
Dynamic Data Assimilation
Prof. S. Lakshmivarahan

School of Computer Science
Indian Institute of Technology, Madras
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Deterministic, Static, linear Inverse (Ill-posed) Problems

In the last lecture we talked about static deterministic linear inverse problem which are

well posed. Why it is well posed? Because we did not find any difficulty in the solution

process, that is largely because the matrix H is well is full rank. Because the matrix H is

full  rank H transpose H is symmetric  (Refer Time: 00:39) definite,  HH transpose,  H

transpose H both of them are full rank matrix therefore, we could define the generalized

inverse of H both in under determined case and over determined case. We did not have

any problem we sailed very smoothly by solving the normal equations.

So, it makes sense to ask our self of the questions what happens if H is such that is not a

full rank and that corresponds to ill posed problem. So, ill posed version of the static

deterministic linear inverse problem is what we are going to be looking at and we will

also talk about what called imperfect model along the way.

(Refer Slide Time: 01:34)

So, Z is equal to H of x is the linear least square problem. H is the matrix which is m by

n. In module 3.1 we already talked about the well posed problem linear least squares, the

well posed problem essentially banks on the assumption that H is a full rank; that means,



the rank of H is minimum of m and n. So, when the over determined case the rank of H

is n in the under determined case the rank of H is m. So, we have considered both the

cases under one rule namely the rule of H being a matrix of full rank.

Now, we are considering a complimentary case where what happens when H is rank in

deficient. So, what does it mean? When the rank of H is not equal to the minimum of m

and n, but is less than the minimum of m and n. So, in the over determined case it is not

n, but less than n in the under determined case it is not m, but less than m. Such problems

are called ill posed problems.

So, well posed verses ill  posed largely determined by the properties of the matrix H.

Please remember H Z is equal to H of x defines the static model, the properties of model

defined by the matrix H, so we considered one aspect of the properties of the model now

we are considering another aspect of the properties of the model full rank verses rank

deficient. When the H matrix is rank deficient the Grammian matrices H transpose H and

H in H transpose are symmetric, but they are not (Refer Time: 03:23) definite, but they

are singular. That means, their determines are 0; that means, at least one of their eigen

value is 0. If at least  one of the eigen value is 0 it is not positive definite it  is only

positive  semi  definite.  So,  positive  semi  definiteness  of  H  transpose  of  H  and  HH

transpose leads to singularity and that leads to the fact I cannot simply now compute H

transpose, H inverse are HH transpose inverse I cannot compute them because they are

all singular, I cannot do, I cannot compute these inverses readily, these do not exist. So,

when these do not exit I cannot follow the principles that we have developed in the last

lecture. So, this calls for newer methods to be able to handle and we are going to be

talking about some of these newer techniques.



(Refer Slide Time: 04:21)

To reinforce further when H is rank deficient when H is rank deficient we cannot use the

formula for the generalized inverse of H, this is the generalized inverse of H for the over

determined case, this is the generalized formula for the generalized inverse for the over

determine case,  this  is  the formula for the under determined case.  These generalized

inverses that are used in computing X LS now cannot be done, now cannot be computed

because they cannot be computed I cannot use the old path way to compute the solution.

But the serious generalized inverse still tells you while I cannot compute the generalized

inverse using these formulas there is other ways of computing H plus, I can still compute

H plus, but using in the method called singular value decomposition.

We will talk lot more about singular value decomposition in one of the modules coming

later  and using  this  one  can  solve,  even though one  can  solve  using  singular  value

decomposition at this junctor we are not going to use this we are simply looking for an

another alternate formulation of linear least square problems. So, let me clarify where we

are. We have a linear least square problems Z is equal to H of x, H is rank deficient I

cannot use the method that I have already described thus for, rank deficient cases can be

handle by one of the methods called singular value decomposition,  we still  have not

developed the method of singular value decomposition now we will do it later. So, while

we  will  have  occasion  to  revisit  the  solution  of  this  problem at  the  time  when  we

describe the singular value decomposition, at this time I am still interested in solving



this. So, I am seeking an alternate method, alternate to singular value decomposition.

That method is called method of regularization.

This  method  of  regularization  was  introduced  by  a  Russian  mathematician  called

Tikhonov. This method is meant to get around the rank deficiency of H, is a very simple

elegant method to approximate solutions of ill posed problems, rank deficient problems,

ill posed rank deficient I am using it synonymously.

(Refer Slide Time: 07:13)

So, what is the Tikhonovs method? Tikhonov method is a modification of the method

that we use in solving the under determined case. In the under determined case we want

to,  we seek  to  minimize  the  norm of  H,  but  we require  Z minus  H to  be  a  strong

constraint and used Lagrangian multiplier. What did Tikhonov say? Tikhonov said you

still consider factor that corresponds to the square of the norm of x, alpha is a parameter,

Z minus H of x norm. So, this is square of the norm this is square of the norm, alpha is a

kind of a penalty parameter. So, this is what is called a penalty function approach.

So, what is that we are looking for? I am looking for a solution f of, a solution that

minimize f of x. The solution that minimize the f of x such that alpha times the square of

the norm must be as small as possible and Z must be as close to H of x as possible, but

not exactly 0. So, the addition of alpha x square term to the traditional sum of squared

criterion helps to avoid the challenges resulting from rank deficiency.



Now, please understand in the over determined problem we f of x was essentially this is

term for the over determined case, for the over determined case we essentially used the f

of x to be this. Now, to that f of x I am adding this term by adding this term this is a kind

of  penalty  term.  So,  we  mix  our  (Refer  Time:  09:00)  and  concoct  a  new objective

function and our problem is to able to minimize this f of x. And let us talk about the

impact  of  this  after  we  solve  the  minimization  problem.  So,  rewriting  f  of  x  as  in

equation 2 we can readily compute the gradient and equate the gradient  to 0,  if  you

equate the gradient to 0 I get the a solution for X LS, by setting this is to 0 I get the

solution to be like this. So, you can see least square solution is a function of alpha H

transpose H plus alpha I inverse H transpose Z, when you set alpha is  equal to 0 it

becomes  a  solution  of  the  over  determined  case.  So,  you  can  think  as  of  this

generalization  of  concept  of  solution  for  the  over  determined  case.  So,  this  over

determined case I considered only this term we added that. So, the alpha term is the one

that is added to this.

Now, look at this now H transpose H is by itself is singular, but I am adding alpha kinds

of  identity  matrices.  So,  this  is  called  diagonal  perturbation  this  change is  only that

diagonal elements of the matrix H transpose H. So, by adding a diagonal perturbation to

a singular matrix I can make the whole matrix non singular if the matrix is non singular I

can compute the inverse if you can compute the inverse I have the solution. So, what is

this? We are not solving the original problem we are solving a modified problem the

modification is obtained by adding a diagonal perturbation to the grammian H transpose

H.



(Refer Slide Time: 10:47)

So,  since H transpose H is  singular  by adding a  diagonal  perturbation  alpha  I  to  H

transpose to H we ensure that H transpose H that plus alpha is non singular. When this is

non singular I can compute the inverse, if I can compute the inverse I have an expression

for the least square solution. So, the expression for the least square solution for this ill

posed problem is given by is given by the equation 3 in slide 4, equation 3 in slide 4.

Now, you may ask a question how do I pick that alpha. In fact, I am going to give an

intuitive fail, the alpha that you need to choose must be the smallest alpha that will make

the matrix H transpose H non singular. This matrix by this matrix by itself is singular I

am going to add perturbation I am going to require this whole matrix be non singular. So,

I want to ask myself the question what is the least alpha that the I should use in order to

render  the resulting  matrix  to  be non singular,  such an alpha  always exist  it  can  be

proven. So, this is a very nice generalization. So, when H is a full rank we simply set

alpha is equal to 0 when H is rank deficient you pick the least alpha that will make this

matrix  non singular. So,  once you have picked the least  alpha that  will  make it  non

singular I can solve the linear least square problem I have a least square solution.

The  existence  of  such  alpha  is  guaranteed  by  as  theorem  in  matrix  theory  called

Gershgorin circle theorem. Using the Gershgorin circle theorem one can estimate the

least  value  of  alpha,  one  can  estimate  the  least  value  of  alpha  that  is  needed  to  be

rendered this is non singular such a thing exists it is a very simple result. So, what is that



we trying to do? By formulating the problem as a penalty function problem we can even

solve an ill posed problem nicely.

(Refer Slide Time: 13:13)

Now, I am going to talk about the use of matrix identity. I hope you all remember that we

have talked about several  different  matrix  identities  when we dealt  with the modular

matrices. A very well known matrix identity takes this following shape by equation 4.

This identity is very well known in matrix theory, now I am going to start with the well

known identity I am going to specialized A is equal to H, B is equal to I, D inverse is

alpha I. Why? I would like to able to use this identity in the Tikhonov solution to see

what is the relation between the under determined over determined case that is what our

aim is. This identity if this substitution now becomes this using this identity, this left

hand side is equal to the right hand. So, this left hand becomes this right hand becomes

that the right hand can be simplified and that becomes this.

So,  look at  this  now H transpose H plus  alpha  I  inverse H transpose is  equal  to  H

transpose alpha I plus HH transpose inverse, these two problems these two matrices are

equal that is the essence of equation 5. From here now I can do, I can see the lots of

things if I said alpha is equal to 0 this becomes a solution for the over determined left

hand side become a over determined system, the right hand side becomes a solution the

under determined system.



So, Tikhonov by introducing penalty factor alpha was able to use unify the solution for

the over  determine  and under  determine  case by invoking to  these very well  known

matrix identity. So, that is the beauty of the solution of Tikhonov. So, Tikhonov solution

is important in two ways, one it helps to solve the ill posed problem another one it helps

to unify in trying to define the relation between under determined over determined. So,

you kill (Refer Time: 15:31) that is the beauty of the work by Tikhonov. Tikhonov has

specialized in solving inverse problems of various types, he has written a marvelous

book that deals with regularization methods for solving inverse problem. This is the one

of the simplest of the method available regularization that is often used in solving linear

least square ill posed problems.

(Refer Slide Time: 15:58)

So, I have already talked about the unified approach when alpha is 0 in 6 leads to optimal

solution to the full rank problem when m is greater than n where alpha is 0 in 7 that leads

to the optimal solution to the full rank problem when under determined case. So, all the

previous solution can be obtained as special cases from the unified approach and hence

then importance of Tikhonov of contributions.



(Refer Slide Time: 16:25)

Now, I am going to talk about the role of model perfect verses imperfect under static

constraint. So, models static, models can be perfect, model can be imperfect the saying

goes no model is perfect, but some models are useful. Often one assume that a model is

perfect, imperfection in a model comes from various directions. The imperfection from

the model can come from incomplete physics not complete physics, sorry the imperfect

model  can  be come from incomplete  physics  are  wrong parameterization  are  unique

combination that of are other reasons.

Irrespective of the model whether is perfect or not in the over determined case the model

is always the problem is inconsistent, in the sense that we saw in the previous lecture

over  determined  systems  are  always  inconsistent.  In  the  under  determined  case  the

choice of the method depends on whether the model is perfect or not. So, if the model is

perfect we can format one way if the model is imperfect we can format other way. So,

usual have a good feel for a good model is.



(Refer Slide Time: 18:02)



So, that brings us is the notion of different ways of formulating the solution of least

square problems when the model is perfect when the model is imperfect, that gives

rise to a new way of looking at it called strong constraint verses weak constraint

formulation. When m is less than n the model and the model is perfect, so I am

considering I am considering an under determined cases there are less observation

than number of parameters and also a model is perfect and that the assumption we

already made. We never question about the whereas it in the model until now, only

now we are trying to ask the questions is  the model  perfect  if  the model  is  not

perfect that is one way.

If the model is imperfect other way if the model is perfect I would like to able enforce

the model equation strictly that gives raise to strong constraint the model constraint

is  strong  using  the  Lagrangian  multiplier.  This  version  of  using  Lagrangian

multiplier  when  you  believe  the  model  is  perfect  this  called  strong  constraint

formulation, we visualize strong constraint formulation in trying to bring uniqueness

to  the  under  determined system.  If  the  model  on other  hand is  not  perfect  it  is

pointless to enforce it strictly why we know the model is not perfect, why would you

enforce something that you know you are not sure about.

So, in this case we still want to respect the model equation, but not strictly, but only

approximately this ability to require the model equation to be satisfied not perfectly,

but  very closely  is  the  concept  of  weak constraint  formulation  strong constraint

weak  constraint.  Strong  constraint  is  intimately  related  to,  strong  constraint

formulation  are  formulated  as  a  Lagrangian  multiplier  problem  weak  constraint

problem are formulated as penalty function methods which we have already seen in

the optimization module.

(Refer Slide Time: 20:05)



So, I am you going to quickly illustrate a version of the strong constraint formulation let

Z is equal to H of x and considering the under determined case, assume H is a full

rank, recall  there are infinitely many solutions,  we seek the unique solution that

minimizes the following cost functional.

So, model is the constraint, among all the solutions of the model I want to find that

solution that minimizes the cost function, the model has infinitely many solutions

among the infinitely many solutions I am seeking a solution that minimizes this cost

function. So, this cost functional generalization of the cost function that we utilize

under, I already in the analysis of under determined system. In the under determined

case what is it that we did? We would like to be a min find the x whose norm is

minimum, but in here I would like to be a able to find an x such that it minimizes j

of x which is general quadratic function. Strong constraint formulations for this a

strong constraint formulation is to build a Lagrangian, the Lagrangian is j of x plus

lambda transpose Z minus H of x.

(Refer Slide Time: 21:30)



I am now, completing the derivative I am sorry under the gradient of L with respect to x

and  lambda,  I  get  to  two  sets  of  equations,  I  get  two  sets,  if  equations  I

simultaneously solve these two systems I get the solution lambda s, s refers to strong

solution, x of s refers to strong solution. The strong solution both lambda and x of s

are  given  by  the  equation  12  which  can  be  easily  solved  by, which  can  easily

obtained by solving internal 11.

By setting b is equal to 0 c is equal to 0 and A is equal to I we get the well known

solution for the under determined case which we have already seen. So, you can see

this kind of generalization of what we are done in the under determined case.

(Refer Slide Time: 22:21)



Now, let us consider the weak constraint formulation. In this case I am going to build a

penalty function p of x that is equal to j of x plus alpha by 2 Z minus H of x transpose Z

minus H of x. The necessary condition for a minimum is given by the gradient of p of

alpha must be 0, the gradient of alpha for this is given by right hand side equate this to 0

and solving this you get the solution x 1, x is equal to x 1 alpha plus x 2 alpha, x 1 alpha

has taken this form x 2 alpha has taken this form. So, the solution has two components

both of which depends on alpha the sum of 17 and 18 is 16. So, 16 is the solution that

minimizes the penalty function.

Earlier we talked about the relation between the weak solution and a strong solution. I

know the form of weak solution, I know the form of the strong solution we also saw the

weak solution tends to the strong solution as the penalty parameter alpha infinity now I

am going to show that result in here.



(Refer Slide Time: 23:31)

To this  end we use the Sherman Morrison Woodbury formula,  if  I  use the Sherman

Morrison Woodbury  formula you can  see the  relation  on the left  hand side this

inverse  applying  the  Sherman  Morrison  Woodbury  formula  becomes  this,  this

inverse applying the Sherman Morrison Woodbury formula becomes this, we have

already talked about the Sherman Morrison Woodbury formula. We also have given

a proof of the Sherman Woodbury formula in the section of matrices.

So, multiplying both sides of 20 on the left by epsilon x H transpose and simplifying in

fact, I would like to refer the reader to details in chapter 17 of the book by Lewis

Lakshmivarahan Dhall, our text book. We obtain the matrix identity which is given

by this relation 21. I know there is lot of computational and checking is there, but I

am sure  I  am checking  is  a  homework  problem,  I  am hiding  on  the  all  major

concepts once you have the major concepts you can really follow these to be able to

verify by computing various things.

(Refer Slide Time: 24:49)



Now, by setting these we can readily see this formula is given by this we can then we can

see x 1 star is the limit of x 1 alpha which becomes this. So, look at this now when

alpha goes to infinite the right hand side does not have independence on alpha. So,

this is the limit of one of the components of the solution x 1 alpha in the limit.

(Refer Slide Time: 25:20)



Likewise you can compute the solution x 2 alpha and using this identity again this matrix

are identity if you have already described, using this matrix identity this becomes

this. As alpha turns to infinity this becomes this, this is independent of alpha in the

limit therefore, x 2 star is equal to limit of x 2 alpha which is given by that therefore,

x 1 star plus x 2 star is given by this equation. If you simplify that, that becomes the

strong solution X s in 12. So, we have demonstrated that the weak solution in the

limit as alpha tends to infinite becomes a strong solution.

So,  in  other  words  as  the  penalty  parameter  alpha  increases  with  that  bound  weak

solution converges to the strong solution. So, where do I use the penalty function

formulation? You believe in the model, but you also know the model is not perfect.

So, whenever you have to use the model is the constraint use as a weak constraint.

You know the model you assume the module is the perfect in that case you assume I

am sorry you use the model as the strong constraint, so which method do you use

that depends on how strongly you believe on the goodness to the model,  on the

goodness to the model. Therefore, we have now described how to take care of many

many very many special cases.

(Refer Slide Time: 26:50)



So, I would like to summarize observing the following. The linear static deterministic

inverse problem can be broadly divided into well posed and ill posed. Well posed

problems  are  very  straight  forward,  ill  posed  problems  in  principle  can  cause

headache. There are multiple ways of solving ill posed problem, one way would be

to use Tikhonov of regularization as we have talked about, the second way would be

to use the singular valued composition we have not done that we will wait until that

is done to revisit this issue.  We also then incorporated the notion of perfect and

imperfect  models.  So,  you can  now consider  quite  of  right  situation,  models  is

perfect, model is static, model is perfect imperfect, model is deterministic, model is

linear. So, you have linearity, perfectness or imperfectness, you have well posed or

ill posed, over determine or under determine. So, you can consider a quite a variety

of formulation of the even simple linear least square problems that brings about the

beauty that underly the notion of simple linear least square methods in the context of

linear inverse problems.

I would like to very strongly recommend that you all work out the exercise these are

simple extensions of the methods that we have solved. I am particularly referring to

example 9.3 in here I am considering a matrix whose columns are 1 1 1, 1 1 1 plus

epsilon. When epsilon is 0 the two columns are linearly depended, when epsilon is

not 0 of mathematically it is linearly independent therefore, the eigenvalues of H

transpose of H are functions of epsilon. So, what is that I would likely to do, H is

given by this epsilon greater than 0 epsilon small compute to the H transpose H,

compute the eigeenvalue of H transpose of H. Plot the variation of eigenvalue using

a MATLAB as epsilon varies from minus 1 to plus 1.

So, you can see what is the impact of the rank. So, when the epsilon is 0 the rank, this is

the rank deficient when epsilon is not, it is not, it is strictly rank 2. So, but when

epsilon is small even though mathematically it is rank 2, it can still cause problems

and how it creates the problems one can understand by computing the eigeenvalues.

Once you compute the eigenvalues you remember we can compute the condition

number, therefore, by computing the condition number for H transpose H we can

infer how ill posed or how well posed the problems are. So, that is the measured by

which we can  compute  the  degree  of  ill  posedness.  So,  this  problems 7.3 is  an

important, is an important exercise.
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There  are  few other  problems which  are  routine,  which  follow the  directions  of  the

development.

(Refer Slide Time: 30:22)



And this  modules  follows from chapter  5  and the following the report.  We recently

compute report  in 2014 on the convergence of the class of weak solution to the

strong solution of an equality constraint minimization problem, equality constraint

minimization problem I am sorry that is, this must be we must remove the point

there.  A direct proof using matrix identities is  a technical report  from School of

Computer Science, University of Oklahoma.

With this I think we have provided a broad over view of the richness of the linear least

square problems static version thereof.

Thank you.
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	So, you can see what is the impact of the rank. So, when the epsilon is 0 the rank, this is the rank deficient when epsilon is not, it is not, it is strictly rank 2. So, but when epsilon is small even though mathematically it is rank 2, it can still cause problems and how it creates the problems one can understand by computing the eigeenvalues. Once you compute the eigenvalues you remember we can compute the condition number, therefore, by computing the condition number for H transpose H we can infer how ill posed or how well posed the problems are. So, that is the measured by which we can compute the degree of ill posedness. So, this problems 7.3 is an important, is an important exercise.
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	There are few other problems which are routine, which follow the directions of the development.
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	And this modules follows from chapter 5 and the following the report. We recently compute report in 2014 on the convergence of the class of weak solution to the strong solution of an equality constraint minimization problem, equality constraint minimization problem I am sorry that is, this must be we must remove the point there. A direct proof using matrix identities is a technical report from School of Computer Science, University of Oklahoma.
	With this I think we have provided a broad over view of the richness of the linear least square problems static version thereof.
	Thank you.

