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Minimization algorithms Continued

So far in the context of minimization algorithm we analyzed almost all the properties of

gradient  based  algorithm in  the  context  of  quadratic  minimization  problem.  We also

indicated how to adapt the gradient algorithm for non quadratic functions, irrespective

whether the function is quadratic are not the fundamental principle is I have an operating

point, I have the direction of the gradient. For the case of quadratic functions I have an

explicit formula for the step length, if the function is more non-linear than quadratic for

non quadratic functions in principle that does not exist a formula for optimal value of

alpha k, in that case we can only compute approximate values of alpha k the step length

parameter at time k and that was done by fitting a quadratic model to the slice of f of x

centered at x k in the direction r k.

We could  further  refine  that  concept  by  fitting  a  cubic  polynomial  or  4th  degree

polynomial which will be which will give us better and better approximations of the slice

of f of x in the direction. So, by first fitting a curve and then we can minimize the fitted

curve to fix alpha k. Therefore, all these ideas together cover the general applicability of

gradient based algorithm to both quadratic as well as non quadratic. In either case the

convergence is asymptotic,  oftentimes we may not have the resources needed to wait

until convergence more often than not we may want to be able to prematurely cut the

iterates, not arbitrary but by measuring how far we are away from the minimum and

allowing for certain range of values which are given by epsilon is equal to 10 to the

power of minus d, d could be 6, 10, 15 depending on whatever we saw.

So, the best we can have with respect to gradient algorithm is asymptotic convergence

that promotes the notion of being able to at least theoretically examine the presence of

ideas that can guarantee finite time convergence and that gives raise to the notion of what

is called conjugate direction methods your specific class of conjugate direction method is

called conjugate gradient method. So, our next topic is to be able to explore the power of



conjugacy to be able to produce theoretically a basis for algorithms that can guarantee

finite time convergence for quadratic functions.

Please  understand  quadratic  function  is  a,  quadratic  functions  are  essentially  model

problems in every area we have a notion of a model problem. For example, a differential

equation  the  harmonic  oscillator  understanding  the  basic  principles  of  design  of

harmonic oscillator and analyzing the properties is a model problem in a first course in

differential  equation.  Likewise  in  optimization  theory  the  model  problem  is  always

minimizing a convex function given by positive definite quadratic functions, are positive

different quadratic forms. So, if you can guarantee the performance of these algorithms

on these model problems then you know you have something to hold on to you have

something to, hold on to so that is what the that is, what the basis for concentrating on

quadratic functions.

So, we are going to be looking at the derivation of conjugate, the basic principles of

conjugate direction methods and the basic principles of conjugate gradient method as our

next topic.

(Refer Slide Time: 04:34)

Please  recall  from our  earlier  discussion  on  finite  dimension  vector  space  we  have

already indicated that given a matrix A which is SPD, given a set of directions p 0 to p n

minus 1 each of them are vectors in R n. So, I have n vectors please remember instead of



labeling from 1 through n we have labels from 0 through n minus 1 nothing is lost, it is

one of the standard ways the literature does.

We say a given set of n directions are said to be A conjugate if p i transpose a p j is equal

to 0 for i not equal to j is not equal to 0 when i is equal to j. So, that is the fundamental

principle  of  conjugacy.  If  A  is  equal  to  identity  matrix  conjugacy  reduces  to

orthogonality, so conjugacy is the generalization of the notion of orthogonality. This is a

this is a very simple, but a very cover notion of the extension of orthogonality. We are

going to state our first result the first result is as follows. If a set of vectors s namely p 0,

p 1, p 2, p n minus 1 if they are linearly independent we know they are form a basis. So,

linear independence of vectors is the fundamental property, what is important here is that

if you have a set of vector that are known to be A conjugate they are immediately linearly

independent as well; that means, a conjugacy implies linear independence.

So,  if  conjugacy  implies  linear  independence,  linear  independence  means  a  set  of  n

vectors that are linearly independent can be considered as a basis for n dimensional space

therefore, by virtue of this property a conjugacy implies leading the independence if I

have a bunch of if I have a set of n conjugate directions those being linearly independent

one can build the analysis  based on these A conjugate vectors as the basis  for the n

dimensional space in which we are going to perform the computations. We will soon see

that  doing arithmetic  on doing analysis  in this  conjugate  bases simplifies  the overall

analysis.

So, by the trick is here, by analyzing the problem instead of the original basis, but doing

it on the conjugate bases brings out the underlying structure of the problem to the and

further  simplifies  the  development  of  algorithms  for  minimization  that  is  the  basic

thought process.



(Refer Slide Time: 07:56)

So, I am now going to verify some of the claims that we made. So, conjugate vectors as a

basis for R of n. Because they are linearly independent, if they are linearly independent

we should be able to use them as the basis.

Let x naught be a fixed vector in R n. For any x minus x naught is an arbitrary vector. So,

what is the idea here? I pick x naught and consider x naught as the new origin and

consider any vector x with respect to x naught. So, x minus x naught is the vector with

respect to the origin at x naught. If x naught is 0 x is a vector with respect to the origin

itself. So, for any vector x let x minus x naught be expressed as (Refer Time: 09:01)

nations of p naught p 1 p n minus 1. We already know if they are linear, I have not

proved  that  they  are  linearly  independent  if  a  conjugacy  holds  that  is  a  homework

problem for you so I am going to build on the result that a conjugacy implies linear

independence. If they are linearly independent any arbitrary vector can be expressed as a

linear combination of A conjugate vectors and that is what this statement is all about an

arbitrary vector is expressed as a linear combination of conjugate vectors.

By a conjugacy I can multiply both sides by a, I can multiply both sides by p k transpose

so p k transpose a of x minus x naught is equal to alpha j times p k transpose a p j. But p

k p j they are they are bound by a conjugacy therefore, p k transpose a p j is 0 if k is not

equal to j, that is j is a free variable, k is fixed therefore, the left hand side is equal to

alpha k times p k transpose times A p k. Therefore, alpha k is equal to p k transpose a



times x minus x naught divided by p k transpose A p k. So, this applies for any k. So, this

gives you the values of R k. So, let us see what is that they have accomplished. We are

given p k, so we know p naught, p 1, p 2 up to p k, we are given x naught that is given

we are given x minus x naught is given. So, I am trying to express x minus x naught a

known vector as a linear combinations of ps the ps are known the only things are not

known are alphas.

So,  the whole question is  this  if  the ps  are  linearly  independent  I  should be able  to

express any arbitrary vectors that linear combination. So, the problem reduces to one of

finding alphas, the value of alpha that is readed here is given by this. So, alpha k is given

by  this  ratio  every  quantity  on  the  right  hand  side  are  known.  So,  alpha  k  can  be

computed in principle. So, what does this tell you? Given any arbitrary vector x, x minus

x naught being another arbitrary vector I can find the coefficient the linear combinations

needed to express this arbitrary vector x minus x naught as a linear combination of this

conjugate bases. So, that is the take home message from here.

So, what does this say? Any arbitrary vector can be expressed uniquely as the linear

combinations as a linear combination of conjugate vectors, that is the thesis that comes

out of this.

(Refer Slide Time: 12:02)

So, with that in mind I am now going to talk about the solution of Ax is equal to b using

conjugate vectors. You may wonder I we started minimization now I am considering Ax



is equal to b I would like to ask you to recall the following fact. If f of x is equal to 1 half

of x transpose Ax minus b transpose x plus c, if I took the gradient of f of x that is equal

to Ax minus b and if I sit the gradient to 0 I get Ax is equal to b.

Therefore you can readily see if f of x is a quadratic function at the minimum Ax must be

Ax must be equal to b, if Ax is equal to b, Ax is equal to b is the gradient of a quadratic

function therefore,  minimizing a quadratic  function and solving a linear  equation are

equivalent problems. So, we can pose the conjugate gradient method either as one of

solving a linear system or one of solving a minimization of a quadratic form. So, let us

assume that we have been given a linear system Ax is equal to b.  Let x star be the

solution the means x star is equal to A inverse b and I a is symmetric positive definite.

Let  p  naught  to  p n minus 1 be  the  conjugate  directions,  we have  already seen the

existence of A conjugate directions. So, let us not be the initial guess for my process of

discovering what x star is x star is the solution I am seeking, is also minimize their f of x

I want to find. So, Ax star minus A of x star minus x naught is equal to b of Ax star is b

so that is equal to b minus Ax naught that is equal to r naught that is equal to initial

residual at x naught. Then I can express x naught as at I am sorry x star as, x naught plus

the linear combinations of all the conjugate direction vectors that are given.

From the previous analysis we now know the alpha k that enable this expression to be

true this expression to be true the alpha ks are given by this expression. Therefore, what

does this tell you the minimum x star which is also the solution of Ax is equal to b, can

be expressed as x naught plus a linear combinations of the conjugate vector. So, this is

the important result, x naught could in principle be 0 or it could be any vector. So, this

ability to express the minimum as linear combinations of the conjugate direction method

is a very powerful principle that comes out of the analysis that we have already presented

that  follows  from the  linear  independence  of  conjugate  directions.  So,  conjugates,  a

conjugacy, linear independence and the consequence thereof, that is the path.



(Refer Slide Time: 15:50)

 So, with that property at the back of our mind I am now going to pursue the notion of

quadratic minimization let A be an n by m matrix. So, you can see I am still considering

the model problem A be SPD f of x is one half of x transpose Ax minus b transpose x

plus c, the minimizer is given by Ax is equal to b. Let R of x b the residual which is

negative the gradient, which is the negative the gradient.

So, I would like to be able to, I would like to be able to minimize f of x which is one half

of R transpose R which is given by this expression which when expanded this given by

this expression. If I compute the gradient I get this and that leads to Ax is equal to b, if A

is SPD. So, this essentially tells you quadratic minimization problems and solution of

linear  systems  are  essentially  one  of  the  same are  essentially, one  of  the  same.  So,

minimization of the sum of the squares of the residual is what we are concerned with and

its relation to the given quadratic function.



(Refer Slide Time: 17:27)

So, we are now going to look at a representation in the new basis that is constituted by

the conjugate directions. So, let p be a matrix that is built out of the conjugate direction

vectors is a n by n matrix. So, if I now p transpose A p, p is given by this p is given by

this there is A and p transpose; that means, p is given as columns. So, p transpose is

given by the rows.

If I multiply this you can essentially see I get a matrix this is equal to a matrix where the

first element is p naught transpose A p naught, the second element in here is p naught

transpose A p 1, likewise p naught transpose A p n minus 1, here it will be p 1 transpose

A p naught,  p 1 transpose A p 1 and so on.  If  you consider the last  one this  is p n

transpose A p naught, p n transpose A p 1, the last element is p n transpose A p n. In view

of  the  conjugacy  property  all  the  off  diagonal  elements  are  0,  all  the  off  diagonal

elements are 0, the elements along the diagonal are not 0. I am now going to call d of i is

equal to p i transpose A p i therefore, p transpose A p simply becomes a diagonal element

with d i as the diagonal a diagonal matrix, with d as is the diagonal elements.

So, from the previous slide we now know x is equal to x naught plus linear combinations

of p i. The coefficient of the linear combinations are alpha therefore, the coefficient of

the linear combination alpha let alpha be a vector in R n where alpha is essentially given

by alpha naught, alpha 1 and alpha n minus 1. So, p of alpha is essentially summation p j

alpha j, j is equal to 0 to n minus 1 the linear combinations thereof. So, p of alpha is a



very succinct way of representing the sum. So, from the previous slide we now know any

x can be expressed as x naught plus p of alpha.

So, what is that I now know, x naught is known, p is known. So, if you give me an x

there is a corresponding alpha. So, I am transforming x to alpha, the vector x is being

transformed to vector  alpha  and that  is  the  linear  transformation  that  we are  talking

about. So, if I consider a point in a space x is the coordinates in the ordinary basis alpha

will  become  its  coordinate  in  the  conjugate  basis.  So,  I  am  talking  about  simple

coordinate transformation from the ordinary basis to the conjugate basis, x transforming

to  alpha.  So,  instead  of  working the  problem in  the  x  space  we can  now work the

problem in the alpha space. I also want to remind you the alpha here is not the same

alpha that we talked about in conjugate, in the gradient methods.

In the gradient method alpha refers to a step length parameter here the same alpha they

are the alpha is a scalar here alpha is the vector. Alpha is a new transformed vector that

represents points in the with respect to the new basis. So, even though we use alpha

indefinite in different places it is imperative that we understand the distinction between

the use of these variables their meaning thereof.

(Refer Slide Time: 21:47)

So, what is the basic idea? I have been given f of x, f of x is given by one half of x

transpose Ax minus b transpose x plus c. Therefore,  if I substitute f of an any x we

already know can be represented by x naught plus p of alpha. So, f of x can be replaced



by f of x naught plus p of alpha since x naught is known, p is known this is simply a

function of alpha I am going to call that function as G of alpha. So, G of alpha is a new

name to the same function f of x; f of x denotes the representative function the old basis

G of alpha represents the same function in the conjugate basis.

So, I am now going to work the problem not in the ordinary basis, but in the conjugate

basis for the sake of this analysis. So, when I substitute x is equal to x naught plus p

alpha, alpha in the expression for f of x that takes this form this when simplified using a

sequence of matrix vector operations it becomes equal to this f of x naught plus k is

equal to 0 to n minus 1 g k of alpha, where g k of alpha is given by this function you can

readily see g k is a quadratic function in alpha. That means, I have expressed the f of x I

have decomposed it. So, f of x has coupling because the matrix A is symmetric positive

definite  the  off  diagonal  elements  enabled  you  to  couple  various  variables.  The

importance of representing in the conjugate basis is that it is decoupled. So, that is the

decomposition  we  are  talking  about.  So,  I  am  trying  to  express  the  function  in  a

decoupled  form  where  G  of  alpha,  where  G  of  alpha  is  represented  by  G  of  each

component, where G of alpha is represented by each component. So, it is, I probably

should say this is alpha k that would be probably better, this also should be alpha k.

So, look at this now. G of alpha is simply sum of g k of alpha k, where g k of alpha k

depends only on alpha k. So, that is the decomposition that we have achieved. There is

no product terms among alphas each of g of k is a quadratic in only alpha k. So, this is

the decoupling or decomposition that we have achieved in going from ordinary basis to

the conjugate basis nothing has changed except the representation.
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Therefore, minimizing f of x in the x space in the in the original coordinate system is

equivalent to minimizing f of x naught plus alpha x naught plus I should have said this is

I am sorry this is p of alpha p of alpha, but x naught plus p of alpha is minimizing with

respect to G of alpha. But G of alpha from the previous page is given by this, right. The

terms  in  the  parentheses  are  sums  of  individual  alpha  ks  they  depend  only  on  the

individual alpha ks. Therefore, the minimum with respect to the vector I can replace it by

summation minimum with respect to alpha k for each k, this is alpha k with respect to

each k because f of x naught is a constant. So, that does not change the analysis.

So, what did that we have accomplished? Minimization of x in the n dimensional space

now reduced to minimization of n one dimensional functions which are called g of k of

alpha g k of alpha k. Please remember each g of k depends only on alpha k. So, the

transition from here to here is very crucial very critical this transition depends on our

ability to decompose because g 1 depends only on alpha 1, g naught depends on only

alpha naught, g 3 depends only on alpha 3, g k depends only on alpha k. Therefore, we

have made the problem to be 1 of n simultaneous minimization of g of alpha k which are

one dimensional, one dimensional problem.

So, to say in other words minimization of one n dimensional problem is converted into

the minimization of n 1-D problem that is divide and conquer. So, a hard is decomposed

into n small sub problems in 1-D that is the fundamental achievement of going from the



original  basis  to  the conjugate  basis.  I  hope you are able  to  recognize the  power of

conjugacy  in  transforming  in  n  dimensional  minimization  to  minimization  of  n  1

dimensional problems.

(Refer Slide Time: 27:27)

Now, let us concentrate on 1-D problem let g of alpha k is equal to a quadratic function d

k is known r naught is known p k is known. So, it is simply a function of alpha k. So, if I

compute the derivative of g of k with respect to alpha k, I get this and if I equate this to 0

I get alpha k to be given by this and that is given by this formula which is very well

known and you can readily see this formula is very much related to the formula that we

have derived in the early slides.

Therefore, we have now minimized each of these functions separately with respect to

alpha k and the minimizer alpha k is given by this form particular formula. So, we have

achieved  minimization  of  n  one  dimensional  function  simultaneously  where  the

minimizer is given by this particular formula.



(Refer Slide Time: 28:33)

So, this provides us a framework for what is called conjugate direction method is an idea.

So, let me summarize this now. Let f of x be one half of x transpose Ax minus b of x, r

naught is b minus A of x naught.

Let us assume I am given a set of n A conjugate direction the whole analysis depends on

the existence of the n conjugate directions prespecified given to us. So, if somebody

gives me a set of n A conjugate direction, where a is the matrix of the quadratic form

where a is the symmetric positive definite matrix then from the above analysis, what do

they can do? I can try to minimize each of the g alpha k for k running from 1 to n that is

exactly what is being done here for k running from 0 to n minus 1, step one find alpha k

the formula that is given in the previous page, compute x k plus 1 is equal to x k plus

alpha k p k. That means, I am moving in the direction of the conjugate gradient I would

like to now remind you that this is distinct from what we did in the gradient method the

gradient method x k plus 1 is equal to x k plus alpha k, r k. So, there we went in the

direction of r k which is the negative the gradient here I am going in the direction of the

A conjugate direction. So, that is the primary difference between the 2 ideas p k is A

conjugate direction.

The residual  also can be updated according to step 3. I  am now going to test  if  the

residual is 0 if the residual is 0 I get out x then x star is equal to x k plus 1 otherwise you

continue.  Another  fundamental  difference  between  this  algorithm  and  the  gradient



algorithm is that in the case of gradient algorithm we had a for loop where we said k is

equal to 0 1 2 3 up to infinity there is an infinite loop we had an exit condition, here is a

finite loop 0 to n minus 1 that essentially tells you I have finite time convergence, the

finite time convergence essentially implied by the decomposition that we have produced

earlier. So, I can solve one n dimensional problem as n one dimensional problem if I did

these n sub problems a sequence I am done. So, the notion of a finite time convergence is

inherent in this analysis.

The  conjugate  direction  method,  the  conjugate  direction  framework  essentially

summarizes this idea conditioned on the fact I have been given a set of n A conjugate

directions. I still allow the possibility of being able to get out soon if something happens

therefore, this provides you a general framework for finite time convergence finite time

convergence. This was the idea that was proposed by Hestons in the early 50s this is one

of the one of the landmark results in the theory of minimization domain and ever since

the conjugate direction based ideas have been exploited and we would like to be able to

tell  you that  this  is  not,  this  is  not  called  conjugate  gradient  method it  is  simply  A

conjugate  direction  framework,  it  is  an idea if  you do not  have an idea  you cannot

develop an algorithm.

So, what is the essence of this idea? If I have a quadratic function by choosing a set of n

A conjugate direction, I can convert n, I can convert one n dimensional minimization

problem to a set of n 1-D minimization problem I can solve these n one dimensional

minimization problems in a sequence. So, you know more than n steps I should be able

to achieve the minimum the overall minimum of the original function f I am seeking.

That is the message of this analysis called, analysis of what is called conjugate direction

framework.
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We would like to do some checking to further reinforce the idea of the power of the

conjugate direction methodology. So, let us assume given x k and p k what is that; x k is

a given operating point p k is the conjugate direction.

Even though we do the analysis  in the conjugate basis computations are done in the

original basis I want you to remember the thing. So, we do the analysis and the conjugate

basis the computations are done the original basis. So, we need to be able to go between

these  2 spaces  and we would  like  to  be  able  to  reinforce  some of  the  properties  of

conjugate directions by answering specific by examining specific relations. So, let x k be

given, let p k be the conjugate direction along which I am going to move from x k in

going to x k plus 1. So, the one dimensional minimization problem in this case becomes

g of alpha is equal to f of x k plus alpha times p k if you substitute x k plus alpha p k in

my function the function expression takes this form which can be reduced to this, f of x k

since x k is given f of x k is known that is a constant.

So, it  is the quadratic  function in alpha you can readily see I want to minimize this

quadratic function I get alpha k is equal to given by this and this is the formula that we

had achieved in our earlier analysis. So, this is a further collaboration and verification of

the properties looking at the conjugate direction method as one that starts at x naught and

minimize as a function along the one dimensional ah direction p k. So, that is the aspect

of the verification.  So, we are trying to do everything similar  to what we did in the



gradient direction the only difference being in the gradient method we went along the

direction negative the gradient here we are going in the direction of conjugate direction,

A conjugate direction p k.

To verify the expression in step 3. So, let us go back, step 3 the conjugate direction

method I am going to quickly review.

(Refer Slide Time: 35:58)

From step 2 if you iterate it from x naught x k plus 1 takes the following shape x k plus1.

So, r k plus 1 this must be yeah, x k plus 1 is a vector that is given by that and r k plus 1

is given by this and if I substitute x k plus 1 that expression becomes this which can be

replaced by this that is exactly equal to r k minus alpha k a P k. So, that is the expression

we have got for step 3.



(Refer Slide Time: 36:52)

Relation between r k and p k p k transpose r k plus 1 is 0 using alpha k in step one. I

would like you to verify this, these are all important properties one should verify that

that; that means, r k plus 1 and p k are orthogonal to each other. Please remember in the

case of conjugate gradient method r k plus 1 and r k are orthogonal. Here r k plus 1 is the

gradient of the function at x k plus 1 that implies x k plus 1 minimizes f of x along x k

plus alpha p k.

So, from here you can readily verify the following sequence of relations p k transpose r k

plus 1 is equal to p k transpose r k plus 2 p k transpose r n is 0. Likewise p k transpose r

k p k transpose r k minus 1 is equal to p n transpose r naught there is an inequality that is

the orthogonality. These two properties  essentially  follow from the analysis  we have

given these are important  properties  that  one should examine one should understand.

This essentially tells you the intrinsic relation that exists between conjugate directions

and the gradient directions which are the residual armature negative the gradient.
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Another thing is called the expanding subspace property is another interesting aspect of

the  conjugate  direction  method  x  k  plus  1  can  be  expressed  as  x  k  plus  1  can  be

expressed as this. So, r k plus 1 is given by this which we have already seen used that is

equal to r naught plus this. Taking the inner product of both sides with respect to p j, I

can you can readily verify that this is the result that one gets. So, what does this mean? r

k plus 1 let us go back to the previous one, r k plus 1 is orthogonal to p k, p k. In here

what is that we have seen r k plus 1 is perpendicular to, is perpendicular to this set; that

means, that is what is called the expanding property the expanding property I believe this

must be, I want to check this. I want to check this property, I will probably correct it

later.
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So, that essentially tells you x k plus n minimizes over the span of, over the span of p k

plus 1 this must be I am not very clear about. I will have to check the correctness of this I

will come back to that. So, what is the basic idea? The basic idea is I am sorry the basic

idea is x k plus 1 minimizes over a subspace and the subspace is expanding. So, x naught

minimizes  over  p  naught,  x  1  minimizes  over  the  span  of  p  naught  and  p  1,  x  3

minimizes over p naught p 1 p 2, x k plus 1 minimizes over the span of p naught, p 1, p

2, p k.

So, in this way when I consider all the vectors p naught through p n minus 1 and span of

it and x naught plus this span of it if x belongs to that that minimizes that minimizes f of

x.  So,  that  is  the  fundamental  relation  that  comes  out  of  this  expanding  subspace

property. So, in addition, so what is the basic idea? In addition to minimizing x k plus 1

in  addition  to  minimizing  x  k  plus  alpha  p  k  it  also  minimizes  over  the  subspace

therefore, x n minus 1 minimizes f of x over r n. So, I believe this must be k, I believe

this must be k that is the correct way to look at it.

I also believe this must be this must be sorry, I also believe this must be k that is the

foundation for the, that is the foundation for the, this is k, this is also k. I can, I will

correct this I will send the corrected version of these therefore, you can see what is the

summary of this the summary of this is each iterate not only tries to minimize in the

direction chosen it also minimizes in the subspace spanned by all the previous conjugate



directions. So, when I come to x n minus 1 x n minus 1 minimizes f of x over the span of

p naught, p 1, p 2, up to p n minus 1 since p naught p 1 p 2 p n minus 1 span the whole

space is the basis I have minimized it over the entire r n. So, that is the fundamental idea

of this expanding subspace property, expanding subspace property.

(Refer Slide Time: 42:43)

So, that essentially gives you the notion of, that essentially gives you the notion of finite

time convergence that essentially gives you the notion of finite time convergence which

we are now going to state explicitly. So, given f of x is equal to, given f of x is equal to x

transpose Ax minus b transpose x, given a set of conjugate directions.
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The conjugate direction framework guarantees convergence in at most n steps, in at most

n steps; that means, finite time convergence, but what is the tacit assumption that we

have making the implicit  assumption in this  is that computations are error free. That

means,  I  have  a  hypothetical  machine  which  has  infinite  position.  So,  if  I  have  a

computer with the infinite position there is no computational  error I can check for a

conjugacy perfectly. So, if I have the ability to examine the a conjugacy perfectly this

framework essentially provides you finite term convergence of minimization algorithm

provided  we  do  the  searches  along  the  conjugate  directions.  That  is  the  principle

conclusion that comes out of this.
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The question here is that we have assumed the presence of n conjugate direction, the

whole question is this we did not show or we did not verify such A conjugate direction

exists. Sure to prove the existence of conjugate direction now I am going to look at eigen

decomposition of A and show the eigenvectors of A are in principle could be used as

conjugate directions. So, if I can show that we already know at least one set of conjugate

directions  exist  if  there  is  one  set  of  conjugate  direction  exist  the  framework  for

conjugate direction as we have developed make sense.

So, in order to show such A conjugate direction exists I am now going to start with a

given  matrix  A which  is  SPD,  a  given matrix  A which  is  SPD.  Consider  the  eigen

decomposition  AV i  is  equal  to  V i  lambda i.  I  am going to  consider  the  matrix  of

eigenvectors V. I am going to consider lambda of diagonal elements this relation can be

expressed as a matrix relation a V is equal to V lambda VV transpose V transpose V is i,

V transpose therefore,  from this  relation now we now have either V transpose AV is

lambda or a is equal to V lambda V transpose.

So, what does this tell you? V is equal V transpose AV is equal to lambda essentially tells

you if you. So, let us consider that V transpose AV is equal to lambda what does it tell

you it tells you the following A V 1, V 2 V n here I am going to have V 1 transpose V 2

transpose V n transpose if you consider this, this is going to be a diagonal matrix lambda

1, lambda 2, lambda n. So, this essentially tells you V i transpose a V j is equal to 0 if i



not equal to j is not equal to 0 if i is equal to j this essentially tells you the Vs the V is are

A conjugate. The V is are essentially are essentially A conjugate V is are essentially V is

are A conjugate, A conjugate.

So, that essentially proves that I have at least one system of A conjugate direction for a

given matrix  and A conjugate  directions  are  essentially  the  eigenvectors  of  A.  Even

though this proves the existence of conjugate direction it is computationally extremely

demanding to find the complete eigen system that can be used as A conjugate directions

because you have to spend lot of money in trying to find the eigenvectors. So, you spend

lot of money to find the eigenvectors and then you have to perform the minimization the

n one dimensional minimization as dictated. Therefore, this idea of using eigenvectors of

A as conjugate direction while in principle  feasible is computationally inexpensive is

computationally  demanding  therefore,  we  should  look  for  an  alternate  method  for

defining conjugate direction which are much less expensive.

This idea of trying to incorporate the method of finding the conjugate direction along

with  the search  as  we go on is  the  principle  that  is  embodied  in  conjugate  gradient

method. So, what is the difference between conjugate direction method and conjugate

gradient method? The conjugate direction method is not an algorithm is a framework it

essentially tells you if you give me a set of n A conjugate directions I can do the analysis

I  can prove I  can converge in n steps.  So,  that  is  simply the framework it  does not

confine,  it  does  not  consider  how do  you  how does  one  deliver  the  n  A conjugate

direction  therefore,  in  order  to  make this  framework a  reality  we must  integrate  the

process of defining the conjugate direction along with the search along with the one

dimensional  search  combined  in  a  very  nice  way  that  will  guarantee  not  only  a

conjugacy, but also finite time convergence. These two ideas melding together gives rise

to a new class of algorithm they are called, that is called conjugate gradient algorithm.

So, that is the difference between conjugate direction and conjugate gradient.
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So, the basic principle the conjugate gradient algorithm we already saw. Now I am going

to describe the various steps involved. Given the function f of x let x naught be initial

point are not as the initial residual. I am going to choose the initial conjugate direction to

be the same as the initial residual. Please understand I need a set of n conjugate direction

the first direction could be anything.

Here we are going to pick the first conjugate direction to be the negative of the residual

at x naught. So, p naught is r naught. So, for k running from 0 to m minus 1, I compute

alpha  k  by  this  formula  I  can  also  compute  alpha  k  by  another  formula  these  two

formulas  essentially  the  same.  We are  not  going  to  indulge  into  the  proof  of  the

equivalence between 2 expressions like this many books and many papers written on

conjugate  gradient  method essentially  gives  you the  ability  to  compute  these  in  two

different ways both are equivalent.

Now I am going to iterate, I am now going to update the residual we are going to test for

convergence,  that  test  for  convergence  essentially  rests  on  the  smallness  of  the

magnitude of the residual. If the residual is not small we need to continue, we need to

first  define  A  conjugate  direction,  conjugate  direction  is  not  directable,  conjugate

direction. So, steps 5 and 6 together help you to define the conjugate direction, p k plus 1

is the new conjugate direction; p k is the old conjugate direction r k plus 1 is the new

residual  I  have  already computed.  So,  using  the  new residual  and the old conjugate



direction  I  am  taking  a  linear  combination  to  get  the  new  conjugate  direction  the

coefficient of the linear combination is beta k and beta k is again given by two ways of

computation one by this  formula another by the other formula.  So,  5 and 6 together

define the conjugate direction.

Step 2 and 3 define the update of the iterate and the update of the residual. The step one

essentially  gives  you  the  update  of  the  coefficient  which  is  used  the  step  length

parameter. So, step one gives you the step length parameter step 5 gives you the step

length parameter needed to define the conjugate direction. Step 2 and 3 define the iterate

and  the  update  of  the  residual  vectors.  Step  4  essentially  gives  you  a  convert  a

convergence test. The overall convergence is repeated no more than n times 0 to n minus

1. So, if the computer is such that either is no roundoff errors this gives you a framework

to be able to minimize in n steps.

The advantage of this framework is that you are not, you need not be given a prior, a set

of conjugate direction I can build the conjugate direction iteratively as I proceed. So, this

ability  to  integrate  the  search  and  the  building  of  the  conjugate  direction  together

simultaneously in this process is the power of the idea behind the conjugate gradient

algorithm,  conjugate  gradient  algorithm has  been  a  very  powerful  workhorse  in  the

industry. So, we understand the properties of steps 1 through 4. So, what is the only thing

that one need to understand we need to be able to show that the p k defined by steps 5

and 6 are indeed A conjugate and here is a summary of the properties of the conjugate

gradient algorithm CG.
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The conjugate directions are computed is not internationally I am sorry, there is an error

there is a typo. Internally, it is computed internally in steps 5 and 6 is not given a prior i;

alternate choices of alpha k and b k are given in the respective steps they are equivalent p

ks are A conjugate I am not going to indulge in the proof of that that will take a little bit

longer time, but the proof that p k is so generated or A conjugate are contained in several

sources. r k plus 1 is perpendicular to r k as it happens the gradient algorithm. So, the

residuals  preserve  the  same  property  as  the  gradient  algorithm  and  the  r  k  is  also

perpendicular to the span I think this must be k, I am sorry, I think this must be k I have

to carefully check some of these things I will do that.
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Another property is span of p, p naught, span of p naught to p n minus 1 is the same as

span of r naught to r n minus 1 which is also equal to the span of r naught, Ar naught, A

square r naught, A to the power k minus 1 r naught this must be A to the power of n

minus 1 r naught and this space that is generated like this is called the Krylov subspace.

Krylov subspace, this Krylov subspace of dimension n is generated by A and r naught.

The Krylov subspace generated by n and A and r naught; that means, given A vector r

naught and A matrix A by successively multiplying r naught by A, A square, A to the

power of n minus 1 I  create different  vectors the span of these vectors is called the

Krylov subspace.

You can readily see the same space has different representation span of p, span of r, span

of the vectors r naught, Ar naught, A square r naught and so on. It is this property of

equivalence  representation  from the  same space  using  different  basis  is  the  ultimate

power of the conjugate gradient algorithm.
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So, conjugate gradient algorithm with finite precision arithmetic. Until now we talked

about  conjugate  gradient  with  infinite  position.  When  on  real;  when  used  on  real

computers because of finite precision our infinite precision arithmetic we cannot check a

conjugacy perfectly. So,  what  we think  as  A conjugate  direction  are not  precisely A

conjugate they are only approximately A conjugate direction therefore, if x star is the

optimum solution if E k is the error it can be shown this must be E of x k. The E of x k is

given by this quadratic function much like the E of x k that we used in gradient method.

So, when there is a round of errors what happens you started x naught you perform n

steps you come to x star, this x star because the finite precision arithmetic will not be the

I should not say x star let me change the notation a little bit.

This is let us assume x bar, this x bar will not be equal to x star the minimum, but close

to that. Then what do we do? You start from here you do one more n steps you go to x

double bar  then you start  from here you do n steps  you x go to  x triple  bar. So,  it

becomes an iterative process. It turns out if you consider this as an iterative process one

can find out the ratio of E of x k, this is x k x sub k, E of x k by x naught is given by 2

time is less than or equal to 2 times a function that depends on kappa much like gradient

algorithm where kappa is lambda 1 by lambda n is a spectral condition number. So, you

can readily see in  the  case of  iterative  in the case of finite  precision arithmetic  you

cannot achieve finite time convergence it looks as though is not it is an infinite reprocess



in this case the convergence rate is given by this expression, convergence rate is given by

this expression.
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So, now I can do whatever I did with respect to gradient algorithm I can set this number

which is an upper band equal to epsilon 10 to the power of d, by taking the logarithm I

can compute an expression for k star by simplifying the, by simplifying this expression I

can readily see that k star is given by this which is equal to which is equal to d plus 1

time square root of k 2 kappa A by 2. So, that is the number of steps. So, k star is the

number of steps in the iterative process needed to be able to get closer of the order of 10

to the power of minus d, d is the precision 6 14 and so on. This follows again in the same

idea.
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So,  now, I  would like  to  be  able  to  compare  conjugate  gradient  with  respect  to  the

gradient  algorithm.  So,  here  I  have  given  you  various  examples  of  kappa  various

examples of kappa. Here is the number of values or the number of iterations that I have

needed in the gradient algorithm here is the number of iterations that are needed the

conjugate gradient algorithm.

So, with the presence of finite precision arithmetic conjugate gradient beats the gradient

method  hands  down  it  can  perform  absolutely  very  well  that  is  the  power  of  the

conjugate gradient when if there is put to the gradient algorithm, conjugate gradient with

respect the gradient algorithm and this difference we can see is very measurable. So, let

me summarize this now.

So, how do you how does one utilize the conjugate gradient method? That is given by the

following if you start at x naught you go to x bar in n steps, if you start at x bar you go to

x double bar in n steps if you start at x double bar you go to x triple bar in n steps. It is

said that in most of the time, when you are doing an experiment when we are doing an

experiment  it  is  enough to repeat  it  about  3 times.  So,  used I  will  give you another

graphical representation you start at x naught you get to x bar here, you get x bar here

you start at x bar you go to x double bar closer to r, you then x. So, you get ever closer in

other words I will tell you the basic idea here. So, you start at x naught you come to x bar



x double bar is closer than that this is x double bar x triple bar is even closer than that.

So, that is x triple x triple bar and that is the minimum which is x star.

So, x star is the minimum x double star is closer to the minimum that x bar x triple bar is

closer to the minimum then x double bar. So, it is said that if you apply the conjugate

gradient method in 3 phases 3 n iterations in principle you should be able to get very

close to the optimum and that is the power of the conjugate gradient method.
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With this we conclude the overall presentation of the minimization algorithm we said

there  are  Gradient  algorithm,  Conjugate  Gradient  algorithm  and  Quasi  Newton

algorithm.  For  lack  of  time  you  will  not  indulge  in  the  analysis  of  quasi  newton

algorithm.

We have given a several sets of exercises. The exercises relates to verification of very

many different properties of gradient and conjugating the algorithm. I would like you to

indulge in the prove of Kantrovich inequality. I would like you to implement gradient

algorithm and conjugate gradient algorithm on this for the same problem and compare

the convergence. I would like you to take a test problem with this A, apply the gradient

algorithm and verify that this is the theoretical way in which the iterates proceed starting

with the initial condition 2 and 1.



For this problem verify f of x k is equal to one-ninth of f of x k plus 1 is equal to one-

ninth of f of x k. I would like you to draw the contours and super impose the trajectory so

that you can visually demonstrate the convergence.
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I would like to now combine couple of problems you consider the 4 d grid with 16 point.

I  am  given  observations  at  2  observations  at  each  locations.  So,  to  distribute  2

observations each of the grid boxes m is equal to 18 observations,  m is equal to 18

observations there are 16 points is an over determinant system, build the interpolation

matrix H which is 18 by 16, create artificially 18 observations of temperature. Let us

assume z i is equal to 70 plus v i ,v i is the random noise for i is equal to 1 to 18.
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So, we have 18 observations you have the matrix H. We can now consider the problem a

quadratic minimization problem Z minus H of x transpose Z minus H of x, Z is given 18

observations we have already you have already generated, you already have the matrix.

So,  it  is  a function of x.  This  is  given by this,  this  is  the quadratic  function  to  this

quadratic  function  you  can  apply  the  gradient  algorithm  and  the  conjugate  gradient

algorithm and compare and what that I would like you to do? I would like you to be able

to  plot  the  value  of  f  of  x  k  for  the  gradient  algorithm  for  the  conjugate  gradient

algorithm, the gradient algorithm conjugate gradient algorithm. You can readily see the

value  of  f  of  k  reduces  faster  for  the  conjugate  gradient  algorithm compared to  the

gradient algorithm because we have already seen from the table that conjugate gradient

algorithm requires much smaller number of iteration compared to the gradient algorithm.

So, this will essentially help you to verify the power of the conjugate gradient algorithm

means solving problems.

With this we come to the end of the discussion of the optimization algorithms. With this

we have also completed some of the fundamental mathematical background needed finite

dimensional  vector  space,  matrix  properties,  properties  from  multivariate  calculus,

principles of optimization, matrix based algorithms as well as minimization algorithms.

These are the various topics that address the crux of the mathematical tool needed in

doing data assimilation. With this behind us from now on we are simply going to be

concentrating on saw on solving various types of inverse problems, our next step is to be



able to look at dynamic inverse problems leading to the standard 4 d var methods and

that is what we will begin in our next lecture.

Thank you. Bye.


