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We are going to conclude the discussion of least square problems, static deterministic

least square problems linear, non-linear with the discussion of examples. I am interested

in couple of essentially three examples to be precise. I would like to be able to recover

the vertical temperature profile of an atmosphere from satellite radiance measurements

that is a linear problem. I am going to talk about 1-D and 2-D spatial interpolation plus

again a linear problem. I am going to deal with a non-linear least square problems again

related to vertical temperature profile recovery.
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So, what is the idea here, recovery of the vertical temperature profile. The problem is to

retrieve  the  vertical  temperature  profile  of  the  atmosphere  from  satellite  radiance

measurements.
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Problem 1, there is radiance received by the satellite in the infrared domain, let R be the

energy received in a frequency f by a satellite,  and that is f is related to the vertical

temperature this R f is related to the vertical  temperature profile T p, where p is the

pressure.  So,  I  am going  to  talk  about  vertical  coordinate  at  pressure  levels  of  the



atmosphere. So, you can think of R of f which is the energy received by the satellite, the

physical model for this is given by the equation 1. Gamma f is a constant that depends on

the frequency of the channel in which energy is received W p gamma f which is the

colonel in the integral in equation 1 is given explicitly by p times gamma f exponential

of gamma f times p, p is the pressure level. So, you can think of the pressure level like

this, at the sea surface level pressure is equal to 1, I am going to go to the atmosphere

where the pressure is 0.

So, I am interested in trying to recover the temperature profile T of p, how T varies as a

function of p when I go from sea surface level to where at different heights, the heights is

indirectly measured through pressure. So, the weight function is given by p times the

exponential.  The energy is  related  by this  equation,  and this  equation  constitutes  the

model,  the  mathematical  model  that  we are  going to  be  concerned  with.  T p  is  the

temperature  profile,  so  you  can  readily  see  the  energy  received  is  related  to  the

temperature distribution with respect to pressure, and the formula is derived from the

radiation  physics.  Let  us  not  go  into  the  derivation  of  this  formula,  let  us  take  this

formula to be granted.

So, what is the basic idea here, what is the inverse problem. W is known, this quantity is

known because gamma f is known for a particular channel. So, gamma f is known; p is

known. So, the W weight function is known and R f is also known from the satellite

measurements, I would like to be able to recover the temperature, I would like to be able

to recover the temperature namely. So, knowing R of f and knowing all the other things, I

would like to be able to recover the temperature, so that is what is called temperature

retrieval problem.

Please understand what is the forward problem, if I know T p, I can recover R f that is

the forward problem. What is inverse problem, I know R of f, I want to find T p that is

the inverse problem satellite. So, this kind of problem is very routinely done for example,

we are now talking about El Nino, what is R f R f is the radiance measured by the

satellite just above the equatorial pacific. So, I would like to be able to understand or

recover  the  temperatures  of  the  equatorial  pacific  waters  based  on  the  satellite

measurement  temperature,  and from the current estimate tells  you we are very warm

pacific ocean that has led to this notion of what is called we are the El Nino strong El



Nino regime. So, these kinds of problems arise very routinely and meteorologists solve

these problems just about every day.
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So, here are some basic values relevant to the problem. So, f i, i is 1, 2, 3, 4, 5 that

means, I have five channels with five different frequencies. The frequencies are given in

some scale let us not worry about the scale. So, the frequency ranges are from 0.9 to 1.3

increasing values of frequency, this is some scaled values or a normalized frequency.

Gamma f, gamma f of i these are all constants these are all radiation related constant

physicists have already estimated these constants. So, for the first channel is 1 over 0.9,

second channel 1 over 0.7, for the fifth channel is 1 over 0.2. So, gamma i gamma f is

known f i is known; frequencies and the corresponding radiation constants are known to

us.
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Now, so I have a problem where I am concerned with measurement of energy in five

channels. So, I have energy radiated and observed in five channels. So, based on the

energy observed from five  channels,  I  want  to  recover  that  temperature  distribution.

Please  understand  temperature  is  a  continuous  function  of  the  pressure,  continuous

function  of the height.  Any continuous function  is  an infinity  object,  it  is  extremely

difficult to be able to recover that function, but I can however computationally discretize

the system.

So,  for  the sake of illustration,  I  am going to discretize  the atmosphere  into a  three

layered  system,  layer  one,  layer  two,  layer  three  as  shown in  figure.  The layers  are

demarcated by the pressure levels, so 1 to 0.5, 0.5 to 0.2, 0.2 to 0. I am assuming the

temperature in layer one is T 1 temperature layer two is T 2 temperature layer three is T

3, T 1, T 2, T 3 are constants. You can readily see instead of three layers I can have thirty

layers  or  I  can  have  fifty  layers  which  are  defined  by  the  pressure  levels.  So,  the

conceptually the problem is not very different whether I consider 3 layer or 30 layers or

300 layers. The number of layers is simply a question of convenience and the accuracy of

representation. So, without loss of generality let us try to illustrate it using three layers let

T naught be the temperature of the surface the earth. T i be the average temperature at

level i. The layers are bounded by isobaric surfaces at one point five point two and zero.
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 So, I  would like to  be able  to  go back to  the first  equation.  So, equation  one is  a

continuous representation as a function of pressure, I am going to have to discretize this

integral. So, I am going to express this integral, look at this now Z i which is the. So, Z i

is going to be R f, what is R f, R f is the energy measured by the satellite in the i-th

channel, I am going to call that observation as Z i in our rotation. So, R f is we already

know R f is equal to exponential of gamma f plus the integral I am taking the exponential

left hand side. So, I am going to call R f i minus this because I can compute this quantity

this comes from the satellite.

So, the difference between the two it is I am going to call it Z of i my observation. The

integral can be now represented as a sum of three sub simple integrals one goes from, see

T p comes within the integrand, if  I assume that is a constant T p gets out T 1; the

constant temperature in the first layer 0.5 to 1; T 2 0.2 to 0.5; T 3 0 to 0.2. I can now

evaluate this integral, I can evaluate this integral, I can evaluate this integral, I know p

this is integration with respect to P. I know gamma I know this exponential function. So,

by doing a very simple integration in this domain, this integral value is going to be a i 1

i-th observation a i 1, this integral is going to be a i 2, this integral is going to be a i 3.

So, a i 1 a i 2 a i 3 are known constants; T 1, T 2, T 3 are unknowns. So, I get the my first

equation Z i is equal to T 1 a i 1 plus T 2 a i 2 plus T 3 a i 3.



If I change I from 1 to 5, I have five such equation Z 1, Z 2, Z 3, Z 4, Z 5. So, five

channels three layers. So, there are three unknowns there are five equations the number

of  channels  equals  number of  equations  the number of  layers  is  equal  to  number of

unknowns. So, the constants are simply numerical values of the respective integrals and

all these things can be calculated using the table.
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Therefore by collating this  five linear  equations  T 1,  T 2,  T 3 are  unknowns; Z i  is

unknowns, a i 1 a i 2 a i 3 a 2 1 a 5 1 a 5 2 a 5 3, this is the matrix H, this is the vector x

and that is the vector Z. Therefore, I have Z is equal to H of x with Z belonging to R 5 H

belonging to R 5 by 3 and T belonging to R 3. So, if I invert this problem, I get T. So,

this is a linear least square problem I can solve this problem. So, what is my X LS is

equal to T LS which is equal to H transpose H inverse H transpose Z. So, I can solve this

linear least square problem very easily. We can solve this linear least square problem

very easily.

So, now, you see how our simple linear least square problem can be used for satellite

retrieval measurements, all that is needed is a mathematical model which is given by the

radiation physics; once you have the radian physics problem I can discretize it by levels.

So, the number of levels refers to a number of unknowns, number of channels refers to

the number of known, I can evaluate this matrix H. So, you can Z is equal to H of x is a

very simple problem.
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So, I am now going to go further, I am going to give you typical values. Let us pretend T

1 is 0.9, T 2 is 0.85, T 3 is 0.875. So, what am I going to do now. I am going to solve the

forward problem first, I am going to assume T 1, T 2, T 3 that is going to be the set x bar.

I have already evaluated all the a-functions from the integration, so that gives the matrix

H. So, using T 1, T 2, T 3 assumed value and the computer matrix H, I am going to

compute Z bar is equal to H of x bar; I am going to use this Z bar as my observation. I

want to be able to use the model itself to generate the observation and then use that

observation,  so generated to be able to do retrieval this aspect of using the model to

generate the observation and then to solve the inverse problem is called twin experiment.

So, I am not going to wait for me to get the real data from satellite measurements I am

developing methods. While I am developing methods, I do not have to worry about the

actual observation. I am going to have to generate observation, I am going to illustrate

the methodology by using this artificially generated observation and that is a goal of

what is called twin experiments.

So, now what is that we need to do, we need to generate the actual observation. To do the

actual observation I have to create a noise vector V. So, I am going to have to create a

noise vector v whose covariance is sigma square I 5, I 5 is identity matrix of order 5,

sigma square is the common variance. So, what is I am assuming all the channels that

measure the energy radiated in the satellite, the instruments that measure them they are



equally good or equally bad. So, they have a common variance. For example, if you buy

a  voltmeter  from  a  shop,  the  voltmeter  specification  will  tell  you  it  can  measure

voltmeter from 0 to 200 with an accuracy of plus or minus 5 percent, so that gives you

the error the standard error in the measurements.

So, by talking to people who design these instruments and satellite one can very easily

compute the variance. So, sigma square is the common variance of the instrument that

measures the radiance So, Z bar I have actually calculated synthetically, V is the noise.

So, I would like to add Z to Z bar to get Z. So, now, I am going to consider this Z which

is  considered  to  be  Z  bar  plus  V as  my  noisy  observations.  So,  if  I  use  Z  in  my

calculations and recover solve the inverse problem, I should get T, which is very close to

T 1-0.9, T 2 is equal 0.85, T 3 is equal to 0.85. And who is going to control the difference

between  the  retrieved  value  and  the  original  value  the  observation  noise  covariance

sigma square if sigma square is 0; I should be able to recover them precisely. If sigma

square not is equal to 0, I will recover them with some error the error is largely due to the

measurement noise.
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So, using noisy observations of the vector Z we now solve the over determined linear

least  square problem Z is  equal to  H of x and recover x.  Now, I  would like you to

compute the residual. I would like you to be able to compute the residual, I think this is

this should be R f, I think this expression is wrong I want to be able to compute Z minus



H x of LS. Now, this is actual residual Z minus H of x LS norm that is the one that goes

in here. So, if I measure this norm I would like to be able to plot that may R LS. So, I

would I would like to R LS is equal to Z minus H of x LS. And I would like to be able to

plot against the variance. And I would like to you to see when this is the claim if the

variance is 0, the residue will be 0. If the variance is not equal to 0, then the error will be

more. So, I would like you to be able to plot the variance and understand the impact of

variance on the recovery. And I would like you to be able to solve the problem and

comment on it, this is a computer based homework problem, I would like all of you to be

able to do this problem enjoy and to understand the impact of variance on the optimal

residual. So, what is this, this is the optimal residual, so that is the first problem.
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Now, I am going to go to a problem-2, where I am going to do a spatial interpolation

problem. So, consider a uniform spatial grid, a uniform spatial grid in one dimension. I

have 8 grid points, I have 7 grid intervals. So, I have 8 unknowns at each of the grid

point x 1 to x n, n in this particular example is 8. All the grid intervals are assumed to be

uniform and equal to unity. Let that be m measurements of a scalar field. So, what is that

it can be I am measuring temperature pressure or concentration of a pollutant to name a

few. The only difference here is that I am simply considering a spatial expanse of 1D.

Why 1D, 1D is not practical, 2D, 3D are more practical, but to go to 2D and 3D, I would

like to be able to solve a simple problem of 1 D.

So, let us pretend that I have an observation of Z 1, the observation is located in the

interval in the grid from 2 to 3, observations Z 2 is located from 4 to 5, observations Z 5

is located from 5 to 6. So, there are three observation stations. The observation stations Z

1 is at the distance a one from the grid point 2, Z 2 is the grid a 2 from grid point four

and Z 3 is a distance a 3 from the grid point 5. So, all these things are given information;

n the number of grid points, m the number of observations.

What  is  being  observed  is  a  scalar  field  the  scalar  fields  such  as  temperature,

concentration for pollutant or whatever that be. I am assuming m is smaller than n m is

smaller  than  n;  that  means,  I  have  more  number  of  grid  points  less  number  of

observations therefore, this is an underdetermined case. In fact, this is the problem that



occurs very naturally in the context of a pollution estimation, we would like to be able to

give  alerts  for  days  in  which  were  pollutant  are  very  strong.  We  do  not  have

measurements measuring system for pollutants at every place, we have a fixed number of

locations where we measure the pollutants, but we would like to be able to extrapolate

those measurements to a larger domain.

So, that we can say how the concentration of the pollutant varies spatially and to be able

to  extrapolate  I  need a  matrix.  So,  extrapolation  interpolation  these  are  very similar

problems, this is I am talking about spatial interpolation problem in here. So, let there be

m locations, where there are m observations of a scalar field. Let there be n unknowns I

would like to be able to estimate the n unknowns using m known. So, this is the standard

problem. I am going to formulate this problem as a linear problem.
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The j th observation, so I am going to have some basic notations. Let the j th observation

be contained in the ith interval the ith grid point is the space from i to i plus 1. So, Z j is

the i. So, what does it mean, if this is i, if this is i plus 1 this is Z j. So, let the j th

observation be contained in the i th subinterval. Referring to the figure in the previous

page, I had 4 observations, I had 8 unknowns. Z 1 is in the interval 2, 3; Z 2 in the

interval  4,  5;  Z  3  in  the  interval  5,  6;  and Z 4 in  the  interval  7,  8.  So,  given four

observations, I would like to find 8 unknowns. The unknown refers to again temperature,

concentration, pressure and so on and so forth some scalar field.
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 So, I hope the problem is clear. Now, I am going to talk about how do we take this four

observations and create estimates of the eight unknowns, this is done by simple linear

interpolation that we learn in a first course in numerical analysis. So, let us consider the

ith the subinterval i to i plus 1. Let j th observation be contained in this interval, let the j

th observation be located at distance a j from the end i, since the distance between I and I

plus 1 is one the distance of z j from i plus 1 is a j bar where a j bar and a j is 1. So, a j

bar is 1 minus a j; in other words, I have a I know exactly where the observation location

is with respect to the computational grid. So, i and j are the computational grid point z j

the observation location at ithe value of the unknown is x i, at j i plus 1 the value of the

unknown is i plus 1 the value of the observation is z j z j is known I do not know x i plus

1.

Now, I am going to relate the known to the unknown z js are known x i, x i plus 1 are not

known in order to relate x i plus 1 x i and z j, I am going to use a simple linear relation.

So, what is the relation? The value x i say this is the value x i, this is the value x i plus 1,

this is the value z j, I am going to assume the line joining x i z j and x i plus 1 has a

constant slope. So, what does it mean z j minus x i by a j is equal to x i plus 1 minus z j

by a j  bar. So,  I  am simply trying to express this  constancy of the slope which if  I

simplify this I get the relation a j bar x i plus a j x i plus 1. So, this is the linear relation

this relation connects the unknown to the known the x i’s and x i plus 1 are the unknown,



z js are known, they are related by the parameters a j and a j bar. Now, if I can do this for

jth observation I should be able to do this for every observation.
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If I did that, I get a matrix. So, I have m observations, I have 8 unknowns. So, this is the

unknown vector, this is the known thing, my problem is linear. So, this is the matrix H.

The H matrix  is  4  rows and 8 columns.  For  example,  z  1  is  located  in  the  interval

between 2 and 3. So, only 2 and 3 are affected by z 1 rest are all 0; z 2 is affected only by

x 4 and x 5, because it lies in the interval 4, 5. z 3 in the interval 5, 6; z 4 in interval 7, 8.

And you can see in every row there are more zeros and non zeros. Further the sum of the

nonzero elements in each row is 1, 0 is 1. It need not be the case a 1 need not be equal to

a 2 need not be equal to a 3 need not be equal to a 4; a 1, a 2, a 3 are numbers in the

interval 0 to 1. When a i is 1, it lies on the grid point; when a i is 0, also the observational

lies on the grid point.

So, we are simply assuming for generality the observation location and the grid point

locations are not the same. If the observation location, the grid point location coincide,

there is no need to interpolate, x i will be equal to either m x i will be equal to z j or x i

plus 1 will be equal to z j depending on which grid point the z j lies on. That is an easy

case that is why we are considering a very general case where the observations are not

located at the grid points.



So, by simple concept of constancy of the slope we have been able to derive this relation

Z is equal to H of x. Please remember we are have now converted the problem of spatial

interpolation to a linear least square problems. The H has 4 rows and 8 columns, H is

such that the row sum is equal to 1, I can solve the problem Z is equal to H of x by the

least  square  solution  which  we  have  already  obtained.  Now,  we  can  estimate  the

temperature concentration on the computational grid. So, I can estimate the value of a

eight points knowing the value only at four points this ability to be able to extrapolate the

operation in a smaller subset to a larger region using the notion of spatial interpolation.

By converting the problem to a linear least square problem I am able to estimate the

distribution of concentration, the distribution of temperature, the distribution of pressure,

or whatever quantity that is being observed.
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Now, I would like to be able to extend this to spatial 2D interpolation. So, in this case I

am solving the same problem except that the space domain is 2D instead of 1D. So, this

is the 2D version. There are n number of grid points n x i s the number of grid points in

the x-axis the n y is the number of grid points in the y-axis. I am giving an example

where n x is 4, n y is 4, there are n by n, n is 16, n x times n y. I can say this grid has 16

locations I can label the grid points 1 through 16 in this snake like order that is one way

of notation. Another notation would be 1 1, 1 2, 1 3, 1 4, 2 1, 2 2, 2 3, 2 4 using the

standard way of numbering in geometry x x coordinate y coordinate. The left numbering



system is  called the  row major  order  the right  numbering  system is  the standard i  j

notation these two notations are related.

So, if k is the value of the grid point in the row major order if i, j is the coordinate in the

two-dimensional representation k and i, j are related by this relation k is equal to i minus

one times the n x plus j. For example, when n x is 4, the node label seven corresponds to

2 3, since 7 is equal to 2 minus 1 times 4 plus 3. So, you can think of you can think of the

this the two-dimensional grid label in two different ways row major order you can use

column major order two we will get a similar formula. So, you can see there are several

ways of numbering and each way of numbering we need to know the relation, I have

related two distinct ways of numbering. So, now the number of unknowns the number of

unknowns are 16, the number of unknowns are 16.

Now, I am going to go back to statement in the problem. There are 16 unknowns, this zs

are known there are only four zs, there are there are given in here. You can relate you see

there is a z 1, there is a z 2, there is a z 3, there is a z 4. So, given four observations of

concentration,  I  have to  evaluate  the concentrations  of sixteen points  and that  is  the

problem we are going to be concerned with.
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Again I need to develop relation between the known and unknown the zs are known, x s

are not known. So, I am now going to consider let the jth observation be contained in a

square whose origin is i; if this is i, this is i plus 1 if there are n x points in the row major



order the label for this is i plus n x the label for this i plus n x plus 1 therefore, I am

going to consider this square as one with the origin i

So, let the jth observation be located in the ith grid where i is the origin. Let a j be the

distance of the observation along the x-axis; let b j be the distance of this from the origin

along the y-axis. So, the coordinate of z j or a j b j a j prime a j bar is 1 minus a j b j bar

is 1 minus b j. So, we have the standard relation. Therefore, we can now compute the

distance of z j from each of the corners. So, what are we first going to do, I have to relate

z j to x i x i plus 1 x i plus n x x i plus n x plus 1. So, I am going to do this as two

applications of linear interpolation we have already seen.

So, I am now going to relate z j to eta i and eta i plus 1 using a 1D interpolation. And

once eta i is computed, I am then going to relate this to x i and x i m i plus n x x i plus n

x and this. So, I will do this first, and then do this next, I will do this next, so that way I

am going to spread z j into 4 of these quantities. Using the 1D interpolation, you can

readily see z j is equal to a by eta i, and a j eta i plus 1. Again using the same linear

interpolation eta i is equal to x i b j bar and x i n x i plus n x b j likewise eta i plus 1. I

can now substitute 8 and 9 into 7. If I substitute that, I get a formula that relates z j.

(Refer Slide Time: 34:35)

So, the right hand side has all the grid points z i j plus 1 j n n i plus 1 all the coefficients

or distances that are known. So, I can write this in the form of a matrix. There are four

observation, so there are four relations. So, this is the observation vector. There are 16



unknowns, the 16 unknowns are naturally partitioned into vector of four segments. So, z

1 now lies, so let us go back to the picture now. z 1 is in the grid rooted at with origin 1.

So, z 1 will affect only 1, 2, 5 and 6 that can be readily seen one I am sorry one. So, this

is  nonzero,  this  is  nonzero  5  is  nonzero,  six  is  nonzero  these  starts  represents  the

coefficient, which are given by products of a j, a j bar, b j, b j bar. You can fill them in I

do not want to put all of them in to make it more complex I simply talked about their

value as a star nonzero value. So, you can again see z 1 affects only four neighbours;

likewise z 2 affects again four neighbours 3, 4, and 7, 8; z 3 affects 6, 7, and 10, 11; c 4

affects 11, 12, and 15, 16.

So, this is essentially a summary of the relation between the known and unknowns. So,

this gives rise to a problem Z is equal to H of x. This is the matrix H of x this relation

becomes Z is equal to H of x H is the vector of size 4, x is a vector of size 16. You can

readily  see  this  is  an  underdetermined  problem.  I  want  to  emphasize  in  the  case  of

satellite  measurements  vertical  temperature  profile  distribution,  we  had  an  over

determined  system.  In  the  case  of  spatial  interpolation  like  this  they  have  an

underdetermined system I am illustrating all the aspects of my least square theory. The

2D interpolation matrix is such that the row sum is always one I want to be able to solve

Z is equal to H of x Z LS is equal to H transpose. So, this is the under determined case, I

want  you  to  remember  the  under  determined  solution  is  different  from  the  over

determined solution. This is the formula for the optimal estimate for the underdetermined

system. Again this comes from the previous results that we have already seen.

Now, before I go to the next non-linear problem I would like to be able to summarize the

second problem. So, the second problem is simply a spatial  problem which is which

occurs again and again in many different facets of geophysical applications. So, I have a

spar set of observation, I have a larger domain, I have a computational domain embedded

and I would like to be able to carry over the observation information to a larger domain

that is where the spatial interpolation comes into being.
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Now, I am going to talk about the last of the illustration using a non-linear problem. I am

again going to go back to the atmosphere the vertical temperature retrieval problem. I am

still going to consider three layer problem, the pressures are given, the last pressure I

think there is an a last pressure, this is not zero this is 1.0 that is a sea level pressure

decreases three layers. Now, I am going to assume an empirical relation for the variation

of temperature with pressure, a quadratic relation. The previous one was arrived at by a

physical argument from radiation physics that will gives the linear problem. Now, let us

try to conjure up an atmosphere where the temperature or pressure p is given by this non-

linear function where x 1, x 2, x 3 are the unknowns, p is the known, the temperature is

the measure of the pressure, it is a non-linear function. So, the unknowns are x 1, x 2, x

3, this is the non-linear problem because of the non-linear relation.
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Now,  I  am  going  to  talk  about  how  to  develop  the  mathematical  relation  for  the

observation to the temperature; the observations or measures of overlapping fractions of

area under the curve. So, T p is a curve. So, if this is p, I am sorry if this is p per p

decreasing T p is going to be defined over this. So, this is p, this is T p. So, I have

pressure levels.  If I  am going from p i  to p j,  if  I  integrate  it  I  am going to get an

observation, which is Z bar i j. So, 10 refers to the model, this is the observation, this is

the unknown. The observations unknown are related through the integral. And T p is a

non-linear function of the unknown parameters x 1, x 2, x 3. So, if I substitute for T p

from the previous thing, I can relate the parameters to the observations. The pressure

level I am going to assume are 0 to 2.5, 2 to 5, 3 to 0.7, 0.6 to 0.8, so that is the pressure

level from which observations are going to be coming they are overlapping regions. So,

this is another simple formulation of the problem.
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So, I am going to now relate my unknown to the known, I am going to derive my model.

This  is  the known. This  is  the temperature  profile.  If  I  integrate  this,  I  will  get  this

quantity I would like you to verify the results of this integration. Now, you can see this is

the observation, this is the model equation;t he observation and the model equations are

non-linear  related;  p  is  are  known  x  s  are  unknowns,  observations  are  known.  So,

referring to the table on slide 19, I know the values of p i and p j. Let us go back. So, this

is the p i and p j. So, if I substitute these numerical values in here, I get the first relation z

1 is equal to 0.25; and that is equal to this function that is H 1 of x.

And what is my X my x is equal to x 1, x 2, x 3, because I have a three layer problem my

Ts are x. So, z 2 is equal given by this, z 3 is given by this, it should be z 4 given by this.

So, zs are given. So, again what am I going to do these are the values. Again I want you

to understand I am I have I been given the zs in here, I would I would like to go back .

So, pressure level the zs the observations are given. So, well let us go to the next one. So,

this is where the zs are coming into play. So, z 1 is equal to H 1 of h, z 2 is equal to H 2

of x, z 3 is equal to H 3 of x, z 4 is H 4 of x. So, you can now see the whole problem is Z

is equal to the whole problem now reduces to Z is equal to H of x. The whole problem

reduces to Z is equal to H of x. So, in this case m is 4, n is 3. So, this is the non-linear

problem and the non-linear problem essentially comes from the fact the our model relate

the temperature to the pressure using a non-linear function with unknown parameters.
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Therefore, Z is equal to h of x is therefore, Z is equal to h of x, Z is given by 1 to z 4, h is

given by this. I have to compute my residual Z minus H of x. I have to compute my f of x

which is the sum of the square of the residual. I have to compute the gradient to 0, I have

to solve for the hessian and verify this is a positive definite function. So, I would like you

to compute the optimal solution as a homework problem. I have helped to formulate the

problem it is simply you need to be able to solve this problem numerically. If you solve

this  problem  numerically,  you  will  understand  the  methods  of  non-linear  solutions

extremely well.

And what are the methods we have seen we can we can use the first order approximation,

we  can  use  a  second  order  approximation,  we  have  described  all  these  methods

extremely well in detail. So, I have formulated the problem, I have already described the

algorithm. I would like you to be able to combine the algorithms of the problem on these

simple  cases.  Each  of  them are  derived from typical  setup,  atmospheric  temperature

retrieval  or spatial  estimation of concentration of certain pollutant,  these are all  very

simple problems of great interest in applications. So, by solving these problems, you can

master the techniques behind solving linear least squares and non-linear least squares

static deterministic problems.
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So, I am going to now illustrate some of the major steps here. So, what is that we need to

do you know h. So, you need to be able to compute the Jacobian, you need to compute

the hessian term. You can build the first order as well as second order approximation,

then you can do the minimization arising from the first order and as well as the second

order approximation.  And also I would like you to utilize this problem to be able to

compare the quality of the solution for the first order and the second order.
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So, doing all these will help you to complete the estimation problem of interest in here.

And this  also help you to look at  an actual  problem which is  related to or which is

derived from practical considerations in meteorology you will tell you how to build you

H function  how to  do  the  Jacobian,  where  the  Jacobian,  hessian,  gradient  all  these

calculations  comes  into  play.  Where  the  minimization  what  is  the  role  of  the

minimization what is the role of the first order approximation what is the role of second

order approximation. So, if you complete all the three problems numerically you will

have a total understanding of not only the algorithms, but also many of the mathematical

principles that we have reviewed in the previous lectures.

With this we conclude our discussion of the static deterministic inverse problems of both

linear and non-linear type, both well posed and ill posed type, both offline as well as

online type.  So, I  would like to  be able  to  now draw a little  picture of least  square

problems.  So,  if  you  consider  least  square  problems,  least  square  problems  can  be

classified as linear, non-linear, well-posed, ill posed, off-line, on-line, and we can also

think of deterministic and stochastic. So, we have talked about linear problems, we have

talked about non-linear problems, we have talked about well posed problems, we have

talked about ill posed problems, we have talked about on-line problems, we have talked

about off-line problems, we have talked about deterministic problems. We also can relate

this static and I am sorry we can also relate this to static and dynamic. So, one is static

and dynamic. So, we talked about static.

So, in these lectures so far we have covered static deterministic, on-line off-line, well

posed  ill  posed  linear  and  non-linear,  and  we  have  talked  about  all  the  associated

mathematical  principles  as  well  as  we  have  derived  algorithms  to  solve  all  these

problems and that is the this picture provides a summary of what we have done so far. I

would like to encourage you to further continue your solution process by working these

examples that are given in page 20 slide 23.
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I would like to refer to chapters 5 through 7. These slides this particular module where

the three examples are illustrated they are taken from chapters 5 through 7, 5, 6and 7 of

our book Lakshmivarahan Lewislakshmivarahan (Refer Time: 49:51) 2006, Cambridge

University Press Book. So, the module essentially is a summary of what is happening in

many of  these chapters.  So,  if  you work out  all  the problems which are part  of  the

development  as  well  as  exercises,  you will  gain  a  very thorough and good working

knowledge of solving static inverse problems.

Thank you.


