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Minimization algorithms

In this module, we are going to be talking about direct minimization algorithm. You may

recall, there are essentially 2 ways of solving numerically the least square invert least

square problems that arise within the context of linear and non-linear inverse problems;

one is to be able to use matrix based algorithms. We saw at least 3 different families of

matrix based algorithm; one is Cholesky; based a Cholesky factorization based algorithm

derived from l u decomposition the second one is q r decomposition that comes out of

Gramm Schmidt Orthogonalization process.

The  third  one  is  singular  value  decomposition  that  that  is  derived  from  the  Eigen

decomposition  of  the  Grammians  of  the  matrix  h  these  matrix  based  techniques  are

called Dirac methods, we also alluded to iterate 2 methods for solving linear system,

even though we did not cover them in this lecture, we are going to be talking about using

minimization algorithms to be able to find the best least square estimate. 

You may recall we have already reviewed the basic principles of minimization constraint

unconstraint  multivariate  optimization  problem  in  one  of  the  early  modules  on

mathematical preliminaries; we are going to derive a lot of the ideas in this module from

those modules that are dealing with that that deals with constrained and unconstrained

minimization algorithms.



(Refer Slide Time: 02:11)

With that is the background D, I would like to be able to state the minimization problem

in  one  dimension  to  that  end let  f  be  a  function  let  f  be  a  convex function  in  one

dimension R to R; that means, it is a scalar valid function of a scalar an example of such

an f is A x squared plus b x plus c with a greater than 0. We can rewrite this f of x as by

perfecting the square as follows a times x plus b by 2 a whole square minus b squared

minus 4 a c by 4 a.

The second term does not depend on x the first term depends on x. So, by choosing x is

equal to minus b by 2 a, we can; the first term, therefore, x star is equal to minus b by a is

the minimizer; the minimum value of the function is f of x star is minus b squared minus

4 a c by 4 a geometrically f of x with a is equal to greater than 0 represents a parabola

that intersects the x axis. So, you can think of this like this; that is the x axis, we are

intersects like this if b square is greater than 4 a c it intersects at 2 points; this is the

minimum sorry the figure is not perfect, but you get the idea.

If b squared minus 4 a c; if b square is greater than 4 a c the minimum is below the x axis

otherwise the minimum is above the x axis and with a greater  than 0 this  quadratic

function is a convex function its it is it is simply a parabola it has a unique minimum and

the unique minimum or a minimizer is given by x star is equal to minus b by 2 a.



(Refer Slide Time: 04:19)

I would like to be able to continue this example minimization in 1 D consider in f of x

with x square plus x plus 1. This can be written as x plus 1 over half whole square plus 3

over 4; in this case x star is equal to minus half and f of x star is equal to 3 by 4.

Since b square is greater than is less than 4 a c since b square is less than 4 a c x 1 x 2 are

complex and f of x lies above the x axis; that means, it has no real intersection with the x

axis; it is a continuation of the discussion of the problem in the previous slide.

(Refer Slide Time: 05:08)



Now I would like to be able to generalize it to n dimension, I would like to come; I

would like to consider functions which are scalar valid function of a vector; they are

convex in R n. A typical function that is convex in R n is this quadratic function one half

of x transpose A x minus b transpose x plus c where A is a symmetric positive definite

matrix.

Using the principles of multivariate calculus, we can say that the gradient of this f; f

function is given by A x minus b. So, at the point where the gradient vanishes x star is a

inverse b x star is equal to A inverse b is called the minimizer of f of x the minimum

value of f of x is given by this expression we can ready I would like all of you to be able

to work this out in detail and understand the specific values how they are defined. So,

one while one could solve the mini solve for the minimum by solving ax is equal to b

using any one of the matrix techniques A is SPD. So, I could apply Cholesky or q r or

SPD kind of algorithm for solving A x is equal to b.

Instead we seek to minimize f of x iteratively by doing a gradient search and that is the

theme of this module.

(Refer Slide Time: 06:54)

So,  what  is  the basis  for  the gradient  technique;  the gradient  technique  rests  on the

concept of what is called a descent direction descent direction; means the direction in

which the function increases decreases increasing mean ascent decreasing mean descent.



So, let us consider a function f of x; let us consider a contour where f of x is a constant; it

takes a constant value that that contour is given by this curve.

So, let x be a point on the contour where f of x is equal to c that is this point that is that

point; if you consider the gradient of f at that particular point the gradient refers to the

direction of maximum rate of change. So, the negative of the gradient is the direction

where the function decreases at the maximum rate. So, any direction p that makes an

acute angle theta with the negative of the gradient is called a descent direction which. 

So, the descent direction is described by this inequality p transpose; p transpose gradient

of f of x must be 0 must be less than 0. So, what does it mean the inner product of the of

any direction p with the gradient if it is less than 0; what does that mean if you consider

the perpendicular line like this which is the tangent f of x at the point x on the right side

is the direction of increase the left side is the direction of decrease and p points to a

direction of this tangent and the angle that p makes with the negative gradient is less than

or equal to 90.

Therefore theta; the magnitude of this is less than or equal to 90; the inner product of p

transpose with the gradient is less than less than 0 any p that satisfies; this is called the

descent direction. So, what does what is the implication of this descent direction if you

move along this descent direction p the function f is guaranteed to decrease f; f of x must

decrease as we move a small distance along p away from x. 

So, this is the property of this is the property of descent direction why are we interested

in descent direction; we are interested in minimization. Minimization means trying to

find a point where the value of the function takes the least value. So, it makes sense to

search for good descent directions and move along the descent directions to be able to

find the minimum of  a  function and the picture  essentially  describes  the role  of the

descent direction.

If you are trying to maximize you would you would consider action p in the right half

that will be called ascent direction ascent direction in descent directions are duals of each

other. So, without loss of generality in our discussion we will only consider minimization

and descent direction.



(Refer Slide Time: 10:48)

Let  alpha  be  a  small  parameter  which  are  real  number  consider  let  p  be  a  descent

direction let p be a descent direction let alpha be a positive, but a small real number. So,

x is a current point on the contour where f of x is equal to a constant value c as we saw in

the previous picture.

So, x plus alpha p; what does it tell you from x you move along p by a small distance that

distance is controlled by alpha. So, f of x plus alpha p is a neighbor of x. So, f of x plus

alpha p can be expanded in a Taylor series expand in a first order Taylor series. So, f of x

plus alpha p is f of x plus alpha times p transpose gradient of f; f of x if p is a descent

direction from the previous slide, we know this quantity p tend to have x of x that is less

than 0 alpha is positive. Therefore, I am subtracting something from the value f of x.

Therefore, the whole value is less than f of x since p is the descent direction. So, what

does this tell you?

Starting at x by identifying a descent direction if you move your small distance along the

descent direction the function f of x ought to decrease that is the conclusion; that is the

power of Taylor series expansion and p being a descent direction now our aim is to be

able to maximize the decrease in other words we are we are always greedy in problem

solving. 

So, if I move away from alpha if I movie away from x by small distance controlled by

alpha I am always looking for a direction p where the decrease in f will be the maximum



the direction p where the decrease will  be maximum a little  reflection will  reveal  is

indeed p is equal to minus the gradient in other words if you move along the direction

which is negative of the gradient the negative of the gray the direction where f of x

decreases of the maximum rate.

Such a direction p is called the deep steepest descent direction it is called the steepest

descent direction because the rate of decrease along this direction is maximum. So, if I

substitute p is equal to minus the gradient in the Taylor series expansion that we have

about we get an expression which is like this where the quantity that being subtracted is

alpha times the square of the norm of the gradient at the point x that essentially follows

from that in that expression and which is definitely less than f of x therefore, by moving

along a descent direction which is negative. 

The gradient this direction is also called the steepest descent direction it guarantees the

maximum rate of decrease of f of x at x. So, if I am interested in minimizing f of x. If I

am moving away from a current operating point the best direction for one to move is

always negative of the gradient at that particular point this is the basis for almost all of

the  known  minimization  algorithms,  steepest  descent  that  descent  direction  steepest

descent direction these are the 2 key things.

(Refer Slide Time: 15:02)

Now I am going to put it all together. So, let X k be the current operating point what is

the current operating point I am in my journey I started point x naught I would like to be



able to go and settle down on the minimum I am somewhere. So, at the kth iteration I am

at a current operating point which is X k. So, let X k be the current operating point I am

going to define a residual or k is equal to r k is a shortened form for r of X k r of X k is

negative of the gradient at the point X k.

Now, if you recall the gradient of f is A X k minus b. So, the negative the gradient is b

minus A X k because a is a quadratic function given about this residual is not unrelated to

the residual that we have talked about in the least square problems in the least square

problems what is that we have we have z is equal to h of x we call r of x is equal to z

minus h of x. 

So, that is what we call the residual in this case b plays the role of z a plays the role of h.

So, you can see the relation between b minus A x and z minus h of x we called r of x as

the residual within the context of least squares here we are calling r of X k as a residual.

This is the negative of the gradient of f at the point x.

This r k must be a smaller r k this r k is the steepest descent direction of f of x at x k. So,

from the previous discussion we know negative of the gradient is the steepest descent

direction. So, steepest descent direction; now have 2 interpretation one is the residual or

it is a negative the gradient both are same by definition now how do I go how do I know

that I have reached the minimum at the minimum the necessary condition is the gradient

must vanish therefore, at the minimum r of k must be equal to 0. When X k is equal to x

star is equal to a inverse b please remember a inverse b, I already know the value of a

inverse  b  except  that  I  is  an  expression  for  the  minimum I  do  not  know its  actual

numerical value, but I do I do know what is the mathematical expression that defines the

inverse for this quadratic problem.

So, how do I test whether I have reached the minimum r naught one way to test if I have

reached the minimum r naught is to compute a norm of the residual if the norm of the

residual is very close to being 0; that means, I am very close to the minimum if the norm

of the ah. So, the norm of r k is a measure of how far my current operating point X k is

away from the minimum x star. So, I have now a meter to speak. So, to speak to that

measures how far I am away from the minimum please recall the I do not know where

the minimum is if I had not; if I had known where the minimum is there is no problem

there is no need to do any of these things.



So, without knowing the minimum I need to develop a test to understand how far I am

away from the minimum one good measure one good way to measure the distance of the

current point from the minimum is the norm of the residual which is also the norm of the

negative the gradient. So, that is a very beautiful way to measure how far I am away

from the minimum therefore, the norm of r k could essentially be used as a convergence

for the iterative minimization it is a test that measures the distance from where I am to

where I want to be.

(Refer Slide Time: 19:28)

So, with this I am now going to define the framework for this. So, called this steepest

descent  algorithm it  the steepest  descent  framework if  you wish.  So, let  X k be the

current operating point. Let X k be the current operating point let r k be the directions of

steepest descent at X k let alpha be the step length. So, X k plus alpha r k it is going to

give me my new operating point what is the proper to the new operating point f of X k is

less than f of X k plus 1 is less than f of X k even though f of X k plus 1 is less than f of

X k the absolute value of the difference between f of X k plus 1 and f of X k depends on

the choice of alpha.

This is not A; this is alpha sorry alpha is called the step length parameter alpha defines

how far I go from X k in the direction r k at X k. So, what is that we have now seen at

time k X k is fixed at time k the direction of search r k is also fixed therefore, given X k

and r k what is the question now how to choose alpha such that we get a maximum



decrease in f of x as we move away from X k to X k plus alpha times r k I hope this

question becomes very clear alpha is an arbitrary parameter. 

We have not explained how to pick an alpha. So, now, the question here is that having

decided to move along the direction negative the radiant the next question remains how

far do I go in the chosen direction that question how to decide on alpha is formulated by

this question is is the embedded within this statement given X k and r k how to choose

alpha such that we get the maximum decrease in f of x as we move from X k to X k plus

alpha times r k.

So, that is the important question that we would like to answer. So, look at this now we

have we originally started minimizing f of x, we are at the current operating point X k,

we decided to move along the direction r k; r k is a one dimensional vector. So, I would

like to be able to minimize f of x as a function of alpha in that direction r k. So, we get a

new one dimensional minimization problem this minimization problem can be stated as

follows define g of alpha which is equal to X k f of X k plus alpha r k please understand f

is a quadratic function is known X k is known r k is known. So, if you substitute X k plus

alpha r k is the quadratic form.

Since  everything  is  known,  but  alpha  I  get  a  function  of  alpha;  alpha  is  the  real

parameter. So, g is a function from real to real therefore, we have reduced the problem to

a 1 D minimization problem that the important recognition one needs to develop at this

point.
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So, I am now describing the fundamental principle of successive minimization. This is

called divide and conquer principle given an n dimensional minimization of given the

problem of n dimensional minimization of f of x, we reduce it to a sequence of one

dimensional minimization of g of alpha at x of alpha at x of k along the steepest descent

direction r k which is the negative of the gradient.

So, what is the idea here I am here at the point I am here at the point X k, let this be the

direction of r k, I would like to be able to go a distance alpha from here. So, let this point

refer to alpha times r k, I should not say like that; I am sorry, I will correct it. Now I

would like to be able to go a distance of alpha times r k that distance is alpha times r k.

So, this point now becomes X k plus 1 then from X k plus 1 I am going to consider r k

plus 1, I am going to again move alpha times r k plus 1; I am going to define X k plus 2

and so on. So, I move from X k to X k plus 1 to X k plus 2.

So, what is the basic idea given X k given the direction r k; I would like to be able to

minimize f of x along the direction r k and find let X k plus 1 be the minimum point

along this direction f of x becomes a function of alpha that is called g of alpha, then after

having found X k plus 1 again compute the negative gradient you want to be able to go

alpha times r k plus r k plus 1 that defines the point X k plus 2. Therefore, I have start

with x naught I come to x 1 I come to x 2 I go to X k I go to X k plus 1 the search

continues.



So, in going from x naught x 1; x 1 to x 2, I essentially solve your one dimensional

minimization problem the one dimensional minimization problem always happens in the

direction  of  the  negative  gradient  at  each  of  these  points.  So,  here  in  lies  the  basic

principle  of  the  divide  and  conquer  a  given n  dimensional  minimization  problem is

reduced to a sequence of one dimensional minimization problem g of alpha at X k along

the  steepest  different  direction  r  k  for  k  is  equal  to  0 1  2 3  and that  generates  the

sequence of points x naught x 1 x 2 X k; X k plus 1 what is the idea here x 1 to the

minimum then x naught was X k plus 1 is closer to the minimum then X k was.

So, there are 2 ideas in here there is a greedy principle involved in here what is the

greedy principle. If I move, I would like to get closer to the minimum that is the greedy

principle there is also a divide and conquer principle at work; here what is the divide and

conquer  principle  I  solve,  we  are  given  n  dimensional  minimization  problem  as  a

sequence of one dimensional minimization problem. So, I divide a larger problem into a

smaller problem and solve a sequence of simpler problems to solve a complex problem s,

that is the basic principle of divide and conquer. So, it is an amalgam of these 2 principle

the greedy and the divide and conquer that is the basis for the iterative framework for the

minimization of f of x.

I hope the basic ideas are very clear. I also would like to would like to remind the reader

of  the relation  to  hill  climbing idea  hill  climbing sorry;  hill  climbing a  mountaineer

wants to go to the top of the Everest; what do they do? They move from base camp to

base camp to base camp to base camp, they work for 8 hours, they are at a given base

camp they know where the peak is they cannot go in a straight line from where they are

to the peak if that were to be the case there will not be much interest in climbing Everest.

So,  the path to  the peak from where you are depends on the local  properties  of  the

mountain a travel mountaineer always looks at the local terrain and choose a direction

such that if I worked for five hours I would like to be able to make sure my elevation

increases. So, every time they move from one base camp to another base camp the level

the height of the base camp is becomes higher and higher I get closer and closer to the

hill humans now been utilizing this idea of hill climbing is based on the rate of change of

the  terrain  at  a  given  point  for  a  long  time.  So,  this  steepest  descent  algorithm  is

patterned after what humans do when they climb hills to be able to go to the peak.



The only difference being instead of hill climbing I am trying to descent to the valley, but

the analogy between hill climbing and descending to the valley must be extremely clear

from the basic discussions from the basic discussions.

(Refer Slide Time: 30:00)

So, what are the key things in any minimization the current operating point X k this

descent direction r k and then the step length parameter alpha times r k to decide h h k

plus 1 I know X k I know r k, I want to decide what is the best alpha came I would like

to be able to illustrate this idea of deciding the best alpha using an example of a quadratic

function quadric minimization.

Quadratic minimization problem is a model problem. So, I would like to illustrate the

basic principles using the model problem f of x is equal to one half of x transpose A x

minus b transpose x plus c a being SPD this is the problem we started with I am going to

set X k plus 1 is equal to X k plus alpha r k, I still do not know; what is the best value of

r k. So, alpha is a free parameter I am going to define g of alpha to be equal to f of X k

plus 1 that is equal to f of X k plus alpha k; if I substitute x is equal to X k plus alpha r k

in my f of x my f of x takes this particular form I would like all the readers to be able to

do the substitution and simplification and do the simplification f of X k is a number r k

transpose a of X k is a number this is also a number. So, given all these things g of alpha

is a simple quadratic function in alpha.



That means and that is to be expected because f of X k is the slides of f of x along the

direction r k. So, g of alpha is a quadratic and alpha. So, to minimize g with respect to

alpha  please  understand  minimizing  f  of  x  along  the  direction  r  k  is  the  same  as

minimizing g with respect to alpha setting the derivative of g with respect to alpha equal

to 0 we get this equation. So, the minimizer of g of alpha which is alpha k is given by

negative of r k transpose A X k minus b by r k transpose a r k please remember b minus

A X k is r k therefore, the whole expression becomes this. So, the optimal value of alpha

that maximizes the decrease in the valley the function along the direction r k is alpha k

and this alpha k is always greater than 0 unless r k is equal to 0 then alpha when r k is

equal to 0 we have already reached the minimum.

(Refer Slide Time: 33:11)

So, so long as I am not in the minimum the step length is going to be positive. So, I have

now all the information that I need to be able to build my algorithm. So, the steepest

descent  algorithm another  name for  it  is  also  gradient  algorithm.  So,  I  am going to

summarize my algorithm here let f of x be the function given by this let x naught be a

starting point. At the starting point, I am going to compute my residual r k which is the

negative of the gradient which is the negative of the gradient. So, A X k. So, A x plus; I

am sorry A x naught minus b is the gradient I believe this is the actual gradient. So, it this

has to be a negative sign in here.



Sorry negative sign in here therefore, at k is equal to 0, I know r 0, I can compute alpha 0

r 0 transpose r 0 divided by r 0 transpose a transpose that is the optimal step length at that

particular step X k plus 1 is equal to X k plus alpha k r k. So, that is the iterate. So, I

move from k to k plus 1, I want to be able to test for convergence if the convergent test

passes exit otherwise you update r k that is called the residual update this is the gradient

at the point X k plus 1 the gradient the negative of the gradient of the point X k plus 1 is

related to negative the gradient at the point X k and a correction term and a correction

term.

So, from the definition of r k one can very readily verify this residual update. So, these 4

steps  together  gives  you  the  framework  for  the  optimization  algorithm.  So,  the

optimization algorithm now generates a sequence of iterates x 1 x 2 X k and. So, on and

we have already made sure using the greedy principle X k is closer to x star then x

naught was that  is  the basic idea that  is  the basic idea so; that  means,  I am moving

towards my goal that is the basic idea of the algorithm the algorithm is extremely simple

very easy to implement this algorithm is called the gradient algorithm or the steepest

descent algorithm.

(Refer Slide Time: 35:51)

Now, I would like to talk about some of the properties of the residual the residual at X k

plus 1 sorry the residual at X k plus 1 is given by r k plus 1 which is b minus A X k plus

1, but X k plus 1 is given by this; therefore, r k plus 1 is given by this formula this is



called the residual update that you have seen in the previous step 4 of the algorithm. So,

here is the here is the verification of the correctness of the step 4. Now I would like to be

able to take the inner product of x r k and r k plus 1 it; you can you can readily see from

this  calculation  the  inner  product  is  0.  So,  what  does  it  mean  2  successive  search

directions are orthogonal 2 successive search directions are orthogonal please remember

r k is the direction of search at X k.

So, with these properties; now I would like to be able to ask the fundamental question

while I know X k is moving towards x star what happens to X k as k becomes large. So,

what is the limit of X k we under what condition the limit of X k will be equal to x star

where x star is a inverse b. So, that is the question that is a convergence question when is

the limit equal to the minimum; if I can show in the limit the X k tends to x star, then I

have guaranteed convergence of that algorithms.

(Refer Slide Time: 37:30)

So, let me summarize what we have done so far; we introduced the notion of descent

direction we introduced the Norden of steepest descent direction we then said that given

an operating point and a descent direction, I would like to be able to find the value the

step length for which I get the maximum decrease. So, I move from point to point base

point to base point to base point guaranteeing that along the chosen at the chosen point

along  the  chosen  direction  I  have  a  paint  the  maximum  decrease  possible  I  have

implemented by greedy strategy the divide and conquer strategy essentially tells you I



search for the minimum along successive gradient direction and the previous analysis

essentially tells you successive gradient directions successive are directions of search are

mutually orthogonal.

So, with that now we have the burden to show that while it goes towards the minimum it

will indeed hit the minimum as the number of iterates k grows unbounded. So, that is

what is called convergence proof the in order to prove the convergence. Now I am going

to introduce another term called the error term the error is X k minus x star; I do not

know the numerical value of x star, but I only know its form a inverse b. So, if I multiply

a by e k I get A X k minus b is equal to minus r k. So, what does it mean the error and the

residual are related to each other by this relation a of e k is equal to minus r k.

We have already known the minimum occurs when the residual the norm of the residual

is 0 when the norm of the residual is 0 at the minimum the norm of the error must also be

0; therefore, I could utilize either r k r e k to analyze my convergence the only difference

is r k is measurable e k is not miserable why e k is not measurable because I do not x star

even though e k is  not  measurable  he said very;  it  is  very useful  to  use e k  in  my

theoretical  analysis.  So,  r  k  is  measurable,  but  not  e  k;  e  k  is  useful  in  proving

convergence of a sequence to prove convergence instead of showing X k tends to x star it

is enough to show e k tends to 0 as k tends to infinity that is an equivalent way of

proving convergence.
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In order to prove convergence those of you who are involved in application only they can

simply take the algorithm program and apply it, but we would like to go a bit further we

would like to be able to provide a complete analysis of this algorithm. So, in order to be

able to prove convergence; I am going to define an energy function the energy function is

e f X k which is equal to f of X k minus f of x star the value of the function. 

At X k minus the minimum value setting b is equal to A x star and simplifying it can be

shown a of X k after simplification becomes one half of e k transpose a e k; you may

recall from our module on matrices this is called an energy norm. So, this is one half of

the square of the energy norm of the error that is what E of X k is. So, E of X k is always

greater than 0 unless e k 0 why is that e a is a possible definite quadratic form from the

definition of quadratic form; we already know x transpose A x is always greater than 0

for all x naught equal to 0 which is equal to 0 only when x is equal to 0 that is the

definition half a being positive definite.

So, since a is positive definite  E of X k being the energy norm E of X k is a good

measure of how far I am away from the minimum if E of X k is 0 I am at the minimum if

it is not 0 I am not at the minimum. So, it is a kind of a meter that tells you how far away

I am from the minimum. So, E of X k is the measure of how far X k is from x star again I

want to reinforce E of X k is 0 only when X k is equal to x star.
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So, what is the basic idea I want to be able to. So, what is the proof of framework proof

of the convergence I want to evaluate the E of X k along the trajectory; I want to be able

to evaluate E of X k along the trajectory and prove x is a decreasing function of k.

E of X k is bounded below by 0. So, I have a positive function which is bounded below

by 0. So, if I can prove E of X k tends to 0 as k tends to infinity I would have proved

convergence this framework of trying to use the energy function to prove convergence is

an  idea  which  is  it  is  an  old idea  is  due to  a  famous Russian  mathematician  called

Lyapunov and has come to be called Lyapunov technique. So, that we are going to be

talking  about  is  the  convergence  proof  that  is  directly  related  to  the  fundamental

principles that Lyapunov introduced towards the turn of the last century about 919; in the

early 1900s.

(Refer Slide Time: 43:28)

So, we are going to talk about the recursive relation for e of x k. So, E of X k plus 1

because I am interested in trying to evaluate E of X k along the trajectory I am going to

first want to compute E of X k plus 1 and related to E of X k substituting X k plus 1 is

equal to X k plus alpha r k and simplifying and remembering that b is equal to a inverse

x star because x star is equal to a inverse; it follows that. So, I should have said the

following; I am sorry this there is an error here sorry; this should have been x star is

equal to a inverse b I am sorry; we will make the correction.



So, with th e x star is equal to a inverse b it follows. In fact, I would like to recommend

all of you to be able to undertake this simplification is a non trivial simplification it can

be shown that E of X k is equal to beta k times E of X k where beta is given by this

quantity beta k is given by this quantity. So, I have now related A to E of X k plus 1 and

beta k is the multiplying constant. 

So, what does this tell you if you can show beta k is less than one that essentially tells

you E of X k is less than e of e X k plus 1 is less than e of x k. So, the whole proof of

convergent now rests in our showing that beta k is a constant which is less than one if it

is less than one from this equation star we would approve essentially would have put a

convergence. So, convergence now boils down to showing that beta k is less than one?
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This quantity beta k less than one is analyzed through a very well known inequality

called  Kantorovich  inequality.  In  fact,  it  is  Kantorovich  again  another  Russian

mathematician who is the first one to prove the convergence of gradient algorithm. So,

now, I am going to quote the Kantorovich inequality which is a very powerful inequality

very  useful  inequality  there  are  several  different  versions  of  this  inequality  in  the

literature I am talking about the simplest possible version of Kantorovich inequality it

goes  somewhat  like  this  let  a  be  a  symmetric  positive  definite  matrix  let  lambda  1

lambda n be the n Eigen values since a is a SPD even lambda n the smallest value is

greater than 0.



Kantorovich inequality essentially say is that for any vector y in R n y transpose y square

divided by y transpose a y; y transpose a inverse y is always greater than 1 minus lambda

1 minus lambda n divided by lambda 1 plus lambda n whole square the proof of this is

very  well  known.  You can get  several  different  versions  of  the  proof  by  looking  at

Wikipedia  for  example  are  many  textbooks  on  optimization  theory  I  think  is  an

interesting exercise to prove this inequality now we are going to take this for granted. So,

if I substitute if I substitute y is equal to R. So, please remember this inequality is true for

any y.
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Now, what is the quantity I mean I am interested in r k; r k is any vector I have no idea

what r k will be except that it is a negative the gradient at the point X k therefore by

combining Kantorovich inequality and beta k. So, beta k has a value from the previous

slide we know this is the value of beta k by identifying r k is equal to y in Kantorovich

inequality we readily follow that beta k is less than this quantity that essentially comes

from Kantorovich inequality. 

I can divide the numerator and denominator by lambda n that gives you lambda 1 by

lambda n minus  1 by lambda 1 by lambda m plus  1 the  numerator  is  less  than  the

denominator  not  only that  please  remember  kappa 2 kappa 2 is  called  the condition

number is a spectral condition number of the matrix a please remember kappa 2 of a is

the ratio lambda 1 by lambda n the rage ratio of the largest to the smallest Eigenvalue;



therefore, beta k is less than or equal to kappa 2 minus a by kappa 2 plus kappa 2 of a

minus 1 divided by kappa 2 of a plus 1 whole square.

I am going to call this quantity as beta and it is very trivial to verify beta is less than 1.

So, beta k is uniformly bounded by beta which is less than one. So, for all k beta k is less

than less than 1 if and also I want you to recognize that the condition number is always

greater than or equal to 1 when SPD. So, you can readily see the notion of a condition

number now critically use in the proof of convergence of the gradient method.
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Therefore combining all these X k plus E of X k plus 1 is less than or equal to beta times

e of X k. Now, please remember the I have replaced beta k by beta; beta k is less than

beta; beta is less than 1. Therefore, if I iterate this I get this expression E of X k is less

than or equal to beta to the power k of E of x naught.

Beta k beta being less than one goes to 0 as k goes to infinity therefore, E of X k as gets

going k goes to infinity 0 if E of X k goes to 0 that implies limit of X k goes to x star and

hence convergence.  So, by exploiting the greedy nature and by concentrating  on the

energy norm of the error instead of the residual we can always see the relation between

the previous slides because we have related the energy norm of the error through r k and

I  am  by  combining  cleverly  the  Kantorovich  inequality  we  are  now  able  to  prove

convergence.  So,  what  does  this  mean  this  means  gradient  method  for  quadratic

functions indeed will converge starting from any point.
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So, that is the main theorem or a main summary if f of x is equal to 1 half of x transpose

A x minus b transpose x plus c in a is SPD then the gradient. So, what is that we have

achieved  the  gradient  algorithm  starting  from  any  point  x  naught  converges  to  the

minimum as k goes to infinity that is a guaranteed that is what is called convergence

theorem it is all the people who use gradient algorithm to do minimization of quadratic

functions  they  rely  on  the  power  of  this  theorem.  So,  here  comes  the  basic  idea  of

combining cover ways to measure how far I am away from the minimum we are able to

using greedy principles  we are showing not  only we are  moving closer  towards  the

minimum, but also indeed I will be on the top of the minimum as k equal to infinity.

So, once I approved convergent the next one is how fast I go towards convergence that

relates  to  what  is  called  the  rate  of  convergence  please  understand  the  rate  of

convergence depends on beta; if beta is very small beta to the power k grows a goes to 0

very fast. For example, if this is k if this is beta to the power k if beta is 0.9 it goes to 0

slowly this is point beta is equal to 0.9. 

Let  us  say, but  if  beta  is  equal  to  0.1.  So,  beta  smaller  the  value  of  beta  faster  the

convergence  larger;  the  value  of  beta  slower  the  convergence,  the  convergence  rate

depends  on  the  value  that  the  beta  takes  now  please  remember  converge  the  beta

essentially depends on the condition number please go back what is the value of beta;

beta is essentially  we can we can see from this slide I will I will  cut it  now beta is



essentially beta is equal to kappa 2 of a minus 1 divided by kappa 2 of a plus 1 whole

square.

So, if kappa 2 is very large let us say 10 thousand the numerator will be 9999 divided by

10000 and one that ratio is very close to 1. Therefore, beta will be very large and the

other hand if beta is 10, the numerator is 9. The denominator is 11, beta is much smaller

than  the  previous  case.  It  comes  down  very  fast.  Therefore,  ultimately  the  rate  of

convergence is controlled by only the condition number the rate of convergence depends

on the condition number and that is the condition number of a is fixed because given a

matrix a; the condition number of fixed those. So, the rate of convergence well its fixed

turns on the condition number of a. So, that is an important conclusion that comes out of

this.
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Now, I would like to be able to bring a practical question the method says as k goes to

infinity I will converge at k goes to infinity E of x; x of k becomes 0, but if I am doing

arithmetic in a final precision in a finite precision machine what is that I am looking for

we already know E of X k; we already know E of X k is equal to beta to the power k is

less than or equal to beta to the power k of E of x naught. 

Therefore, E of X k divided by E of x naught is less than or equal to beta to the power k I

am not in I do not want to wait until beta to the power k goes to 0, but I would like to be



able to make beta to the power k less than epsilon where epsilon is 10 to the power of

minus d.

So, what is d in a single precision arithmetic I cannot believe I cannot compute anything

beyond 5-6 decimal accuracy in a double precision arithmetic I cannot compute anything

more than 10 I am I am sorry about thirteen fourteen decimal accuracy. So, by picking d

to be 6; I can think of a single precision arithmetic I can by picking d is equal to 13-14. I

can think of double precision arithmetic. So, whatever be I let d be a coefficient I am

going to use in my judgment as to when to exist exit out of the algorithm. So, let setting

beta to the power k equal to 10 to the power of d by taking logarithms on both sides for a

given d my k star is given by d over log of 10 of one over beta.

Beta is less than 1; 1 over beta is greater than one. So, logarithm of a number greater

than one is positive d is positive and this is called this. This is called this ceiling of x

ceiling of x and its value is equal to the smallest integer greater than x smallest integer

greater than x. So, k star is an integer which is the smallest integer yeah the smallest

integer greater than that and for a given beta k star in case. 

So, what does it mean for a given beta in k star iterations the ratio of the energy of the

error at time k to the ratio the energy at time 0 will be less than or equal to 10 to the

power of minus d. So, I this is the measure actual measure one would use in practical

applications. So, what does it mean by picking k star which depends on d; I can pre-

compute the number of iterations one would need to do to be able to get closer to the

minimum.
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Now, I am going to give you a feel for the dependence of k on beta and kappa. So, K 2 is

one the kappa; when the condition number is one for which matrix condition number is

one identity matrix beta is 0 that generally does not happen. So, we are not interested in

cases where the function the matrix a symmetric positive definite matrix is quadratic

form with identity matrix. So, so let us consider other cases when kappa is 10 beta is

given by 0.6 is 942 k star is forty likewise when kappa is 10 to the power of 4 beta is

9996 I would indeed need about forty thousand creations.

So, you can readily see the measure the power of the measure given by kappa; the power

of the measure given by kappa as kappa increases the number of iterations needed also

increases and this is for the value of d is equal to 6. This is for a value of d is equal to 6.

So, this essentially tells you by please specifying the accuracy with which we want to

decide the minimum and for a given kappa we can estimate the number of iterations

needed to be able to achieve. So, once I know I actually the desired accuracy once I

know the number of iterations then that could be used to be able to decide what is the

total amount of time that is needed to be able to go to the minimum use in the greedy in

such algorithm.

So, that is a sense this table essentially provides the summary of the performance of the

gradient algorithm in trying to minimize quadratic objective functions.
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I am now going to illustrate  this  by an example consider a matrix  a which is 1 0 0

lambda; lambda is a parameter f of x is equal to one half of x transpose A x for this a the

function is given by this function is given by this expression this it can be rewritten as an

equation for an ellipse the minimum value of f of the minimum value of f of x occurs at x

star which is 0 0; I can compute the gradient of this function the gradient is given by this

I am going to start my x naught is equal to lambda 1 as the as my initial point just for the

fun of it I am going to start there; I could verify that alpha naught is given by this which

is given by this.

So, x 1 is given by this vector. So, I am actually computing the progress of the iteration

from step 0 to step one using this specific example I have given all the values I would

like to encourage you to be able to verify each of these values.
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Continuing it can be shown that if I start at x naught which is equal to lambda 1 my X k

will be given by this no please understand this vector is fixed the constant that multiplies

the vector lambda minus 1 divided by lambda plus 1 to the power k that that number is

less than one it is that number to the power k. So, that goes to 0 therefore, X k goes to 0

as k goes to infinity therefore, they have already verified the convergence when lambda

is equal to 4 as a particular example I have already proved convergence for any lambda

for a specific lambda is equal to 4 X k is given by this.

So, 0.6 to the power k goes to 0 as k goes to infinity. So, X k goes to infinity. Now what

is the basic idea here this behavior has a zigzag behavior what does this mean look at this

now the  first  component  is  the  first  component  is  0.6 to  the  power k  4 the  second

component  is minus 1 to the power k.  So,  when k is even the second component  is

positive when k is odd the second component is negative. So, what does this mean at

even iterates are above the x axis audit rates are below the x axis. So, it goes zigzag like

this with decreasing amplitude. So, if this is if this is x naught if this is the origin this is x

star the iterates zigzags across the x axis.

So,  the  iterates  exhibit  an  oscillatory  behavior  which essentially  which  is  essentially

responsible for the slow convergence you have seen in the previous table that when n

when the kappa is at the order of 10 to the power of 4. It takes 40000 iteration; why it

takes 40000 iteration because the iterates has an oscillatory exhibit the iterates exhibit an



oscillatory behavior. So, instead of moving directly towards this it keeps oscillating and

making progress towards that the progress towards the minimum is little slower that is an

inherent  behavior  of  the  gradient  algorithm  the  zigzag  behavior  the  presence  of

oscillatory behavior is what is responsible for the slow nature the convergence of the

gradient algorithm in cases that is exhibited by this specific problem.
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Now, I would like to talk about I would like to talk about the 1 D search you remember

we have to decide alpha k given an operating point  x and a descent direction p the

optimal step length is obtained by minimizing g of alpha I am going to go; I am going

back to one of the problems we decided earlier. So, what is that we have sent we would

like to be able to get the derivative of g with respect to alpha which is given by this

expression I want to solve that when f when f is quadratic g is quadratic and star is linear

in alpha when f is not quadratic g can be solved only numerically. So, what does it mean

I am now thinking of extensions of the gradient algorithm to non quadratic functions?

So, this is what we have already proven, but in principle not all functions we are called

upon to minimize our quadratic. So, when you are dealing with minimization of a non

quadratic  function  odd  function  which  are  highly  non-linear  and  apply  the  gradient

method this  method of  choosing the  step  length  parameter  alpha is  a  little  bit  more

involved because this can be solved only numerically because it is not linear I would like

to I would like to caution I would like to bring that caution to the forefront right now.
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So, in that case what we do we essentially compute a quadratic approximation g of 0 is f

of x g of 1 is f of x plus p the gradient of g with respect to alpha is given by that?

So, if I have 3 pieces of information about the function g of alpha. So, what is g of alpha

g of alpha is the slice of f of x along the direction r k starting at the point x k. So, I am

trying to fit a model which is a quadratic model that approximates g of alpha I do not

know g of alpha precisely because of non-linear function I am going to bring a non-linear

approximation to g of x g of x has 3 unknown parameters a b and c, I have given 3

different pieces of information about g of alpha by using these 3 of pieces of information
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 I can essentially estimate the parameters a b and c. So, m of 0 is g of 0 which is c m of

one is g of 1 which is a plus b plus c m prime the derivative of at 0 is given by 2 a alpha

plus b.
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Sorry 2 a alpha plus b 2 a alpha plus beta alpha, there is b. Therefore, I know I now know

what you see I now know what is a plus b plus c. I now know what is b. So, I can now

compute a is given by this b is given by this c is given by this. These are all functions of

g and g is the slice of f of x along the direction r k g is known. So, I can compute the



values a b and c once I compute the value of a and b, b and c while I do not know the

actual g of x I have a quadratic approximation to g of alpha.

I can minimize the model the quadratic model by setting the gradient of m of alpha with

respect to alpha is equal to 0 and I get the optimal structuring parameter given by this

expression. So, you would generally use this expression when you use gradient method

for a general non-linear function, but you would use the ratio of the r k transpose r k

divided by r k transpose a r k for alpha k when the function f is a quadratic function. 
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So, we have now talked about generalization of the application of the gradient method to

problems where the function may not be a quadratic function. So, you are look back a

summary of search gradient method converges only asymptotically even for quadratic

functions. So, that is the important thing.

Gradient  method  converges  for  quadratic  functions,  but  it  converges  asymptotically;

asymptotically means what as iterations go to infinity in practice we may not have all the

time that is needed to be able to wait for convergence. So, we would like to be able to cut

off the convergence at a desired place. So, we would like to be able to see in when the

magnitude of the residual becomes smaller than 10 to the power of minus d where d is 6

or 10 or fourteen depending on the kind of accuracy you want,  which case the total

number of iterations needed. 



One can pre-compute according to the table based on which is which is fundamentally

depend on the condition number of the matrix a and all those good results are only for

quadratic  functions and the key thing I want to emphasize is that the convergence is

asymptotic.  So,  that  behooves  they  ask  a  question  is  finite  time  convergence  at  all

possible theoretically the answer is the well known conjugate gradient method and the

conjugate  direction  idea  can  be used  in  principle  to  achieve  this  goal  of  finite  time

convergence at least for quadratic functionals.

So, what is  the what is the summary here the gradient  algorithms are very good for

quadratic functions they have asymptotic convergence we can pre-compute the number

of iterations needed to get the desired accuracy those are all the fundamental properties

of gradient algorithm and that sets the limit of the power of the gradient algorithm once

we have understood this  asymptotic  nature of convergence of gradient algorithm, we

would like to ask ourselves a question is there a way for us to be able to start from an

arbitrary place to be able to get to the minimum infinite time that is the ultimate desire in

the design of any optimization minimization algorithm.

So, we would like to be able to explore at least theoretically if it is feasible talk you

cannot do anything in practice if it is not theoretically possible. So, this exploration of

finite time convergence at least in the theoretical sense is a question that arises from the

analysis of the gradient algorithm the answer to this question does that exist an algorithm

in principle that can converge to the minimum in finite time the answer is yes a class of

method called conjugate direction conjugate gradient methods is one that theoretically

provides this framework of finite convergence that the next topic which we will pursue in

our next lecture.

Thank you.


