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Lecture - 15
Interlude and a Way Forward

Now that we have seen various formulations of the static inverse problems, we would

like to be able to develop numerical algorithms to solve some of the problems that we

have  already  formulated.  For  example,  the  linear  least  square  problem  the  solution

process is reduced to one of solving a linear system of equation where the matrix of the

linear system is symmetric and positive definite. So, it behooves us to ask a question how

do I do that step especially when systems of large. So, this calls for actual numerical

algorithms that we can use to get the ultimate step of being able to compute the solutions.

And to see the bridge from problem formulation to actual numerical algorithms to solve

the problem in this module which we call as an interlude, we are going to talk about an

assessment of what we have done and the way forward.

(Refer Slide Time: 01:27)

So,  the  least  square  formulations  can  be  classified  in  many  ways  linear,  non-linear,

ordinary or weighted, orthogonal or oblique projection, full rank versus rank deficient,

over-determined or under determined, off-line versus on-line formulation. These are the

examples of formulations of the least square problem we have covered thus far.
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Now, the  pathways  to  the  solution  we  have  to  convert  that  formulate  mathematical

formulation  to  actual  numerical  computation  leading  to  the  numerical  methods  for

solving the problem. There are two ways to approach this. One is to directly minimize f

of x, this leads to the so called iterative minimization algorithms we are going to talk

about  these  iterative  minimization  algorithms  as  a  part  of  the  module  4.3  coming

attractions. An alternate way would be we want to be able to minimize the f of x we

compute the gradient of f of x, we compute the hessian of f of x, we solve the equation f

of  x  is  equal  to  0,  and verify  at  the  solution  this  system is  symmetric  and positive

definite.  That  leads  to  solving  linear  systems  of  equations  these  linear  systems  of

equation solution process leads to a variety of matrix methods, and these are covered in

module 4.2.

So, in this module 4.1, we provide a global view of what we have done and where we

need to go and the two pathways, the two pathways to achieving the goal. In addition to

achieving the goal of solving the static inverse problem, the methods that we are going to

be looking at in this module are useful throughout the course whether it is the 3-D var

problem  or  a  4  D  var  problem.  So,  these  methods  are  the  workhorse,  the  iterative

methods and matrix methods are the workhorse that underlie computation of solutions of

inverse problems or data assimilation problems in particular.
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So, in the linear case off-line ordinary linear, full rank formulation in module 3.1 we

were called upon to solve. This system H transpose H is equal to H transpose Z; in here

H transpose H is a symmetric positive definite matrix, m is greater than n that is the over

determine case. In the under determine case, when m is less than n, HH transpose y is

equal  to Z, you solve for y;  and then the least  square solution is obtained by the H

transpose y. Here again HH transpose these two matrices are the gramian matrices which

we know; the gramian is full rank, when H is of full rank; the gramian is symmetric it is

positive definite. So, in these two cases, we are called upon to solve linear systems with

symmetric positive definite matrices HH transpose H transpose H.

In the off-line weighted linear full rank formulation as we saw in module three point one

we are called upon to solve a system with this matrix and the right hand side. Here H

transpose W H is a symmetric  positive definite  matrix.  In the underdetermined case,

again we are going to have to solve this problem and compute the weighted solution like

this. Again in these cases we are called to solve a linear system of the kind A x is equal to

b, where A is symmetric and positive definite.
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In the off-line ordinary linear  rank deficient  formulation,  we are trying  to provide a

summary of everything we have done. We are called upon to solve H transpose H plus

alpha I x is equal to H transpose Z, this is a symmetric positive definite matrix. This

kinds of formulation arose for the rank deficient or the ill conditioned problem, these

methods arose out of taken of regularization. This is for the over determine case this is

for  the underdetermined case;  for the underdetermined case,  again we solve a  linear

system of this type.

For the on-line ordinary linear full rank the emphasis is on-line we saw it is not module

10, I think we have to correct that a different module we will give the numbers soon. The

equations were given by this. Here again k m is eternally calculated like this. Here again

I am interested in computing the inverses of certain matrices k m plus 1 is obtained by

the Sherman-Morrison-Woodbury formula we may remember this. So, we have covered

off-line problems as well as on-line problems; and we have summarized all the equations

solutions of these equations give raise to the least square solution of the least square

problem.
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For the off-line ordinary non-linear case, we have to solve a set of non-linear equations,

we have to solve a set of non-linear equations.  The non-linear equation is solved by

setting the gradient equal to 0. In the on-line ordinary non-linear case, again we are going

to be solving these kinds of equations. This is for the first order case. In the second order

case, again we are going to be solving systems where the system matrix is given by this,

the system matrix is given by that. The system matrix is a large matrix; the expression

for it is large,  we have to solve this system matrix.  So, you can see no matter what

formulation we have used.
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The method of normal equations at its core calls for solving linear systems of the form A

x is equal to b where A is a symmetric positive definite matrix, so that is the bottom line

no  matter  where  you  start  off-line,  on-line,  linear,  non-linear,  well  conditioned  ill

conditioned.  In  all  these  cases,  all  these  different  formulations,  all  lead  to  from  a

mathematical perspective result in solving one simple problem A x is equal to b, where

the matrix A is not any matrix is a symmetric positive definite matrix. A standard method

for  solving  this  linear  system  with  symmetric  positive  matrix  is  called  Cholesky

decomposition  method,  we will  talk  about this  method in module 4.2.  Again we are

trying to build a bridge between what had happened and what is likely to happen, and

why and how what happened and what is how supposed to happen are interrelated with

each other are interrelated with each other.
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Most  of  the  methods  for  solving  linear  systems  they  all  rests  on  what  is  called

decomposition techniques. So, in the Cholesky decomposition, what is that first you need

to do, you need to be able to compute the matrix A.
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A in general is given by H transpose H or H H transpose. So, in using cholesky method

for solving this we first have to multiply H with H transpose H transpose with H to

obtain a and then we need to do a decomposition method, we will see some of the details

in module 4.2. An alternate way it would be instead of first composing H transpose H

and  then  decomposing  using  Cholesky  method,  so  you  first  wind  then  unwind.  So,

instead  of  multiplying  H with the H transpose in  H transpose  with  the  H,  and then

applying Cholesky for H transpose H or H H transpose, we can directly decompose H to

simplify the form of the least square solution. These two method there are two methods

we will indicate, these are called QR decomposition and SVD. SVD stands for singular

value decomposition,  QR decomposition,  Cholesky decomposition these are the three

popular methods which we have come to call matrix methods for solving the resulting

system of A x is equal to b, where A is a symmetric positive definite matrix.
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Since  our  approach  is  quite  mathematical  since  our  goal  is  to  provide  all  the

mathematical basis instead of simply saying use QR, use SVD, use Cholesky. We are

going to also fill up the blanks as to how Cholesky works, how QR works, how SVD

works because if you understand some of the intricate details of these methodologies

then you will be able to exploit that knowledge to be able to accelerate convergence in

solving specific  problems that is  the goal.  The alternate  method would be instead of

solving the  gradient  equal  to  0 and resulting  linear  equation  we could  have directly

minimized f of x, which is the square of the sum of the residuals f of x. I could directly

minimize  it  using  iterative  methods,  some  of  the  well  known  methods  for  iterative

minimizations  are  called  gradient  methods,  conjugate  gradient  methods,  and  Quasi-

Newton  methods  we are  going  to  provide  some overview of  the  workings  of  these

methods as well these methods become integral part of the data assimilation process. In

fact, anybody who is interested in trying to develop a data assimilation system have to

program many of these methods one or two of these methods to be able to bring the

mathematical formulations to the computational domain and that is where these methods

are very useful.
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So, in summary in this module we have provided a quick overview of all the results we

have done so far  in  all  the previous  modules.  These are  summaries  of  chapters  five

through  seven  in  our  textbook  Lewis  (Refer  Time:  13:46)  2006.  With  this  as  a

background,  with  this  as  a  bridge  between  the  previous  modules  and  the  coming

attractions, now I am going to get into the nitty-gritty details of matrix methods as well

as  direct  memorization  techniques  for  minimizing  f  of  x.  And  these  two  classes  of

methods constitute the basic workhorse of the data assimilation process. With this we

conclude this module.

Thank you.


