conjugate gradient methods I can hope to get good convergence by

finite number of operation finite number of a iterations.

So, we are going to be concerned with the general utilization of all the principles we

have seen. So, far namely optimization algorithm on one hand model running on other

hand adjoint method on the other hand all comes into a hue to make this algorithm called

4 DVAR algorithm that is  the summary of 4 DVAR algorithm for the case of linear

deterministic dynamic system.

Thank you.


