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Lecture - 12
Deterministic, Static, non-linear Inverse Problems

In the previous modules we talked about static deterministic linear least square problems

waited unwaited versions well posed and ill  posed versions. We also saw the natural

relation between the least square solutions and a geometrical interpretation of the least

square solution and that theory was very beautiful in itself. But very seldom the problems

that we come across in geosciences are linear some are linear some are made, but many

of them are non-linear. So, in this module our aim is to be able to extend the concept of

least square solutions to solve deterministic static non-linear inverse problems. 
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So, let h be a map that means, h is a vector valued function of a vector; x is a vector that

gets into R m h of x that comes out is belonging to R m. So, you can see this is the vector

valued  function  of  a  vector  it  is  also  called  a  map,  in  meteorological  context  in

geophysical context is also called forward operator, it is a map from the model space. So,

R n is the model space this is the observation space. So, h is a map from model space to

the observation space, h has m components h 1, h 2, h m transpose whether x is where x

is Rn.



So, given z which is R (Refer Slide Time: 00:00), given the nature of the function h our

problem is to be able to estimate x such that z is equal to h of x a that is the problem non-

linear version of the least linear least square problem the linear problem what it that we

said there is a matrix h, that goes from model space to the observation space. So, in that

case we had the problem Z is equal to H of x, we have solved that problem now it takes

the form Z is equal to H of x. This we have already done the our question is how to do

these problems and that is our goal in this module. We are going to characterize this

inverse problem again as an unconstrained minimization problem. Please remember that

is exactly what we did when we did the linear least square problems.

So, we are going to follow the same track of ideas, the residual is z minus h of x, m is a

vector x is a vector. So, you can think of the residual to be Z minus h of x and that is in R

m. So, we can now concoct a function f of h which is the square of the norm of the

residual. The square of the norm of the residual is given by z minus h x transpose times z

minus h of x the only difference is instead of using a linear function I am using a non-

linear function that is all about the differences if you multiply this and.

Simplify you get z transpose z minus 2 times z times transpose h x plus h x transpose h

of x. So, that is a scalar each of this is a scalar function of the vector we again seek to

minimize f of x with respect to x and there is no constraint on x x belongs to r and that is

why  is  a  unconstraint  to  minimization  problem.  A  standard  way  to  solve  the

unconstrained  minimization  problem is  to  be  able  to  compute  the  gradient  from the

module  on  multivariate  calculus  we  have  already  seen  we  have  already  computed

gradient of terms like z transpose h which is equal to 2 times transposes the Jacobean of

h times z, again from that module on multivariate calculus the gradient of h transpose h

is transpose of the Jacobean of h times h of x, this can be succinctly written by 2 times

the transpose of the Jacobian of h, h x minus z where please recall the Jacobian is simply

a matrix of partial derivatives it is a m by n matrix Jacobian. 

So, if h of x is equal to h times x linear the Jacobian of h is simply h. So, by specializing

this we can readily get the least square counterpart of this. So, this is in that sense is a

generalization.



(Refer Slide Time: 05:48)

So, they have computed the derivative in order to be able to maximize in order to be able

to  minimize  we want  to  be  able  to  minimize  f  of  x,  please  we want  to  be  able  to

minimize f of x in order to be able to minimize f of x I have to be able to equate the

gradient to 0. If I equated the gradient to 0 as you can readily see I get a non-linear

equation where is the non-linear non-linear the equation comes from? There is a Jacobian

of h times h of x minus. So, I will rewrite this now the solution is essentially given by

Jacobian of x with respect to h, h x minus z must be equal to 0.

Now, h is non-linear, D h is also non-linear, product of 2 non-linear functions are non-

linear therefore, the gradient is a non-linear function and we have to solve a non-linear

system of equations. The only way to solve a general non-linear system of equations is to

solve them numerically. So,  one way to be able  to solve the non-linear  least  square

problem is to be able to compute the gradient and use the well established procedures

from numerical analysis to be able to solve the system of equations that is one way. So, I

would like to summarize by saying there are number of packages available, and these

packages can be used to solve this type of equation 3, and using that we can find the

minimum of f of x the solution of this equation 3 corresponds to satisfies the necessary

condition for a minimum and then in order to be able to guarantee they are minimum we

have to compute the hessian, we have to evaluate the hessian at the roots then we have to

test whether the hessian are positive definite. Once the hessian are positive definite then

we have minima in general a non-linear function may have many roots for this equation



therefore,  that could be multiple  minima so,  this  going to be computationally  a very

challenging problem.
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So, to get around that what is that we are going to be doing? We are going to be looking

at an alternate method, we are going to be seeking good ways to approximate the non-

linear  least  square  problems,  and  that  is  what  we  are  going  to  now  describe.  The

approximation we are going to be talking about is called a first order approximation.

First order approximation to the function f of x. So, what is the basic idea? Let us pretend

I now know where to start the solution that is the current operating point.  Generally

engineers  and scientists  know the range within which the solution yes they may not

know the exact solution, but it is supposed to be in this box are in fear.

So, x c current operating point is some point that we already know which is not too far

from the solution. So, that is contingent on our prior knowledge of this problem now

what  do  we  do?  We try  to  expand  h  of  x  in  a  first  order  Taylor  series  in  a  small

neighbourhood around the point x a. Again going back to our module on multivariate

calculus, I am going to be expanding h of x. So, you can think of the domain like this,

this is the current operating point x of c. I am considering a small enough neighbourhood

around this I am now considering a point x in a small neighbourhood around x of c.

So, x of c is the current operating point, x is the point I would like to move from x c to x.

If x is close x c, I can express h of x by a first order Taylor series which we have already



seen in our module on multivariate calculus. So, h x of c is the Jacobian of h at the point

x c which is. So, I can. So, given h I can always compute the Jacobian if you give me x c

I can evaluate the Jacobian matrix numerically. So, the numerical value of this Jacobian

matrix is known, h of x c the value is known, x c is known. So, you can simply see is

simply a function of h of x that is the vector is the vector function. Not only it is the

function of x, you can also see it is the linear in x. So, it is a linear approximation to h of

x around x c. So, what is that we have done? H of x is different globally, but I have

replaced the global h of x by a local linear approximation using a first order Taylor series

in a small neighbourhood around the current operating point.

So, that is the key to this argument.  So, what is that we are going to do? Instead of

solving the problem globally we are going to solve the problem locally and keep making

local improvements with the hope that these local solutions and local improvements will

ultimately eventually lead to the global solution. So, in here we have converted a non-

linear problem to an associated linear problem by invoking to the first order Taylor series

using Jacobian. 
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So, now if you go back to our previous slide, my f of x consists of h of x h of x. So, what

is that we are going to do we are going to replace these h of x in equation one I will come

back here. So, now, replace h of x in equation one by the right hand side of 4 the right

hand side of 4 is simply a linear approximation to h of x. So, if I did that, I am going to



get  a  function  Q  1  of  x.  Q  1  of  x  is  an  approximation  to  my  f  of  x  in  a  small

neighbourhood. So, f of x is a global function Q 1 of x is a local approximation to the

global function. You can readily see Q 1 of x is given by a linear part and a linear part

multiplied  together.  So,  this  is  a  quadratic  approximation.  So,  this  is  a  quadratic

approximation.

Where g of x is equal to g minus h of x instead of writing z minus h of x c, I am. So, g of

x c will be h of x c. So, g is a change of variable for z minus h of x. So, this quadratic

approximation of f of x in a small neighborhood around x of c, what is that we are going

to now look at? We are going to be looking for minimizing Q 1 of x.
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If I want to be able to minimize Q 1 of x, I can readily compute the gradient;  I can

compute  the  hessian  of  Q  1  of  x  again  by  the  results  in  the  module  relating  to

multivariate linear algebra, the gradient of Q 1 is given by these expressions the hessian

is given by this expression.

Now, please recognize the hessian is the transpose of the Jacobian times, the Jacobian

evaluated the point c this looks like H transpose H. So, there the inverse of it exists if h is

full rank, here the inverse of it exists if the Jacobian is of full rank. So, if the Jacobian is

of full rank, then the hessian is positive semi definite. If they have Jacobian is full rank

and the hessian and the hessian is positive semi definite the equation to see the that the



solution  of  the  equation  the  gradient  setting  at  0  in  7  must  give  the  optimal  or  the

minimum solution.

(Refer Slide Time: 14:43)

Therefore by setting the right hand side of se 7 equal to 0, I do not have yeah I do not

have to say 9.7, it is simply 7. By equating the right hand side of 7 to 0, we get the

minimizer  of  Q 1  as  a  solution  to  the  normal  equation.  The solution  to  the  normal

equation is given by this matrix times this is equal to this matrix times g. Now I would

like you to look at the structure, this structure is very similar to H transpose H x is equal

to H transpose Z that we saw in the linear case. There we got the global solution here I

am getting the local solution.

So,  by solving this  and this  matrix  is  symmetric  and positive  definite.  So,  it  is  non

singular. So, I can express x minus x c is equal to the inverse of this matrix times the

right hand side. So, I am by solving this I am going to get x minus x c, I originally got x

c. So, originally I started with the point x c, I went to a point x. So, if I add these 2

together I go from x c to x the optimal x that minimizes the linear approximation. So, my

new operating point is equal to the old operating point. So, this is the old operating point

plus the increment, that gives you a new operating point then I repeat the same show

around the new operating point which is x c new.

So, now I will consider another small neighbourhood around this new neighbourhood I

will consider another x, I will go from here to here. So, I went from here to here then



here to here, then here there to there. So, by moving sequentially from operating point

operating point  operating point,  I  am moving towards the global  solution this  whole

process is repeated from the new operating point, until a suitable convergence is applied.

So, what is the key here? I am converting the difficult problem of solving a non-linear

least square problems globally, to a sequence of simple linear least square problems we

already know how to solve linear least square problems. So, the trick is if you know how

to solve one problems very well, I can convert other problems to one that I know how to

solve and using the algorithms for solving the linear problem, I can continue to solve the

non-linear  problems iteratively. So,  you can see the difficulty  of non-linear  problems

essentially comes from our inability to look at the global solution at one juncture in one

shot, I am trying to build the global solution by sequence of local solutions that is what

we saw the first order approximation.
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Now, I am going to go to the second order approximation just to be able to tell you if my

function  h  of  x  is  strongly  non-linear,  what  does  it  mean  if  it  involves  logarithmic

functions,  exponential  functions,  trigonometric  functions  or  fractional  powers  of

different quantities of interest. For example, what is one typical non-linear function? In

the case of satellite meteorology, the energy radiated is equal to alpha to the power T to

the power of 4 the temperature that is a very strongly non-linear function. The energy

radiated you see is proportional to the fourth power of the temperature.



So, if I Z in this case Z is equal to. So, this is equal to h of T. So, this is equal to h of T, T

is the state variable. So, x plays the role of T and Z is equal to h of T in this case very

strongly non-linear. In this  case linear  approximation will  not come very very handy

linear  approximation  has  lot  of errors,  in  order  to  be able  to  improve the quality  of

approximation, I am now going to go from first order to second order terms. Again you

can readily see all these things are related to first order Taylor series, second order Taylor

series for vector valued function of vector is all the things that we have already covered

in the module on multivariate calculus. So, in this case in addition to the first order term,

I am going to have a second order term. The second term additional second order term

improves accuracy of the Taylor series approximation, the second order term depends on

the hessian.

So, this second order term is given by a vector please understand h is the vector, h of x c

is the vector, this D of h D of h of x c is a Jacobian matrix evaluated x c; y is the vector.

So, this is a vector this is again a vector, the vector is given by now look at the following

now you already know h is a function, which it which consists of h 1, h 2, h m transpose.

So, you take h 1 compute it is hessian that is the matrix, that is a quadratic form with the

hessian of h 1 this is the quadratic form with the hessian of h 2 this is a quadratic form

with respect to hessian of h m, 1 over half the half comes from the second order term

Taylor series coefficient. So, this whole vector will go in here and how do we express

this? I would like you to be able to think of it like this,  this is x of c,  this  is x the

difference between them is y is y. So, y is the distance between the current operating

point and any other point x in the neighbourhood of it.

So, y is equal to x minus x c that is a vector that is a vector in R n, del square h of i is the

hessian of the i th component h i. So, the hessian of the ith component of h i, with this I

get a reasonably good expression for the second order Taylor series for h of x and that is

given by 11. Look at the notation the notation could be a little complicated for some of

us who are not  familiar  with dealing with ah Taylor  series expansion.  So,  it  is  very

imperative we understand the Taylor series expansion for multi vector valued functions

of vectors, in order to be able to get the complete total understanding in here what is

happening around the current operating point x c. 
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Now,  what  do  we  do?  So,  we  are  do  going  to  do  the  same  thing.  So,  I  got  an

approximation for h of x in 11. So, I am going to substitute 11 in 1 to be able to obtain, a

new approximation for h of x again we are dealing with approximation. So, this is one

term this is another term, now what is y? Please remind yourself y is equal to x minus x c

x c is known. So, I can recover x if I know y. 

So, I am simply talking about the increment y. So, so f of x is now expressed in terms of

y again g has a previous value of Z as Z minus h of Z. So, expanding the right hand side;

the  right  hand  side  has  now  3  terms  if  you  multiply  the  whole  thing,  you  get  an

approximation in terms of I would like to call it y sorry that is not x it should be y. So,

we expand the term if you expand the term look at this now this is a the g is a constant

term this is the first order term, this is the second order term in y, this is a constant term,

this is a first order term, this is a second order term.

So, each one of the factors are quadratic functions if you multiply 2 quadratic functions,

you are going to get a fourth degree term in the components of y. So, what do we do? We

expand, but keep only the second order terms in y. So, what is mean what do you mean

by second order terms? Second order or the second degree in the components of y, there

will be third degree term there will be fourth degree term we are going to neglect the

third degree term and the fourth degree term why we are allowed to neglect the third and



fourth degree term. If x c goes to x c h is y is small. If y is small y square is smaller y

cube is even smaller y to the power 4 is even much smaller.

So, we are simply invoking to the order of magnitude scaling passes involve in here. So,

we are only going to keep the dominant term up to the second order we believe the third

order term and fourth order term are essentially  very small.  So, by keeping only the

second order approximation, I get an approximation of f of x as Q 2 of y. Q 2 of y is

given by these terms I would like to look at this term for a minute. This term is of degree

0 the first term is of degree 0, the second term is a linear term the third term is essentially

a  quadratic  term look  at  this  now, the  third  term this  is  quadratic  in  y  and  by  the

definition of second order term that is also quadratic in y, the sum of 2 quadratic terms is

a quadratic terms. So, Q 2 of y is quadratic, Q 1 of y it was also quadratic, but in this in

the case of Q 1 of y I did not have this term. So, this is the new term that comes into play

if I use the second order approximation

So, this is new. So, that is why we are going to call Q 2 as a full quadratic approximation

and Q 1 as only a partial quadratic approximation that is simply a mathematical fact that

comes out of this analysis. So, if you drop the second order term, you Q 2 becomes equal

to Q 1.  So, that  is  the important  nesting that  we have to look at  that.  So,  quadratic

approximation is obtained by simply adding a second order term, which is the last term

in equation 15. So, that is a summarise in the following discussion, Q 2 before from q I

with the addition of the fourth which is the second order term on the right hand side a 15.

So, I had f of x which f of x by a second order Taylor series, I substituted that I will get

second degree term, third degree term, fourth degree term we dropped that every term

larger than the second degree. So, Q 2 y is the total or full quadratic approximation of f

of x. 
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Now, the problem becomes very simple, I have a quadratic function, I would like to be

able to compute that del or the gradient of the this quadratic function in 15 and that I do

in stages I am considering Q 2 g transpose D square h of y this is the term that we have

added is a new term that comes in to Q 2 that was not in Q 1, this term if I expand it. So,

g is a vector D square is a vector; I am talking about the inner product of 2 vectors. The

inner product of 2 vectors is given by the sum of g I times the quadratics formula; hence

Q 2 of y now can be replaced by this constant term first degree term one second degree

term and this second degree term. So, you can readily see the quadratic function coming

in here.

You can also see the quadratic function coming in here, these 2 are quadratic that is the

linear therefore, I can compute the gradient of Q 2 again we are invoking to the module

on multivariate calculus; the gradient of this gives rise to this, the gradient of this gives

rise to this, the gradient of this gives rise to this, and I am going to equate this gradient to

0 to get my solution, I also get the hessian of Q 2 this is the gradient of Q 2. So, I have

computed all the required quantities in order to be able to compute the solution I simply

need to be able to set the gradient to 0.
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I am going to have to set the gradient to 0; the setting the gradient to 0 gives rise to a

linear system where the system matrix is given by this. So, this is like A y is equal to b

where this is the matrix A, this whole thing is the vector b and I am going to solve for y.

Now, I would like to look at this matrix. So, this is the Gramian that comes out of the

Jacobian. This is the term that comes out of the hessians of the components of that g i is

are the constants the g is as your if you are if you recall g is equal to z minus h of x. So, g

i  is  our  constant.  So,  this  is  each  one  of  these  are  matrices.  So,  this  is  the  linear

combination of matrices multiplied by g i. So, this is the matrix this is the matrix, I can

solve this matrix equation. The solution of this matrix equation is going to give me a y

least square, that least square solution is it will indeed be if that solution will indeed be a

least square solution provided this hessian term is positive definite.

So, this is essentially another way of looking at the approximations to the non-linear

problem using second order approximations.
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Again we are going to solve 20 for y, if I solve for y please remember y is equal to x

minus x c. Once we have x minus x c we can compute, we can add x minus x c to y that

gives you a new operating points. So, here again I am going to go sequentially I have x c

then I am going to x c new operating point, from here I am going to go to another new

operating point we can call it new new and the conversion goes on. So, I am solving a

sequence  of  local  minimization  problems  by  using  clever  partial  quadratic  form

approximations are full quadratic form approximation to the function f of x.

So, the entire process of second approximation is repeated, until a suitable convergence

is obtained. How do I say is suitable convergence? When do I say the convergence has

occurred, if the norm of y you compute y if the norm of y is less than a pre specified

epsilon and what is that epsilon? Epsilon could be 10 to the power of minus d and what

could be that? That could be you can set the criterion any way you want 0 0 1 or 0 0 0 1

or 0 1 these are all typical values of epsilon one could utilize and. So, if d is large your

approximation is better. If d is small the approximation is screwed. In some problems if

the model is not a perfect model it is not worth worrying about exact solutions you can

afford to ah get reasonably ah good neighbourhood, but not nearly exact d could be need

not be too large in such cases.

So, it all depends on how well you believe your model is, how well you believe your

method should be your method need not be more accurate than the model. So, more



accurate solutions are needed only when the model is more precise. I wanted to be able

to think of this consistency between goodness of the model versus goodness the solution

that you obtain by virtue of data simulation. So, the idea behind these 2 approximations

is that their solution can be obtained by solving linear system with SPD matrices, using

the  normal  equation  approach.  So,  what  is  the  basic  idea  here?  We developed  the

expertise  in  solving  linear  least  square  problems,  once  we have  a  good expertise  in

solving linear least square problem we are readily extending that expertise to solve non-

linear least square problems by approximating the non-linear function using either the

first order Taylor series are the second order Taylor series. So, that is the idea.

So, understanding linear least square problem is fundamental and if you do and if you

understand it very well if you have developed programs to solve the linear least square

problems,  you can readily  apply them to solving non-linear  problems, but  non-linear

problems are not solved in one shot they are solved repeatedly. So, it  is a sequential

approach to solving non-linear problems using a sequence of linear problems.

(Refer Slide Time: 34:08)

With this we come to the end of this module, there are a couple of different exercises.

These are very useful exercises, I want to emphasize couple of these f of x is a very

simple function I would like you to consider x of c as a starting point, compute the first

order and the second order approximations for f of x around x of c, find the gradient in a

hessian of f of x at that point, draw the contours of f of x around x of c, also draw the



contours of the first and second order approximations around x of c, you can see how

these  contours  approximate  the  solutions  to  the  problem  as  we  progress  from  one

operating  point  to  another  operating  point,  another  operating  point  the  you  can

understand and appreciate the progress of the local solution towards the global solutions.

With  that  we come to  the  end of  the  discussion  of  solving  non-linear  least  squares

problems.

Thank you. 


