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A Geometric View – Projections

So, far we have applied the least square method to solving static deterministic least square

problems; both well posed and ill posed. Given the importance of least squares starting from

the days of Gaussi, I think it is worthwhile to get a geometric view of the nature of the least

square solution. Thus for we use the analytical methods to derive the least square solution, by

formulating a problem as a minimization problem; both unconstrained and constrained. 
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This  geometric  view enables  us  to  be  able  to  look  at  least  squares  from a  very  simple

perspective of the notion of projections.

So, let us consider a vector Z 1, Z 2 in the 2 dimensional plane; this is the vector Z if you

shine lights parallel to the y axis; a shadow will be cast on the x axis. This arrow segment

gives you the shadow of Z; the shadow is called Z 1 hat. The property of this shadow in

figure 1 is that; it is an orthogonal projection, in the sense that if I join the tip of the vector Z

and Z 1 hat; the angle between the 2 vectors is 90 degrees. On the other hand, if you shine

light in a direction not parallel to the y axis; the shadow cast by Z on the x axis is Z 2 hat; if I



join the tip of these 2 vectors, the angle is theta; in this case theta is not equal to 90; so, this is

called oblique projection. 

So, Z 1 hat is called an orthogonal projection; projection of Z onto the x 1 axis, Z 2 bar is the

oblique projection of Z on to the x 1 axis. Oblique and orthogonal decided simply by the

direction in which light is shown on the vector Z. Mathematically, this operation of shining

light and projection can be thought of as a matrix P 1. If P 1 operates on Z, you get Z 1 hat;

the P 1 has a form which is 1, 0; the first row 0, 0 in the second row. 

So,  in  this  case  P 1 Z is  essentially  Z 1,  0;  the  second component  is  annulled  the  first

component is nonzero, so Z 1 hat is equal to Z 1; so, that is an orthogonal projection. On the

other hand, if you consider P 2 to be P 1, a and 0, 0 and apply that operator P 2 and Z, you get

Z 1, a Z 2 and the second component is 0.

So, now you can see when a is 0, P 2 becomes equal to P 1; when a is not equal to 0, for

example, a is greater than 0, the first component Z 2 hat is Z 1 plus a times; Z 1 is the first

component of Z, say Z 2 is the second component of Z; a is positive; the shadow is longer.

So, you can think of projection as a geometric operation, algebraically the operators; matrices

P  1  and  P  2  essentially  generate  this  orthogonal  on  oblique  projection.  This  is  very

fundamental  geometric  point  of  view and it  is  a  very  close  and intimate  relation  to  the

properties of least square solutions.
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Projection as matrices; so in the last slide we saw matrices P 1 and P 2; P 1 is called an

orthogonal projection matrix, P 2 is called the oblique projection matrix. Every projection

matrix has a fundamental property that is idempotent by idempotent is I mean P 1 square is

equal to P 1, P 2 square is equal to P 2. So, here I am looking for a matrix whose power is

equal to itself.

Let us recall in terms of numbers; if I have a number a, if I want a square to be equal to a; to

do that I have to solve this equation. This equation essentially tells you a times a minus 1

must be equal to 0; that essentially gives you either a is equal to 0 or a is equal to 1. So, there

are only 2 numbers which when squared is equal to itself 0 and 1, but in the case of matrices

P 1 square is equal to P 1, it can be solved and the solution we saw is given by the matrix in

the previous slide.

Likewise P 2 square is equal to P 2 can be solved one of the solutions for that is the matrix P

2 given in the previous slide. What is the difference between P 1 and P 2? P 1 is symmetric,

but P 2 is not symmetric. Now, I am going to state a very general property of orthogonal a

projection matrix. An orthogonal projection matrix is idempotent and symmetric; an oblique

projection matrix is idempotent, but not symmetric. 

So, every projection matrix is idempotent; it is a symmetry or not symmetric nature of the

idempotent operator is going to decide, whether the resulting projection is going to be an

orthogonal projection or an oblique projection. It can be shown every projection matrix is

singular that is it is rank deficient; if it is rank deficient the determinant is 0. Please verify

that the determinant of P 1 in our area slide is 0, the determinant of P 2 in our area slide is

also 0. So, in this slide we are summarizing the general properties of projection matrices;

projections  are  of  2  types  orthogonal  or  oblique.  Every  projection  matrices  must  be

idempotent; in addition if the projection matrix are symmetric, it is orthogonal projection; if it

is not symmetric, it corresponds to oblique projection.
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Now, ordinary least square solutions can be viewed from an orthogonal projection point of

view. Let H; so I am considering a very special case, where H is a column vector; that means,

n is equal to 1; that vector H is given by this line H; Z is the vector in R m. So, both H and Z

are vectors in R m; I am giving an example of a 2 dimensional representation, assuming m is

equal to 2, but the whole analysis holds for any m. let Z be not equal to H therefore, if I draw

the vector Z this represents the vector Z, this represent the vector H.

Now, I  can project the vector Z onto H to get Z hat.  Z hat is  a vector that is  along the

direction of the vector H. So, I should be able to get Z hat as H times x; where x is a scalar.

So, the question in the least squares projection is such that, I would like to be able to find the

constant x such that the projection Z hat is an orthogonal projection of Z on to H; that is a

geometric point of view. To do that; I am going to consider the difference of the vector Z

minus Z hat and that is this vector, this vector is Z minus Z hat. I would like my Z minus Z

hat  to  be  perpendicular  to  Z  hat,  but  perpendicular  to  Z  hat  is  also  equal  to  saying

perpendicular  to  H.  Therefore,  in  here  I  m  requiring  my  r  which  is  the  residual;  you

remember the residual when we talked about least  square solution; Z minus Z hat is  the

residual or the error in the projection must be perpendicular or orthogonal to H, Z hat is the

orthogonal projection of Z onto H.

Now, I would like to relate another geometric fact; it is well known that if I have a line and if

I have a point not on the line, the shortest distance from the point to the line is the length of



the perpendicular from the point to the line; that is a very well known fact in basic geometry.

So, you can think of the line to be my line H; you can think of my point to be the tip of Z; I

am trying to draw the perpendicular from Z to H. 

So, if it is perpendicular the angle is 90 the angle between r and H is 90; therefore, all when

the angle is 90 is the shortest distance, the residual is the shortest length. So, the shortest

distance between a line and a point not on the line; is the length of the perpendicular from the

point to the line. So, referring to the figure Z hat, the point where the perpendicular line from

the point Z the tip of the vector Z intersects the vector H; therefore, all it is Z minus Z H is

perpendicular to H.

So, that is the simple geometric fact where the minimum of the residual essentially comes

from the simple fact that the distance between the line and the point is shortest when the line

is perpendicular; that is the geometric fact we are trying to use.

(Refer Slide Time: 11:34)

Since Z hat is a vector in the direction of H; there is a scalar such that Z hat is equal to H of x;

that is a very well known fact. Because, if I give a direction any segment of the vector can be

obtained by multiplying the direction by a constant; so x is a scalar, so by combining the fact

that Z minus H x is equal to Z H, which is perpendicular to H.

Now, this perpendicular condition will be implied if the inner product of the 2 vectors are 0,

so H is perpendicular to Z minus H. Therefore, H transpose Z minus H must be equal to 0 and



that  naturally  leads  to  least  square solution.  So,  you can multiply both sides;  you get  H

transpose  H x  is  equal  to  H transpose  Z or  X LS is  equal  to  H transpose  H inverse  H

transpose Z. So, Z hat, so this we have already seen to be H plus Z; where H plus is the

generalized inverse.

Now, once I know X LS; I can get Z hat to be H times X LS; H times this is X LS I substitute

that fact in here. So, I have now a matrix H times H transpose; H inverse H transpose the

matrix operates on Z, this matrix I am going to call it  P of H. This P of H is called the

orthogonal projection matrix induced by H. Therefore, the least square solution Z hat is equal

to H times X LS is equal to H plus H, therefore, H times H plus Z and that is equal to P H Z,

P H is equal to H H plus and that is the orthogonal projection matrix that we are interested in.

So, you can readily see I get the same formula that I obtain by minimizing f of x, which is the

square of the norm of the residual. The same result that we did analytically by minimizing f

of x is obtained by a very simple geometric fact; which states that the perpendicular from a

point; not on the line, to the line gives the shortest distance from the point to the line. It is a

very simple geometric fact we all learn, when we are first introduced to geometry in high

school.
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So, what is the generalization of this? Now, let us consider in this case H is m n; a matrix m

rows and n columns. So, previous analysis was a special case when n is 1; now m is greater



than n, which is greater than equal to 1 is the generalization of that. Let Z be a vector in R m;

now since H has n columns, I am now going to consider a subspace kind by the columns of

H; that is the subspace onto which I would like to be able to project my vector Z, that is the

vector Z; if I project that vector Z hat is given by this. 

So, Z hat in this case is the projection; it is still H times x, but in this case x is a vector

belonging to R n. When n is 1, x was a scalar that is what we had gotten earlier. Again Z hat

minus Z is r the residual is Z hat minus Z and we would like r to be perpendicular orthogonal

to the span of H. We all know span of H is the linear combinations in the columns of H; that

means, Z minus H of x must be perpendicular to every column in H.

So, referring to the figure we are going to get r is equal to Z minus H must be perpendicular

to the columns of H; since Z hat belongs to the span of H that exists a vector x such that Z hat

is equal to H of x; we have already talked about that earlier. So, combining this we now know

r; which is equal to Z minus H is perpendicular to H; same argument. If H has only one

column, if we project it onto that vector, if H has multiple columns; we project it onto the

span of H, which is the set of all linear combinations of the columns of H.
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Therefore, we would like to enforce this condition; which is H transpose Z minus H must be

equal to 0; that essentially gives you the normal equation; which is H transpose. H x equal to



H transpose Z; this is called the normal equation. The solution to this normal equation is

given by x least square is equal to H transpose.

So, the least square solution is given by this solution; the expression given there. So, Z hat is

equal to H of X LS. So, which is equal to; so X LS is given by the solution of this, which is H

transpose;  H inverse  H transpose  Z,  that  is  the  correct  solution,  that  is  the  least  square

solution; that solution we have already seen in the previous module. 

Therefore, Z hat is equal to H of X LS, which is again if I substitute X LS; by this, I get this

operator operating on H that operator is called P of H. So, P of H is given by this which is H

plus; that is called the orthogonal projection matrix, induced by the given matrix H. And

please remember H plus is the generalized inverse, we have already seen.

So, now we are seeing very many different types of matrices that come into play. We have the

matrix H, we have the matrix H plus which is the generalized inverse. We have the matrix P

H; which is equal to H; H plus, so this is projection that is the generalized inverse that is the

given matrix. So, all these three matrices are naturally associated with the notion of least

squares.
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Now, I am going to talk about the general properties and verify that it  is going to be an

orthogonal projection; much of it is going to be left as a homework problem; we already



know P H equal to H; H plus that is equal to H; H transpose; H inverse, H transpose that is

the P of H. Now, I would like to ask you to verify this is idempotent; so what does it mean? 

Please if you multiply this matrix by itself is equal to the matrix itself. So, P H square is equal

to P H; therefore, it is idempotent. Please verify this; it can be also verified P H transpose is P

H, why P H transpose is P H? Let me quickly illustrate that, P H transpose is equal to H; H

transpose; H inverse, H transpose; transpose. From matrices, we already know the transpose

of the product, of the transpose has taken in the reverse order. So, this is equal to H transpose;

that is equal to H transpose, H inverse transpose and H transpose.

Now, H transpose H is symmetric, if H that is a (Refer Time: 20:39) is a symmetric matrix; H

H transpose inverse is also symmetric. There is a general theorem that says that the inverse of

a symmetric matrix is also symmetric. If the inverse of a symmetric matrix is symmetric, its

transpose is equal to itself. Therefore, this is equal to H transpose; H transpose, H inverse; I

am sorry I made a mistake, I would like to be able to correct myself; once I eraser that is

correct. 

So, that is the correct way of doing it. So, the transpose of the product is the product of the

inverse  transpose  has  taken  the  reverse  order. So,  H transpose  transposes  H;  this  is  the

transpose of the inverse, this is H transpose. Therefore, I get the correct formula; the correct

formula is given by H transpose therefore, it is symmetric; that is verified.

So, P H is idempotent and symmetric; so, by definition is an orthogonal projection from R m

to R n; which is the span of H. So, please look at this now; m; m is greater than n is greater

than equal to n to 1. So, R m is a larger space, R n is a subspace; the span of H because H is a

full rank, it generates the subspace R of m. You can also verify the determinant of P H is 0

and hence P n is singular, it is singular and hence P n is singular that is the property we can

easily verify and the determinant is (Refer Time: 22:38) means it must be singular; that is the

way things are ok good.

Now, I would like you to be able to verify that particular property.
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So, I am going to now go to the least squares with the weight present. So, in the case of

weighted least squares consider Z is equal to H of x; there is a weight matrix therefore, I am

going to be concerned with the residual Z minus H of x; that is the residual vector. My f of x

is r transpose W of x; r transpose W of r; that is a weighted sum of square residual. We have

already seen the least square solution is given by that, we have already seen in the previous

slides and previous lectures, so Z hat is H of Z L S.

So, this is going to be the solution least square solution; I am providing a summary. So, P H

W is given by the matrix that is the underlined. So, P H matrix is this that can be thought of at

H; H plus W. H H plus W is the inverse in the weighted case generalized inverse in the

weighted case; that is the so called projection matrix and H plus W is called the weighted

generalized inverse. So, these are all simply a summary of all the quantities that we have

considered so far.
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Again it is a very simple exercise to verify that this matrix is idempotent; this matrix also

idempotent,  this  matrix  is  not  symmetric  and  hence  an  idempotent  matrix  that  is  not

symmetric has to be an oblique projection matrix; that is the general conclusion. What does

this mean? When you do problems in 3D war, we always consider your weighted sum of

squared errors. Therefore, the solution to the 3D war problems; with weight matrix in those

cases,  the  weight  matrix  is  simply  the  inverse  of  the  covariance  matrices  observation

covariance or background covariance.

So given the observation covariance matrix and the background covariance matrix, so, long

as they are not identity matrices; we are always dealing with weighted least squares within

the context of 3D war. So, almost 3D war solutions are giving raise to the so called oblique

projection; only in the unweighted case, do we have an orthogonal projection; so that is the

beautiful geometric view of things one has to remember.
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Now, going to quickly illustrate by an example n is 1; that means, there is only one unknown,

m is 2; that means, H is a matrix. So, now you can readily see H is a vector which is equal to

h 1, h 2; that is given by here. Z is a vector because m is 2, x is a real number, I am now

going  to  conjure  up  a  simple  matrix;  which  is  symmetric;  the  weight  matrix  is  always

symmetric. Even though the weight matrix is symmetric, the projection matrix resulting from

the weight matrix is not symmetric; that is something one needs to keep in mind.

So, W 1, W 2 are 2 diagonal elements; a is the off diagonal elements. So, h transpose W H; if

you do the multiplication, you will get this quantity; which is the real number. Now, we have

already seen the expression for P H W in the previous slide; I am now going to substitute all

this and that takes this form. So, if you do the simplification; the projection matrix becomes

that particular matrix which is a; each of the elements have 2 terms; it is an addition of 2

terms.

Now, I am going to set a special case h 1 is 1, h 2 is equal to 0; that means, h is equal to 0, 1.

In this case, your projection matrix becomes the one that is given here or the projection Z hat

is given by P H; W Z, which is given by Z 1 plus a bar Z 2; a bar is a by W 1 and this is

something, we have already seen. The very first opening example of an oblique projection, so

what is that we have shown? If there is a weight matrix, the resulting projection is not an

orthogonal projection and that is the conclusion that we have; why is this is not an orthogonal

projection? 



If you have this; if this is Z, that is an orthogonal projection; now if you get this, so this is Z

1, this is going to be Z 1 plus a times Z 2. Z 1 plus a times Z 2 is not equal to Z 1 unless; a is

equal to 0. So, if you assume; a is not equal to 0, the angle here is 90; here is theta, theta in

general is not equal to 90. Therefore, when a is not equal to 0, the projection is an oblique

projection; that is the important thing that one has to keep in mind.
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Illustration continued; so, I have already talked about this. So, r x is the error; the projection

is given by Z minus Z hat, the actual error can be computed by this. So, this is the actual

vector;  this  is  the  projection,  the  difference  between  the  2  is  given  by  minus  a  bar  1,

multiplied  by Z 2.  So,  if  I  consider  r  transpose  H; I  get  this  and that  is  exactly  that  is

essentially given by the; so I would like you to see this. 

So, this is the vector H, so if you project that Z hat is the projection; the angle is theta that.

So, by Schwarz inequality; the inner product is equal to the norm of r x times; the norm of H

times cosine theta. I can compute each of these quantities explicitly; this is the inner product,

this is the norm; that is a cosine of the theta. So, cosine of theta is equal to given by this ratio

and that ratio essentially tells you the angle is not 90 degrees; that is theta is greater than 90

and r x makes an obtuse angle with H; see the illustration. So, when a is 0, cosine is 0 in

which case theta is 90 the projection becomes orthogonal.



So, this is a very simple graphical illustration using a 2 dimensional case, where we can

readily see; you can have weights. But for certain sets of weights, the projection is orthogonal

for certain types of weights, the projection can be non orthogonal projection, so that is the

important conclusion you coming out of this exercise.
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So, in summary what is that we have accomplished in this small module? We have seen the

importance of least square solution, within the context of data simulation, within the context

of solving inverse problems. We are simply trying to embellish the character of the least

square  solution  by  relating  the  properties  of  the  least  square  solution;  to  a  very  simple

geometric fact, which we all have learnt in our first course; in geometry that of orthogonal

projection and oblique projections.

So,  what  is  the  conclusion?  You  have  a  static  deterministic  inverse  problem  and  you

formulate  it  as  a  unweighted  problem.  The  least  square  solution  is  given  by  orthogonal

projection; if you formulate it as a weighted least square, the solution is given by an oblique

projection. This essential difference between orthogonal oblique is essentially coming out of

whether there is weight; whether there is not weight, recall the formula. So, I have couple of

exercises; recall the formula that we have already seen. So, I would like you to be able to plot

the value of theta as a bar ranges in the interval minus 1 to plus 1.



So, this exercise essentially tells you how the angle theta varies with the choice of a bar. And

please recall from couple of slides earlier, a bar depends on a. So, a essentially controls a bar

and as a bar ranges within minus 1 to plus 1; theta sweeps through a particular range. And I

would like you to be able to plot this perhaps using MATLAB and convince yourself; what is

the range of rotation angle theta 1 gets with a? The second exercise relates to the expression

for the weighted generalized inverse check, if it satisfies; so, what is the idea here?

Now, any generalized inverse must be able to satisfy the Moore Penrose condition in module

relating to matrices. So, here is an exercise that I would like to revisit; the Moore Penrose

condition; that defines a generalized inverse and check to see, whether this expression for the

generalized inverse with the weight satisfies the Moore Penrose. I think it will be a very

worthwhile exercise to do, with this we come to the end of the discussion relating to the

geometric facts and geometry interpretations of least square solutions.

Thank you.


