
Dynamic Data Assimilation
Prof. S Lakshmivarahan

School of Computer Science
Indian Institute of Technology, Madras

Lecture - 17
Matrix Decomposition Algorithms Continued

(Refer Slide Time: 00:13)

In the previous talk we talked about QR decomposition for the over determined case. QR

decomposition can also be applied for the under determine case. I am going to quickly

point out some of the key steps. Let again Z is equal to H of x, H is m by m, m is less

than n,  m is  the number of observation,  n is  the number of unknowns. I  have more

unknowns than the number of observations. In this case, please remember I have done

the hue QR decomposition of H m by n, when m is greater than n. We have already done

with that. In this case I have H m by n, here m is less than n.

If I took the transpose of this H; that is n by m n is greater than m. So, these two cases

are the same if you interchange m and R. Therefore, QR decomposition of H for the over

determined  system,  is  the  same  as  the  QR  decomposition  of  H  transpose  for  the

underdetermined system. That is a quick mathematical enterprise that you can utilize. If

you utilize this you can see the QR decomposition for the lower triangular, for hundred

determine case on the over determine case, are not too different from each other.



So, I can compute H transpose QR as above. Since in this case, n is greater than m by

interchanging the role of m and n, I can apply everything that we saw thus far, Q again is

Q 1 and Q 2 R is again R 1 and R 1 R 2. R 1 is an upper triangular matrix. R 2 is a 0

matrix,  Q 1  transpose  Q 1  is  I  m,  and  H is  equal  to  R transpose  Q transpose.  So,

essentially the whole thing flies without any much trouble at all.
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So, in this case again, my f of x is equal to square of the normal residual. So, Z is equal

to. So, let us go back to the previous case. The problem reduces to Z is equal to. I am

sorry H is equal to R transpose Q transpose, in view of that H Z minus H of x. I am sorry,

in view of that Z minus H of x. I am sorry once again; let me correct myself Z minus H

of x.

Z minus H of x, H is equal to R transpose Q transpose. Therefore, Z minus H of x now

becomes R transpose Q transpose x, and this is what is used in here. So, f of x is the

square of the sum of the errors represented this way. So, this is an alternate expression

for the residual, which can be, when multiplied can be given by this. You can compute

the gradient of this. This is independent. The first term is the independent of x. this is

linear in x. 

This  is  quadratic  in  x.  From the  module  on multivariate  calculus,  we know how to

compute the gradient of a linear function; we know how to compute the gradient of a

quadratic function. By applying those rules, it can be verified that the gradient is given



by  this  expression,  at  the  minimum  gradient  must  be  0.  I  can  also  simultaneously

compute the hessian. So, the solution for the least square problem is obtained by solving

the gradient to be equal to 0, and that gives raise to this equation. So, R R transpose Q

transpose x that must be. I am sorry.

X must be equal to R Z therefore, if I change if I can multiply both sides by R inverse.
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If I multiply R inverse, I get the overall solution. So, to that extent, I am now going to

express various operations, and here y is equal to Q transpose x, which is given by this

partition form. R plus R transpose is essentially given by. So, there is no plus here. So,

sorry there is no plus here. This is given by this matrix. There is R 1 R 1 transpose 0 0.

Therefore, if I assemble all these things I get this equation, which is the equation I need

to solve R 1 R 1 is a non singular matrix, if I multiply both sides by R 1 inverse, I simply

obtain the least square solution by solving R 1 transpose, y 1 is equal to Z. So, this is

again R 1 is upper triangular system R 1 transpose a lower triangular system. This can be

solved in o of n square.

So, the whole theme of the exercises, whether it is over determined undetermined by

invoking the  QR decomposition  of  the  rectangular  matrix  H in  either  case,  one  can

reduce the solution least square problem, to one of solving a lower triangular system are

an upper triangular system which is much easier to solve. This is the motivation for using

the QR decomposition, because the pathway leads to a very simple problem in the end.



And we already know solution of upper triangular system lower triangular systems are

very simple.
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This is another look at the least square solution. The least square solution is now given

by x is equal to Q of y in the case of underdetermined system. y is y 1 y 2. Q is Q 1 Q 2.

Therefore, x is equal to Q 1 y 1 plus Q 2 y 2.

Now, please remember y 2 is arbitrary. So, there are infinitely many solutions, and that is

consistent  with  the  undetermined  system.  In  the  case  of  there  are  infinitely  many

systems. Infinitely many solutions for the equations  whether, because there are more

unknowns than the known’s from the previous analysis, we get the linear solution of the

linear system, arising from the least square problem, is given by this; x therefore, the

norm of X L S. 

So, this must be the norm of X L S, the same X L S in here that is equal to the norm of Q

1 y 1 square plus Q 2 y 2. Q 1 transpose Q 1 is I m Q 1 transpose Q 1 is I n minus m, I m

is the mth order unit matrix, I n minus m is the n minus mth order unit matrix. Q 1 is an

orthogonal transformation,  ortho are the length is invariant orthogonal transformation.

Therefore,  this  term reduces  to  this  term,  because  of  orthogonality.  Again  this  term

reduces to this by orthogonality.



So, y 2 is arbitrary; therefore, the least square solution is larger than, or equal to y ones at

the. The norm of the square of y 1, we are going to any solution x is greater than the least

square solution; therefore, the least square solution is given by the formula that we had

already given which is here. 

So, this corresponds to this therefore, any arbitrary there are infinitely many solution,

any one of the infinite many solution has a norm, that norm is greater than least square

solution. Therefore, the least square solution is the unique solution of minimum norm.

So,  that  is  the  end  gain  the  end  result,  and  this  is  result  of  applying  the  QR

decomposition to the underdetermined system as well.

(Refer Slide Time: 09:13)

So,  summary of  the  QR algorithm over  determine  system H is,  m is  greater  than n

compute Q 1 compute R 1; such that H is equal to Q 1 R 1 using a method called Gramm

Schmidt Orthogonalization. So, that is where we are now leading to, that is the reason for

the summary. I only said that such a thing can happen, but we do not know how to make

it happen. So, if I can express H as Q times R Qs orthogonal R is upper triangular, we

saw all the beauties in the analysis, that essentially assumed I can do now it is time for us

to be able to tell how to make the decomposition happen, that decomposition H is equal

to  Q 1 R 1;  that  is  the reduced QR decomposition  is  often  done by a  very famous

procedure  called  Gramm  Schmidt  Orthogonalization  method.  We will  talk  about  it

shortly.



So, once you have Q 1 R 1, I can compute Q 1 transpose Z. Once you have Q 1 transpose

Z that defines the right hand side. I need to solve the lower triangular system R 1 x is

equal to Q 1 transpose Z, that gives us to the linear least square solutions R 1 minus T.

Minus T means what. This is R 1 inverse transpose. It is denoted by, is also equal to R 1

transpose inverse. 

So, these two operations commute; because they commute for simplicity, in mathematics

we simply call it minus t. So, if I say minus T, is a combination of 2 operations the order

in which you apply these operations is a material these two operators commute. So, the

least square solution is given by your solution of a lower triangular system, which is

given elegantly by this.

So, the whole method is beautiful and very nice. So, we need to concentrate on being

able to express H as Q 1 times R 1, the reduced decomposition, and that is done by

Gramm Schmidt  Orthogonalization.  So,  that  is  our  next  term,  given  H How do we

convert H into product of Q and R. So, we in our method, what is that we assume, let us

pretend we can do the decomposition H is a QR Q and R, and how if I can do that, the

solution algae, the solution, the structural solution becomes. After having achieved that it

behooves us to ask a question, how do I make it happen, how do I make H x process the

product of Q and R.
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So, this is the next part of the exercise. I also want to touch upon the under determine

case, when H is, when m is less than n, it is an undetermined case. Again it is a complete

summary of all the analysis we have done H transpose. So, whatever we did for H, now I

am going to do for H transpose. Operation and H and operation of H transpose are not

too different from each other, they are mathematically equivalent. Again H transpose can

be expressed with the product of Q 1 and R 1.

Q 1 R 1 are given by these respective sizes. Solve the lower triangular system, and least

square solution is given by Q 1 times R 1 inverse transpose time Z. So, with this we have

completed  a  discussion of  the  QR transpose  algorithm,  QR decomposition  algorithm

modulo the method for decomposition; QR decomposition.
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And that is given by the method called Gramm Schmidt Orthogonalization. So, now, I

am going to conjure up case and illustrate how given a matrix H, and I can deliver the Q

factor and the R factor. To that n, let H be a matrix, is the m by n matrix, each of the H is

are a vector in R m. So, there are n vectors each of size n, each of size m. I runs from 1 to

n, m is greater than n. So, there are n columns, each column have m rows.

Let the also. I am going to assume the columns are H are linearly independent. So, what

does imply, H is a full rank. So, rank of H is equal to minimum of m n. In this case m is

greater than n. So, minimum of m and n is n, if the rank of. I am sorry rank of H that is

what I should have said. Rank of H is the equal to minimum of m and n is equal to m.



So, it is a full rank matrix, and that is guaranteed by the columns of H being linearly

independent. Now you can see the basic concepts from vector space theory comes into

play, right through. So, what is our aim? Our aim is to be able to find a Q matrix with n

columns, which are q 1 q 2 q n.

I would like the columns of Q q1 and q 2 to be ortho orthogonal system. In fact, it has

been ortho normal system, that is given by the following if I take any 2 vectors with

distinct entities i and j not equal q i transpose q j is 0. If i is equal to j q i transpose q i is

1. So, this is orthonormal. So, what is the problem? Given the columns of H, I need to

find the columns of Q; such that the columns of H are linearly independent,  but the

columns of QR orthonormal. 

This is simply a procedure for converting a set of linearly independent columns, to a set

of  orthonormal  columns,  is  a  very  simple  procedure,  and  this  procedure  is  very

fundamental,  is used repeatedly in several different applications in linear algebra.  We

have already talked about the applications, in solving linear least square problems. Now

we are simply going to concentrate on how to do the decomposition itself.

So, let me go back and say this. So, given h 1 h 2 h n find q 1 q 2 q n, given that H are

linearly independent. I need to find a set of vectors Q that are orthonormal .
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So, what is my first vector q 1? First vector q 1 is arbitrary I can start at any place. So,

what I am going to do. I am going to start with q 1 is equal to my h 1 divided by the

norm of h, the divided by the norm of h. Norm of h refers to the length of the vector h 1.

So, r 1 1 is the first element of R matrix, it refers to the norm of the vector h 1, is the two

norm of that. So, if I divide the vector by its norm I get a unit vector. So, q 1 is a unit

vector. So, first vector q 1 is very simple, it is simply normalized version of h 1. Now I

need to compute q 2. I am going to compute q 2 as a linear combination of h 1 and h 2.

q 1 has already information about h 1. So, I am going to now express q 2 as 1 over r 2 2

times h 2 minus r 1 2 times q 1. Please remember q 1 is known, h 2 is known, r 1 r 1 2 is

not known r 2 2 is not known. So, there are 2 unknowns, r 1 2 and r 2 2. How do I find

these two unknowns? These two unknowns are found by imposing two condition. What

is the first condition, q 1 q 2 must be orthogonal to q 1 that is give rise to value of one of

the unknowns. Then the second one is obtained by forcing q 2 2 be of unit length. So,

orthogonality  condition,  and the  normality  condition  two conditions  are  enforced  by

fixing two parameters.

So, if I were to require q 1 to be orthogonal to give to, it  requires 0 is equal to q 1

transpose q 2 the assumed to form of q 2 is above I substitute this in here. Therefore, why

this is r 1 2, I would have q 1 transpose q 1 is 1. Please remember that I have already

utilized in here q 1 transpose q 1 is equal to 1. Therefore, when I equate this to 0 r 1 2 is

simply q 1 transpose h 2. So, I got 1 1 1 constant. What is r 2 2. Now I know r 1 2 I know

q 1 I know h 2 that is the vector, I can compute the norm of the vector, r 2 2 essentially

divides this vector by its length. So, r 2 2 must be the length of that vector which is h 2

minus r 1 to q 1.

So, this gives raise to a formula for computing one of the core unknowns. This gives you

a formula for computing the other unknown. So, from the known I am computing the

unknown. So, here look at this now I have recovered q 1, I have recovered q 2 I have

recovered r 1 1, I have recovered r 1 2 I have recovered r 2 2. So, I am recovering both

the system simultaneously q and r. So, let us go back to a general, go to a general case

when there are j unknowns. In other words I can now express q j. So, let us pretend I

have found out q 1 q 2 q 3 all the way up to q j minus 1; I am going to compute q j. q j is

going to be expressed as a linear combination of all the previous vectors.



h j q i has information about h i; therefore, I can express q j by the linear combination

that is given here divided by a constant r j from the previous calculations you can readily

see r j j is going to be the normalizing constant, r i j are the constants use in which I am

going to force the orthogonality. So, q j has to be orthogonal to q j 1 j 2, I am a q 1 q 2 q

3 q j minus 1. So, there r j minus 1 constant that are required to fold the orthogonality

one conscience is required to force the normality, and that is the that is a clear story. So,

by multiplying q j, by multiplying q i transpose q j for i less than j, and equating to 0, I

compute all the values of r i j to be q i transpose h j.

So, I have computed j minus 1 such constant, then r j j. So, this must be r j j, is computed

by the norm of the entire vector q j j, is therefore, r j j is equal to h j minus, thus the norm

of the vector.
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So, I can now embed this in a in a pseudo code. Given h that are linearly independent,

that are linearly independent. I want to find this are orthonormal, repeat the following

steps 2 to 5 for j running from 1 to n. Step 2 v j is h j, for i is equal to 1. Now this must

be v 1 must be equal to ah h 1 that is correct, sorry 1 second, what sorry once again, yeah

that is correct.

v j is right, because j is running from 1 to n. So, the overall do loop is on j that is right,

that is correct the overall do loop is on j. So, step 2 v j is equal to h j; that means, j is

equal to 1. So, initially j is equal to 1 v 1 is equal to h 1. Step 3 i for i is equal to 1 to j



minus 1, I am going to make v j perpendicular to the previous vectors. So, that is how I

compute this, and now compute the norm of v j, and then q j is given by this. So, this

procedure is repeated, this procedure delivers q. It also delivers the matrix r as r 1 1 r j i r

j j, compute the norm this must be I am sorry r j j, or this is r j j. Therefore, in every case

for every j i am trying to find all the i running from 1 to j minus 1 in here r j j here.
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So, together I compute all  the required quantities for every j,  and that completes  the

procedure for computing the QR decomposition, with this algorithm, with this pseudo

code, with this pseudo code sorry.

With this pseudo code, with this pseudo code we are able to express any H to be Q and R

R is upper triangular Q isorthonormal, and this is the reduced to QR decomposition, the

reduced the QR decomposition. So, here we saw how to multiply, how to decompose H

into a multiplicative decomposition QR. I have already utilized if H is equal to QR, how

to  utilize  it  in  my solution  process  for  the  linear  least  square  problems.  These  two

together help you to solve the linear least square problem by the QR decomposition. So,

that is method 2.

Now, I am going to go for the last of the three matrix decomposition methods, which is

called the singular value decomposition. Singular value decomposition is economist S V

D. This is the third alternative method for solving linear systems, I am going to assume

my matrix  H is  again  a  full  rank  matrix.  Given  a  rectangular  matrix  there  are  two



grammians H transpose H H H transpose. Both the grammians are of rank n are rank m

there are full rank, both of them are symmetric, both of them are positive definite. In this

case it is positive semi definite; if it is positive definite means all the Eigen values are

positive. If it is positive semi definite means the Eigen values are 0 or positive that is the

only difference between the two. And when m is greater than n when m is greater than n

this is the smaller grammian.

Because n is smaller. This is the larger grammian. When the rank of H transpose H is n, it

has n non 0 Eigen values, when the rank of H transpose H, the rank of H itself is n.

Therefore, the rank H H transpose is deficient, if this rank deficient some of the Eigen

values in this case are allowed to be 0; that is why it is symmetric and positive semi

definite. That essentially comes from the rank conditions for product of matrices and the

given rank of and the given rank of H, at the given rank of h.

Because we are considering the case m is greater than n; that is fixed, but these two are

two different grammians, one is smaller another is larger, because it is cheaper to work

with smaller matrices. Now I am going to consider first the analysis, Eigen analysis of H

transpose H. So, consider H transpose H, which is there an n by n matrix. H transpose H

by this definition is S P D; therefore, it has the n Eigen values which are the largest of

them is lambda 1 the smallest of them is lambda n, even the smallest of them is strictly

positive.

If lambda I is an Eigen value, let V i be the corresponding Eigenvector corresponding

Eigenvalue  lambda  I  for  each  I  Eigenvalue  pair.  So,  if  these  are  the  n  different

Eigenvalue Eigenvector pair for H transpose, it; that means, H transpose H V i is equal to

lambda  I  V  i;  that  is  the  fundamental  relation  that  comes  from  the  definition  of

Eigenvalue. There are m such relations; I am going to by invoking to matrix relation,

succinctly denote the den relation is our own single relation. To that end I am going to

concoct a matrix V. The matrix V is simply n by n matrix, whose n columns are the n

Eigenvectors of H transpose H lambda is a diagonal matrix whose diagonal elements are

lambda 1 to lambda n.

So, V is a n by n matrix diagonal matrix lambda is also n by n matrix. We have already

alluded to the fact, that the Eigenvectors of a real symmetric positive threat matrix are

orthogonal to each other. Therefore, V is again an orthogonal matrix. Now you can see



orthogonal matrices are occurring again and again, 1 is you are decomposition. Now in

Eigen  decomposition  of  symmetric  positive  definite  matrices,  there  are  very  many

different  uses  of  orthogonal  matrices  in  different  applications.  If  V is  orthogonal  v

transpose v and v v transpose is for the identity. Therefore, this relation can be expressed

succinctly as H transpose H V is equal to v lambda. If a post multiply both sides by v

transpose, both this relation comes to be; that means, H transpose H is equal to v lambda

v transpose, this is called the Eigen decomposition of H transpose H. This is called the

Eigen decomposition.

So, so far so good, what does it tell you? Given any matrix H of size m by n, H is a full

rank. I can consider I can compute two grammian smaller larger, compute the Eigen

structure  of  the  smaller  grammian.  I  can  express  the  grammian  as  the  product  of  v

lambda v transpose; V is the matrix of Eigen vectors of the grammian lambda is the

diagonal matrix of Eigenvalues of the grammian. So, this is the very basic fundamental

results, that comes from the symmetric possible, theory of symmetric positive definite

matrices.
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Now, I know V, I know lambda, I know H. So, I am going to now consider a linear

transformation define a vector u i is equal to 1 over square root of lambda I lambda is are

positive I can take the square root H is I m by n matrix, V i is a m n by 1 vector. So, H V

i is a m vector, this is the constant. So, u i are m vectors I would like to remind you. So,



this converts your vector from this transformation converts the vector from R n to R m.

So, this is R n, this is R m. If there is V i, this is u i this transformation H, helps to

convert an n vector into a m vector; that is a linear transformation u i. Now I am going to

multiply H H transpose. Please remember H transpose H is a smaller the grammian, this

is the larger of the grammian. I am going to take the larger the grammian that is m by m

matrix; I am going to multiply that by m vector.

I already know the value of u, I substitute this value which is here. I now simplify, if I

simplified it and I am, I get H H transpose u i is equal to lambda i u i, I am going to let

you follow through the simplification procedure, its a very simple sequence of arguments

in matrix algebra. So, what does this tell you? This essentially tells you the following, if

V i is such that H transpose H is equal to lambda i V i, that immediately tells you H H

transpose u i is equal to lambda i u i; that is a fundamental result. So, that goes to tell you

if V i is are the Eigenvectors of H transpose H, u i are the Eigen vectors of H H H

transpose,  but  they  share  the  same  Eigenvalue.  So,  they  share  the  same  non  0

Eigenvalues. This matrix must have m Eigenvalues.

This matrix must have n Eigen values, m is larger than n. So, in this case they share the

same set of non zero Eigenvalues the m minus n Eigenvalues are 0, are 0 Eigenvalues in

here,  0  Eigenvalues;  that  is  where  the  semi  definiteness  comes  into  play.  therefore,

lambda I u i are the Eigenvectors of Eigenvector value Eigen vectors of H H transpose,

the rest  of the m n Eigenvalues  of H transpose are  0.  So,  we talked about the semi

definiteness of this, positive to semi definiteness of this matrix H H transpose.

Now, these are the general results. I would like to concentrate on the definition of this,

and that is what is going to help us to be able to look at the linear transformation leading

to S V D.
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So, let u 1 to u n be a matrix U, u i is equal to please remember, this is equal to this is

equal to H v a 1 over square root of lambda I H V i H V i. So, U U transpose you can

readily see is I therefore, U U transpose has also the orthogonal property that 1 would

require, I would like you to follow through this simple relation. So, that essentially tells

you the columns of u are also orthonormal. So, we have proved the properties of v, we

have proved the properties of u, u and v are related to the metric H transpose H, and H H

transpose. So, we have seen all the Eigen structure, Eigenvectors of the two grammians

H transpose H and H H transpose.
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Now, we are going to concentrate on what is the singular value decomposition of H, that

comes from basically the definition of u i under the relation to V i, please remember this

that is the way we define u i. So, this by cross multiplying both sides by square root of

lambda I this can be rewritten as H V i is equal to u i lambda I this is for each i. So, this

relation if I concoct for all I, can be written in a matrix form as H V is equal to u lambda

to the power half, what is lambda to the power half, lambda to the power half is simply

the diagonal matrix, which is lambda 1 to the power half, lambda 2 to the power half,

and lambda n to the power half, the square root of the diagonal matrix lambda.

V is orthogonal. So, I can multiply both sides by v transpose, if I multiply both sides by v

transpose because v v transposes I, I get this relation look at this. Now H I have now

expresses  the  product  of  u  lambda  to  the  power  half  and  v  transpose,  and  this

decomposition is a new decomposition, it is not L u, it is not Cholesky, it is not QR, it is

a new animal, is a new form of decomposition, it is a multiplicative decomposition. 

This  decomposition  is  called  singular  value  decomposition  of  H,  why  this  is  called

singular value; lambdas are the Eigenvalues of H transpose h. So, square root of lambda

are called the singular values H. We have already alluded to these things in our module

on matrices, because square root of lambda I or the singular values of H this is called

singular value decomposition. therefore, H can be expressed has a product of the matrix

u, the product of lambda to the power half, and the product of v transpose like this, if I

do the multiplication you can readily see H can be expressed as a product of square root

of lambda i. So, that is a scaling factor u i, is a column vector, V i transposes a row

vector. So, this is an outer product matrix.

Each matrix is multiplied by square root of lambda i. So, this is the weighted sum of

outer product matrices, where lambda is are the Eigenvalues of H transpose H, are the

Eigenvalues of H transpose H. I am sorry I have Eigenvalues of a, let me correct that

once second Eigenvalues of. This must be H transpose H, lambda i are Eigenvalues a H

transpose H and lambda I to the power half or the singular values of H by definition.

therefore, this expression, this expression, this expression. They are all called singular

value  decomposition  of  H,  is  a  very  powerful  device.  In  fact,  it  is  1  of  the  most

fundamental algorithms in numerical linear algebra, 1 of the important application of this

in numerical linear algebra is the following.



Suppose somebody gives you a rectangular matrix H, and asks you to find what is the

rank of H. A computational process for determining the rank of H is to compute the

grammian  H  transpose  H,  and  do  an  Eigenvalue  decomposition,  and  organize  the

Eigenvalue in the decreasing order. The number of nonzero are the number of positive

Eigenvalues is equal to the rank of the matrix. Therefore, this algorithm for computing

the rank of the matrix, using S V D is a very stable procedure for computing the rank.

Not only it is used in computing the rank, but also it can be used in solving the least

square problems.

So, the Gramm Schmidt procedure, the S V D the things that we have developed, even

though we have developed within the context for specific aspect of inverse problems,

these algorithms are so fundamental to numerical linear algebra in computation, each 1

of these find multitudes of application. That is why these are considered to be some of

the nuts and bolts of computational linear algebra.
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Now, what I have to come back and close the loop. I have expressed H in the form of S V

D. If I am able to express H in the form of S V D, how does it help me to solve the linear

least square problem that is what I would like to come back to, because the whole aim in

these lectures is to solve inverse problem.

So, H Z is equal to H of x I want to solve, H is a full rank. I can express H as S V D u

lambda to the power half v transpose. Here v v transpose v transpose V is I n, u transpose



u is I n, the orthogonality of u and v are already established. So, f of x is equal to Z

minus H of x transpose Z minus H of x, but I can express H as u lambda to the power

half v transpose, u lambda to the power v transpose. I multiply both sides, I utilize all

these properties, it can be shown f of x is essentially this term. 

This is the constant term; this is the linear term that is a quadratic term. So, if I compute

the gradient and equated to 0, the gradient of this expression is given by. The linear term

is given by the first term, the quadratic term is given by this this must be a plus instead of

a minus. Therefore, if I solve this system I simply have v lambda v transpose, x is equal

to v lambda to the power half u transpose Z. I can multiply both sides on the left by v

transpose,  I  can  multiply. So,  if  I  multiply  both sides  by v transpose,  v  transpose v

lambda  v  transpose  x  must  be  equal  to  v  transpose  v, lambda  to  the  power  half  u

transpose z, but this is I, this is I though that reduces to v u transpose. I am sorry 1

second.

That leads to, this is I, that is way also equal to I. We are left with lambda v transpose x

is equal to lambda to the power half u transpose Z. now I can multiply both sides by

lambda to the power inverse, lambda inverse. So, if I multiply lambda inverse lambda v

transpose x is equal to lambda minus 1 lambda to the power half u transpose Z. This is

equal to I, this is equal to lambda to the power minus half. You can readily see that is

equal to lambda to the power minus half, I hope you can see, that may be, maybe I will

write that clearly.

This. So, this is equal to, this is equal to lambda to the power minus half u transpose u

transpose  Z.  therefore,  v  transpose  x is  equal  to  lambda to  the  power  minus  half  u

transpose Z. I again multiply both sides by v, v v transpose; x is equal to v lambda to the

power minus half, lambda to the power minus half u transpose z. So, this gives it x is

equal to v lambda to the power minus half u transpose Z, say that is the least square

solution. Therefore, if I am able to express my H, to be equal to u lambda to the power

half v transpose, v transpose. I have found u, I know lambda to the power half, I know v

transpose I i use v, I use lambda to the power half here and u. So, all the factors are used

here. So, I can readily use the factors that I find in the S V D, and express my least

square solution to be this.



Now, this are the very beautiful interpretation. So, Z is the observation vector V is given

to me, u transpose is an orthogonal transformation, orthogonal transformation essentially

rotates they do not elongate or shrink. So, u transpose Z is simply a rotated vector Z, then

I multiplied by lambda to the power minus half diagonal elements. So, that essentially

scaling. So, this is rotation. 

So, I am going to give a geometric feeling. This is rotation, multiplying this is scaling,

and then V is again orthogonal that is again rotation. Therefore, the least square solution,

is obtained by first rotating the given observation, and scaling the given observation by

the diagonal matrix, which is the inverse square root of lambda, and then again rotation

by v. So, you get the least square solution; that is a beautiful way to be able to express

the least square solution, using the method of singular value decomposition.

So,  it  has  a  beautiful  geometric  view as  well,  in  addition  to  be  able  to  analytically

express the solution in some perform. Now look at this now, in here I do not have to

solve any system. In the previous case I have to solve, either a cholesky decomposition, I

had to solve an upper triangular system lower triangular system. 

In the case of QR decomposition I had to solve an upper triangular system. Here I do not

have to solve any system. Why, the inverse occurs only for lambda to the power minus

half. What is lambda to the power of minus half? Lambda to the power minus half is

equal  to  lambda  to the  power half  inverse.  Inverse  of  a  diagonal  matrix  is  they  are

essentially inverse of the diagonal elements, inverse of the diagonal elements, there are n

elements I can compute the reciprocals of each, stick them along rely of this. So, that is

the only inverse I need to compute.

So,  there  is  no  cost  associated  with  computing  inverse  except  for  n  reciprocal

computation. So, once u lambda to the power half, and v are available, it is simply. You

do not have to do any operation except rotation simple scaling, and another rotation, but I

want  to  quickly  add,  to  compute  u  lambda  and v, we  have  to  solve  an  Eigenvalue

problem. Eigenvalue problems are intrinsically more expensive. Therefore, this method

could overall be very expensive, but this is a very good stable method and very often

recommended as one of the alternate methods.

So, among the three methods we have seen; the cholesky, the QR and the S V D. QR and

S V D relate to orthogonal transformations. Any algorithm in matrix theory that involves



orthogonal  transformations,  are  generally  more  stable  numerically.  therefore,  these

methods, these two lateral methods are much preferred. The method of normal equation

based on cholesky method is very good method, but its subjected to lot more numerical

round of errors. So, the three methods have different strengths and weaknesses.

(Refer Slide Time: 46:43)

But before I go to compare I would like to summarize the S V D quickly here, H is U

lambda to the power half v transpose.

That is the S V D decomposition, compute u transpose Z that is rotation I am sorry U

transpose, see that is simply a rotation, I have already talked about that in the previous

slide. This essentially a scaling and this is essentially another rotation. Therefore, we can

very easily see the extra, is the least square solution. So, with this we have covered three

methods cholesky sorry. With this we have covered three method; cholesky, QR, and S V

D, these two involve orthogonal methods, orthogonal matrices. This method essentially

is a variant of L u decomposition. Cholesky method is computationally not stable in the

sense of numerical round off, as QR and S V D.

So, then you are trying to learn these methods, it is better to take 1 particular problem

and solve it by three methods. When you when I say solve it the three methods I have

given you algorithm for each of these. So, you can develop your own subroutine to do

cholesky, your own subroutine for QR, your own subroutine for S V D. So, this way you

can develop your own mathematical packages ground from ground up. So, that you do



not have to depend on, any built in library; such as MATLAB library are C library or

Fortran  library,  this  way  you  can  develop  mathematical  software  to  solve  data

assimilation problems from ground up rather independently from, by using most of the

basic algorithms.

(Refer Slide Time: 48:57)

There are lots of exercises we have we have given. I would like to encourage the reader

to work or through all these examples.

(Refer Slide Time: 49:09)



In  fact,  working  through  these  examples  is  a  fundamental  aspect  of  thorough

understanding. I also would like you to develop your own MATLAB program that is the

important  thing;  you  can  develop  your  own  MATLAB  program.  You  may  say  hey

MATLAB as already has this program why do I do this, but that is an exercise. Suppose

you want to go to work forever national agencies such as the meteorological forecasting

agency. They may try to develop all these systems ground up independent of any existing

libraries, because they would like to have a better control over everything.

So, in order to be employed, in order to be able to develop such systems, you must do an

exercise  in  developing  these  programs,  L  u  decomposition,  solving  lower  upper

triangular systems, cholesky decomposition, Gramm Schmidt method, S V D. I would

like you to be able to program these methods, and compare them, and that is a very good

part of the exercise.

(Refer Slide Time: 50:01)

These are other examples these modules follow closely developments in chapter 9 of our

book.  We are  not  considering  iterative  methods.  Iterative  methods  for  solving  linear

systems are  covered  in  several  excellent  textbook,  Golub and  Van  Loan,  as  well  as

Hageman and Young. So, in view of time, we will  not be able to cover the iterative

methods. Dark methods we covered iterative methods are pursued in here. With this I

believe, I have provided you a very good summary of matrix method, especially a direct

methods to solve linear least square problems.



Thank you.


