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On-line Least Squares

So far, we solved deterministic least square problems both linear, non-linear well posed,

ill posed in what is called an offline mode. What is an offline mode? An offline mode is a

way of solving problems, where we assume all the observations are available at a given

time.  But  in  some cases,  we may  not  be  able  to  wait  until  all  the  observations  are

collected. 

So,  as  soon when  the  observations  come in,  we would  like  to  be  able  to  make  an

estimate, contingent on a given set of observations. In such cases we would like to be

able to improve the quality of the estimates, as and when new observations come into

play. Such way of attacking the problem is called online as opposed to offline; is also

called sequential methods because we are going to be updating the estimate as and then

new observations arrived on the scene. They are also called recursive.

So, online sequential recursive these are common terms utilized to represent the concept

of being able to update when a new information is available. We are still going to be

solving the least square problems. And I am going to provide a broad overview of this

class of online algorithms.



(Refer Slide Time: 01:46)

So, we have assumed another way of re emphasizing,  this we have assumed that the

number of observations m is fixed, please remember Z belongs to R m. So, what does it

mean? Then there are m observation given to us, and that said with that we have to solve

the problem. So, we assumed the vector  Z to  be a vector  of a fixed length m. This

treatment, was known as the fixed sample or offline version of the least square problems.

Why  is  the  fixed  sample?  Because  m  is  fixed,  m  is  the  size  or  the  number  of

observations,  Z  is  the vector,  observation  vector  has  m components,  you m is  fixed

everything is fixed.

So,  what  does  it  mean?  I  go  to  the  lab  make  measurements,  I  make  m  individual

observation,  I collect them into a vector, I close the lab then, I come back to do the

analysis, that is what called offline. It is conceivable on the other hand, the observations,

all the observations may not be known in advance. They may be arriving in a sequence

one  at  a  time  that  could  be  a  delay  between  the  I  am occurrence  of  each  of  these

observations. 

So, in that case it is prudent to ask it is prudent to ask a question what is the optimal

estimate. What is XLS based on m observation? So, I am now going to associate the

number of measurements I have used in estimating the least square value of x they are

known. So, XLS is the least square estimate of x, but XLS is conditioned on having m

observations. So, when a new observations of comes in, I would like to be able to update



XLS to XLS m plus 1. So, this gives you a flavor of what we mean by online, as opposed

to offline.
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So, let us try to formulate this problem. Let x be let x be R n. Let x be a vector in R n.

Let Z be a vector in R m. X is the unknown. Z is the known observations, in the previous

lectures we have already seen XLS m is given by H transpose H inverse H transpose Z. I

am assuming an over determined case, in here, and that denotes the optimal estimate

based  on  m  observations,  that  comes  from  the  basic  theory  of  linear  least  square

deterministic inverse problems.

Now, let us pretend, Z m a real observation comes into play. I would like to be able to

estimate XLS m plus 1 this is the new one that is the old one. I would lead to convert this

into this, when the m plus 1 th observation come to the picture. So, what is the basic

idea? As and when a new information is given, how am I going to update my old belief

into a new belief, or a new estimate. So, this is the new observation. So, I have an old

estimate I have a new observation, I would like it I would like to get a new estimate. So,

that is the sequential problem.
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So, the original vector Z is given in here, this is vector consisting of m, this is only one

that that there is only one observation. So, I am. So, in the components of the vector Z

are denoted by Z 1 Z 2 Z m. 

So, in that notation the m plus 1 th element is Z m plus 1. So, my model essentially say is

the linear model. So, H Z is equal to H of x is the old model. Z m plus 1 is equal to H m

plus 1 transpose x is the addition additional row to the matrix h, I need to be able to

explain the new observations. All of you with me? Go back to my particle moving in a

straight line. I had Z 1 Z 2 Z 3, I had Z 1 Z 2 Z 3, I had this, I had one t 1 1 t 2 1 t 3. I had

Z naught v.

Now, suppose somebody gives you a 4th observations Z 4, the forth operation is given a

time t 4. So, Z 4 is equal to Z naught primes v t 4. So, this is the new row, this is the new

observation. Now, I hope the extensions are clear now. So, the last row of H is meant to

relate the new observation to the unknown through the model equations. So, that is how

Z m H m plus 1 transpose comes in to play. So, what does the main H m plus 1 is a

column vector, transpose of H m plus 1 is a row. So, this is the row. So, H in the in this

case H m in this case H m is equal to is equal to 1 t 4. So, H m transposes one t 4 I hope

you understand the form of the H m transpose.

So, this is the partitioned form of matrix. Z m plus 1 is the new observation, I want to

emphasize that. So, again please remember H is this matrix, H m plus 1 is this H m plus



1 is the new row added to H to account for the new observation using this example, I

have already talked about that.
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Therefore, now what do. I want to do I would like to be able to find the least square

estimate as the linear problem. So, I am going to consider the residual the residual until

now we simply said residual R of x because the number of observations are fixed.

Now, I am going to consider residual based on m observations, residual based on m plus

1 observations, that is the residual R m R m plus 1, R m plus 1 is equal to Z minus H x, Z

m plus 1 minus H transpose this. So, observation minus the model, this essentially comes

from the old, this essentially comes from the new. Z minus H m is R m of x, that for the

new residual with the m plus 1 observation is the old residual the m observation and a

new component in here. Therefore, I can you can see the recursive nature R m plus 1

depends on R m and the new information is the new information.

So, the new residual vector, has m plus 1 up it uses m plus 1 observation whereas, R m x

is essentially the residual from m observations. So, I am able to read I am able to relate

residual as a function of the number of observations. We already know XLS m minimizes

R m of x. A x l m that is the optimal solution then I have m observations. So, the goal is

to find x l m m plus the XLS m plus 1 that minimizes the norm of the new.



So, we already know how to minimize this, this is already know we want to know how to

minimize, this say that is that is that is the key part of the problem formulation.
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Therefore, I am going to follow the same route as, I have done in linear least square

problems. The here f m plus 1 that the again the sum of the square there is residual when

there are m plus 1 observation. The sum of the square of the residual from m plus 1

observations are given by this. If you have. So, so from simple um calculation of the

norm, this norm is equal to the norm of the first m components plus the norm of the new

component that is added I hope that is clear to you for example, but what did I have the

norm of if I have a if I have if I am going to talk about the norm of vector x and y. We

already know this is the norm of x plus the square of that is x square plus y square.

So, x plays the role of R m x m m plus 1 x y plays the role of the increment. Therefore,

this sum of squared residual is equal to the sum of 2 terms, but this is exactly R m. This

R m square essentially is equal to f m therefore, what is that we have got. We have got a

recursive  relation  or  a  sequential  relation  the  sum of  squared  error  using  m plus  1

observation is equal to sum of square error using m observations plus an increment. So,

this is the sum of square observation using m plus 1 this is sum of squared observation

using m and this is m plus 1 th observations.

So, you can see f m is recursively defined in m the number of observations. So, this is an

additive structure, this is a recursive relation for the square of the residual it quite basic



and  it  brings  out  clearly  the  contribution  of  the  new  observation.  So,  this  is  the

contribution of the new observation this is the old observation. So, this is the total when I

have all the observation together. So, what did I want I want like to be able to find XLS

m plus 1. XLS m plus 1 must be the minimizer of f of m plus 1 of x. We already know

the minimizer for this. So, knowing the minimizer for this I would like to be able to

compute the minimizer for f of m plus 1. That is the mathematical problem. Again I

would like to be able to find optimal solution let me go back.

So, I would like to be able to compute the gradient of f m plus 1 which is four. The I also

would like to be able to compute the hessian of f of m plus 1 in 4.
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And that  is  what  we are  going to  accomplish  in  this  slide.  So,  if  you consider  the

gradient. If you consider like the gradient, the gradient of this is equal to the old gradient

plus an increment term. The increment term essentially comes from this the second term

in 4, in equation 4. We already know the expression for the gradient of the first m terms

from our previous analysis and that gives raise to this. So, if I substituted 6 and 5 I get

the expression for the gradient using m plus on observation I set it to 0 if I set that 0 I get

a new set of normal equations.

Now, look at this that normal equation is given by this matrix times x plus this plus this.

Now if you set H m plus 1 is equal to 0 vector. This becomes H transpose H f of x is

equal to H transpose Z, that is the old problem using m observations. If you bring in the



m th observation I get this increment in here, I get this increment in here. Therefore, I

can  express  the  optimal  solution  using  m plus  1 observation  has  the  inverse  of  this

matrix.

Now, look at this now this is an outer product matrix. This is an outer product matrix. So,

using this out outer product matrix is added to the original matrix, I am assuming H is a

full  rank. So, this is the matrix of full  rank and I am going to add a rank one outer

product matrix, that inverse times this is the old this is the new. So, you can x you can

see the beautiful structure you using the relation 8. So, I have an old term I have a new

term the old term and the new term mix beautifully in a hue. So, if I can compute this I

have an expression for the recursive way of updating the estimate when you go from m

to m plus 1.

Now, in order to be able to express the sum the inverse of the sum, what is the real

computational challenging in here, equation 8 it looks very familiar it is exactly the same

equation we have seen except that there is one more term, that is all what it is. So, the

question here is that am I going to compute the inverse that is needed in 8 from ground 0

all  over  again,  or  I  can  update  the  old  inverse  by  adding  a  new correction  term to

compute the inverse of this new term, that is a question 1  to ask an answer.
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And to that end I am going to invoke 2 a very well-known formula, that we have already

alluded to when we did the module on matrices is called Sherman Morrison Woodbury



formula. In order to be able to apply the Sherman Morrison Woodbury formula I am

going to slightly change the notation to make it convenient to for discussion.

So, let us try to call the matrix. H transpose H as p. Let us simply call H m plus 1 as h. I

am simply dropping the subscript here there I am replacing H transpose H s p in order to

simplify the notation. We already know if H is of full rank, then H transpose H is p, that

is  s p d symmetric  and positive definite  again that is a result  from matrix theory. H

transpose is an outer product matrix.  Outer product matrices are always of rank one.

Therefore, the solution calls for computing the inverse of p plus H transpose. 

So, what is the question here. If I know the question is if I know the inverse of p can I

compute the inverse of the sum and that is what is related through the Sherman Morrison

Woodbury formula. The standard Sherman Morrison Woodbury formula that was given

in the module on matrices essentially tells us p plus H H transpose inverse is equal to p

inverse minus the ratio of these 2 terms.

Now, look at the right-hand side every term in here is known. So, what is that assumption

in here, if I know the inverse of p, can I compute the inverse of p plus H H transpose, the

answer is yes, that is that is where the Sherman Morrison Woodbury formula comes into

play. So, if I want to be able to compute the inverse of the sum I simply need to be able

to have a correction term. That is a correction term. Please look at the numerator the

numerator is a matrix. P inverse of the matrix H, H transpose an outer product matrix P

inverses a matrix. So, it is the product of matrices the denominator one is a scalar. H

transpose p inverse H that is a quadratic form that is a scalar. So, I am going to now to

simplify notation call the denominator 1 plus H transpose p inverse H as alpha.

So, 1 over alpha is alpha inverse. I am going to interpose alpha inverse into this formula.

Therefore, the inverse of the sum is given by inverse of p minus the correction term. The

correction term has a very beautiful structure here; it is this structure it is, this formula

that is going to enable us to be able to go from offline to online. So, you can see the

importance of matrix theory comes into play, through this ability to compute the inverse

of a rank one update. 

So, this is this matrix is called rank one update. Again I want to emphasize if you are

interested simply an application you can take this for granted, but what am I doing I am

not simply giving you the algorithms that you could readily use I am also going behind



the theory. Why if you understand the theory of these very well that will enable you to be

able to strike out newer algorithms by reformulating the problem in several different

ways and I am trying to provide all  many of the mathematical tools that has proven

useful in the past discovery of several algorithms related to data assimilation.
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So, that is the scope of these lectures. Therefore, I would like to be able to reconsider my

problem. I am going to be I am going to be able to express the solution using m plus 1 as

this formula. This is the formula that was already derived in equation 8 I am rewriting

equation 8 using the new notation please remember that p is equal to H transpose H my

H is equal to H of m plus 1 it is a simpler version of the of the of the same formula

Now, I could apply the Sherman Morrison Woodbury formula for this and that gives rise

to this relation. Therefore, the same solution in here is equal to the inverse computed

explicitly please remember there is an inverse here there is no inverse and this is the

same term that comes from here therefore, I would like to be able to, I would like to be

able to relate the 2 terms, I would like to be able to relate the 2 terms this term comes in

here  that  terms  comes  in  here  this  is  given  by  their  Sherman  Morrison  Woodbury

formula. 

That is given by the Sherman Morrison Woodbury formula therefore, I have expressed

this as a product of 2 terms each of which have 2 factors, here are 2 factors here are 2

factors. You can multiply these and I also I would like you to be able to remember that p



inverse H transpose Z is equal to this that is equal to x l m. So, if you multiply this and

use this fact, this equation x l m; now becomes, this expression becomes this expression.

So, what does this say this is beautiful expression. This is the old estimate this is the new

estimate.  So,  the estimate  using m plus  1 observation  is  based on estimate  using  m

observation plus the one that comes as a correction term, this correction term looks pretty

complex here, but it can be very easily simplified.
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To be able to simplify this I am going to use the proper I am going to insert alpha in here.

So,  alpha please  remember  alpha,  alpha  is  equal  to  1 plus  H transpose  p inverse H

therefore, H transpose p inverse H is equal to alpha minus 1. So, I have substituted those

terms in here. If I substitute those terms and simplify I get this term. So, if you substitute

and simplify 13 I substitute 13 into 12 and simplify you get the new estimate. 

The new estimate structure is absolutely beautiful structure. This is the old estimate this

is the correction term the, correction term has a weight. So, this is the weight. This is the

weight term and what is the Z m plus 1, Z m plus 1 is the new observation. The new obs

and what is this. This is the model predicted is the predicted model predicted observation

using m plus 1 using the previous estimate.

So, this term Z m plus 1 minus H of m is called the innovation or the new information

from observing the new observation, and this is called the increment to. So, this is the



increment to the estimate. This is the increment I this is going to be the increment. So

now, you can readily see the recursive nature coming into play. 

So, if I have estimate based on m observation, if you give me the new observation, I can

extract the new information from that observation weighted by a matrix. I get the new

estimate. This structure is a beautiful structure. This structure will occur again in Kalman

filtering, but Kalman filters are essentially discussed within that stochastic framework,

but here I am doing everything deterministic linear least square problems with sequential

update. So, you can readily see a precursor to Kalman filter even within the even within

the deterministic framework. We will show later when I am I am in in one of the later

lecture is that; Sherman Morrison Woodbury formula is also used in the derivation of

Kalman filter equations.

So, you can see Sherman Morrison Woodbury formula is fundamental to the derivation

of sequential estimates of the unknown and that is important thing I would like to be able

to emphasize in here.
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I am I can rewrite this in several different ways, I can call the matrix H m k m as H

transpose H, and I can rewrite k m inverse to be that using Sherman Morrison Woodbury

formula for this, you can verify these things these are given in chapter 8 of the book on

dynamic data assimilation by Lewis Lakshmivarahan and Dhall,  is the basic textbook



from which all these lectures are derived. You can verify the relations that is given in

here I am going to leave these as simple homework problems.

So, with that I am now going to be able to say the final way of recursive estimation is

given  by,  the  estimate  using  m  plus  1  observation  is  equal  to  estimate  using  m

observation a matric times the innovation the matrix itself is going to be updated and this

update is exactly similar to the Kalman filtering update. So, what does it mean the new

observation comes in first update the Kalman filter the gain this is called the gain matrix.

Once you update the gain matrix this is the new information times the gain new gain

matrix plus the old estimate that gives us to a new estimate. This is the final recursive

form for the estimate as a function of the number of samples involved. 
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I am now going to see how we can utilize this required recursive set of to solve a simple

problem. Suppose you want to find your weight. You made m measurements of your

weight, the measurements are given in the vector Z 1, Z 2, Z m, it could be that you

made  your  weight  in  m  different  scales  or  you  use  the  same  scale,  but  made

measurements of your weight in the morning in the afternoon and evening for several

days together. So, we have a set of m weights. This is the m plus 1 th weight, if I am

going to consider the estimate of your weight based on the first m observation, the least

square solution in this case I have this simple form Z is equal to H of x, H is simply a

vector of all ones.



So,  Z  1  is  equal  to  I  do  not  have  to  go  there.  So,  H  is  all  ones  we  have  already

represented that. So, H is all one, I have an unknown x the unknown x is your weight m

is a set of m measurements of your own weight. So, H is all ones. So, what is the best

estimate of your weight the average of all the weights. So, average. So, what does it

bring it brings is a very fundamental result. Average is the best linear estimate of your

unknown weight. So, x is your weight x is unknown you have m observation unknown is

one n is one m is much greater than one is an over determined problem. So, in this over

determined problem your weight varies from different time to different times. So, what is

the intrinsic wait the best estimate of the your intrinsic w8 is simply the average of the

measurements.

So, that is what it says the average is the best least square estimate. If you are going to

get a new weight they after tomorrow morning and if that weight is Z m plus 1 this is the

old estimate of the w8 this is the new estimated 8, I can update your w8 based on this

information and in this case the gain is simply m plus 1. I can rewrite this equation 18 as

x these times m by m plus 1 times the old estimate plus the new estimate these 2 are the

same equations written in a different way.

Now, you can really see when m goes to infinity m goes to infinity, k m tends to 0 and

the  contribution  of  the  innovation  terms  becomes  increasingly  becomes  increasingly

smaller, if the contribution of the in of the innovation term this is the contribution of the

innovation term if that goes to 0 your w8 has stabilized in other words XLS converges as

m goes to infinity. So, this is a very simple illustration of the recursive linear least square

set up the set up being one of being able to find our estimate your unknown w8 based on

m  observation.  This  also  further  brings  out  the  inherent  optimality  property  of  the

averages  have  again  this  intrinsic  behaviour  of  being  the  optimal  estimate  based  on

unweighted linear least square problems.

So,  this  is  perhaps  one of  the reasons why whenever  there  are  multiple  opinions  or

multiple measurements we take the average to be the one that would utilize or we used to

interpret the unknown.
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One can also compute sequentially the notion of sample variance. So, what is that I am

going to state the problem, but I am given all the derivations I am going to leave this

reading assignment, but let me tell you quickly. Suppose I am given a I am given a set of

data x one to x n. I want to be able to compute the mean and the variance the mean of x

and the variance of x.

So, let mu k be the mean of x. Let x k be the variance of these quantities. So, given k

quantities I know how to compute the mean is that is given by this algorithm the variance

is given by this algorithm, but what is that I want suppose I give you a new observation

cape x k plus 1 the question is how I am going to be able to update. X square k plus 1 mu

k plus 1. So, that is essentially the least square problem that we are interest interested in

and that is the sequential update as I give you a new information I would like to be able

to update the  old information  by adding the new information,  I  have exactly  I  have

derived the formula for the recursive estimate I am not going to go over that you can

readily read this it is a reading assignment for you. I am now going to show you the

calculations in the next pages.
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That ultimately gives raise to a formula that I am looking for; the formula is this one it is

a beautiful formula what does it say the sample variance using k plus 1 sample that is s k

plus 1 square x k square is the sample variance with k items.

So, this is old this is new I am going. So, this is the w8 function for the old this is the w8

function for the new this is the innovation term the innovation term is mu k plus 1 is the

average of the k plus 1 items average of the k items the different square. So, this gives

rise to a very beautiful recursive formula for computing the sample variance as well as a

sample mean. Sample mean we already updating the sample mean we already saw in the

previous example. So, this is an example where we can recursively compute the sample

variance as well. So, these 2 together very beautifully illustrate the notion of sequential

or recursive or online algorithms with.
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So, the 2 recursive algorithms are going in parallel this is the one for the mean I am sorry

this is the this is one for the mean and this is the one for the variance.

So,  what  is  that  we  are  illustrating  we  are  illustrating  the  application  of  recursive

estimation by solving a very simple problem in statistics namely, if you get a newer

sample if you get a newer data item how do you update your mean how do you update

your sample variance sample variance. So, these 2 together illustrate very beautifully the

notion of sequential update or online update.
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With that we come to the end of the discussion of sequential estimation. So, the notion of

sequential  estimation  is  absolutely  fundamental  it  can  it  arises  naturally  in  solving

statistical problems in computing many of these statistical standard moments, the first

moment mean, the second moment variance centered second moment variance, and so on

the  notion  of  a  recursive  computation  also  occurs  within  the  context  of  geophysical

inverse problem.

So, we considered a set of linear inverse problem and illustrated how one can utilize the

recursive  solution  to  be  able  to  solve  the  linear  deterministic  inverse  problems with

respect  to  availability  of  observations  and  being  able  to  update  my  old  belief  to

incorporate  the  new  measurements  there  by  deriving  a  class  of  online  sequential

recursive algorithm and we also mentioned this idea is inherent to Kalman filters and

there is a considerable similarity between both Kalman filter and this algorithm, but one

works  in  the  stochastic  domain  another  version  is  sequential  domain  and  both  the

applications  rest  on  the  fundamental  matrix  formula  namely  Sherman  Morrison

Woodbury formula with that we conclude our discussion of sequential estimation.

Thank you. 


