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Well we continue our discussion about the relations that we started yesterday, and let me 

remind in particular we discussed 2 special types of relations. Namely equivalence 

relations that 1 type and second was partial order, and let us discuss a few more things 

about the partial order. 

(Refer Slide Time: 00:32) 

 

Let say that x is a set and less than or equal to is partial order 1 x. So, this is partially 

order set by then let me emphasize once again that though, we have using this notation 

less than or equal to it does not mean it is the usual less than or equal to order among the 

numbers. It is any partial order this is just a notation and this is something which is fairly 

common in this study of order of relation. Usual partial order is denoted by this simple 

and the partial order about the numbers the usual less than or equals to order is once 

special case of this partial order. 

We shall also use the usual notations, which we use in case of the usual partial order that 

you know. For example, suppose we have 2 elements a b in x let us with a less than or 

equal to b we will also this is same we can also denote the this as by this b bigger than or 



equal to a. So, this will be just the thing, but reverse by one it basically means the same 

thing just a different notation. Similarly, a strictly less than b by this will be a less than or 

equal to b and a not equal to b a not equal to b. And similarly, and this will be we can let 

out this also by this also by this b bigger than a, if there is some m in x such that a is less 

than or equal to m for every a in A. 

And then this element m that is called upper bound upper bound will use standard 

perform u, b upper b remember. Of course, in general the set may be not bonded above 

in general the set may be not bounded above which is bounded should have upper bound. 

Also notice here m it is not said that m belongs to a that upper bound did not be an 

element of a it is an any element of x, upper bound did not be a.  

Second thing is that a upper bound did not be unique for example, suppose it takes 

element in x which is bigger than or equal to this m, then that will also satisfy this 

because of the transitive relation. Suppose let us say we have say m say n is less than or 

equal to n, then since a is less than or equal so any other n which is bigger than or equal 

to m will also be an upper bound. So, upper bound is not unique, so we will also discuss 

other similar concept what is called least upper bound, it is called l u b is the standard 

short form least upper bound means, what of course, the first level should be in upper 

bound because it should be smaller than any other upper bound right that the thing. So, 

least upper bound is so let me see at number. 

Suppose, let us say I will call that number p not number any element p in x is called this 

least upper bound let us say l u b of a, if two things first thing is that p is an upper bound. 

What this mean? It means a less than or equal to p for every small a in that is the first 

thing it satisfy this property. Second thing is the if you take any upper bound for 

example, an m if m is an upper bound of a then m then p is less than or equal to m, that is 

((Refer Time: 04:57)) second property is this if m is an upper bound of a, then p is less 

than or equal to m.  
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This least upper bound is also called as supremum just the same concept, but different let 

us say l u b and we shall be using the both terms quite frequently. Now, is it clear to you 

that in general an upper bound way will be not unique, but least upper bound will be 

unique always that clear for p and q are 2 least separate bounds then by this second 

property. Since, p is the least upper bound and q is the upper bound you must p less than 

or equal to q.  

Similarly, reverse the routes so q less than or equal to p and by the anti symmetry 

property p must be equal to q. So, even though upper bound may or may not be unique 

least upper bound be always be unique. Of course, remember that non of this exist what 

all that we are saying this is if least upper bound exist it must be unique. So, let just 

mention that least upper bound of the if exist is unique.  

In a similar way we can define what is meant by saying that is bounded below, what is 

meant by lower bound, what is meant by greatest lower bound. In the similar way we can 

show that in general lower bound may not be unique, but greatest lower bound will 

always be unique let us, since all those things are similar to whatever we have discussed 

in this case we shall not go into the detailed discussion around here. So, that means what 

is that I am talking about first a fall what is meant by bounded below, lower bound 

greatest lower bound greatest lower bound. And again just at this l u b will be the 



standard short form of least upper bound g l b is the standard short form of the greatest 

lower bound.  

And corresponding to this supermum greatest lower bound is also called as infimum, and 

in a similar way you can show that if infimum exist it must be unique. Now, let us also 

discuss one more concept is very similar to this upper bound etcetera, it is called 

maximum element its slightly different from upper bound, let me talk maximum element 

in x, let us say that m belonging to x is called maximal element. It means that is nothing 

bigger than this m in x, one other way of writing this x if a belongs to x and m less than 

or equal to a. That is if at all nothing is bigger than or equal to m then it must coincide 

with them, then a equal to m. 

Now, try to understand that there is a difference between maximal element and an upper 

bound, in a upper bound. For example, suppose n is an upper bound of x what will that 

mean it will mean that a is less than or equal to m for every a this is not what we are 

saying for maximal element, we are not saying something like that. We are not saying 

that a is less than or equal to m, for every m all that we are saying m is less than or equal 

to a then a must coincide with that that is that is nothing strictly bigger than m in x that 

all. That is called maximal element i think if we take examples it will be clear let me 

recall this example. 

(Refer Slide Time: 10:27) 

 



We are taken the example of this of natural numbers, and in this we define the order m 

let me use the same location again m less than, or equal to n. This means that not in the 

usual sense of the less than or equal to this m divides n. This means we had seen this is 

the partial order this is the partial order, now this time whatever you will do is that 

instead of taking the whole set n, I will take only let say this side of end. Suppose I take 

as x 1 2 let us say up to 10, and with this order with this special order, take first natural 

numbers consider the order is less than or equal to m divides n. Does this set have any 

any maximal elements? 10 is the maximal element is 10 an upper bound?  

Student: ((Refer Time: 11:40)) 

10 is upper bound of x think, think carefully, what is the definition of upper bound? For 

the upper what we require that every element here must less than or equal to 10. For 

example, suppose I take the element 3 is 3 true. 

Student: ((Refer Time: 12:00)) 

Is this true that means 10 is not an upper bound 10 is not an upper bound this clear, but 

10 is a maximal element. So, there is a difference between maximal element upper 

element and this happen, when it is a partial order because certain elements do not be 

comparable at all. For an upper bound we require it should be bigger than or equal to 

every element in set, that it must be comparable with every other element and bigger 

than or equal to, but for the maximal element we are not saying that, but is the then only 

the maximal element are there any maximal element, what about 9? 

Student: ((Refer Time: 12:41)) 

Are you saying that is this true? Are you saying this that is not true 10 is not bigger than 

right 10 is not bigger than 9 in this order so is that any element which is greater than 9 it 

in this set x. 

Student: ((Refer Time: 13:07)) 

So, that does method 9 is a maximal element 9 is a maximal element is that clear 9 is 

maximal element, what about 8? It is an maximal element right now do you understand 

the difference between the maximal element and the upper bound. Now, this should be 

very clear on the mind because this concept are important right, this is because this is not 



an total order in this x we have two elements, which will be not comparable to each other 

at all. And if that is the case if the elements are not comparable then there will no upper 

bound. 

Student: ((Refer Time: 13:53)) 

Yes we are resolvable in fact you can list all the elements we already see 8, 9, 10 all of 

them are maximal element you can verify the maximal elements you can verify the 6, 7 

this also the maximal elements, what about 5? 

Student: ((Refer Time: 14:12)) 

Let us take one more example of this type. 
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Let us start with set which contains 3 elements and will consider first this part set of this, 

how many elements this power elements will have? 

Student: ((Refer Time: 14:47)) 

So, what are those 8 elements there are eight elements we can list and then these 3 set a b 

b c a c and then the last set a b c, which have we are accounted for all. What I will do 

them instead of taking the hole set we already seen this is a partially ordered set, with 

step inclusion. That this is the partial order on these set now instead of this I will take 

this set x as I will remove this last set from here, now is that clear that let me first before 



going to let me just go back to that this. Does this set have a upper bound to this order 

and what is that? This is upper bound because this set is even any element it is less than 

or equal to this, that is an upper bound and what I planned is precisely remove the 

element. That is I will just remove this element from here it is this is not 2 to the power 

this is x with respect to the same order. 

Now, does this have an upper bound?  

Student: ((Refer Time: 16:20)) 

Which is an upper bound only on the set, I am not considering anything outside this right 

fine this hole a b c upper bound for this, but I am not considering let us say elements 

outside this. So, inside this elements there is no upper bound. Does it have a maximal 

element?  

Student: ((Refer Time: 17:00)) No.  

Let us look at this take at this set a, b is there any set in this which contain in this a, b 

other than this right no other set is bigger than this right, this is an maximal element 

right. And the same thing can be said about b c etcetera all these 3 are maximal elements 

what about this they are not maximal elements. So, is this clear to now the difference 

between upper bound and maximal element. See usually upper bound to the set a itself 

then it is called maximal element, right? If an upper bound lies inside the set itself then it 

is called maximal element of a, but there is a difference between maximal element, and 

there is a difference between maximal element and maximum element. It should be 

infinite this the first thing that should be very clear to you when in your mind. 

Then we will go in the since the discussion will be very parallel to what we have 

discussed about the maximal element, I shall not go into the details of that in a similar 

way you can define, what is meant by minimal element, what will be the minimal 

element will say that I will say instead of this m, let us say l is will be called minimal 

element if instead on this m. 
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Let us not equal to we will have a is not equal to m then that should imply l is equal to a 

then is there is anything less than given element, then that should element should co-

inside this that is a that is the definition of minimal element and minimal element is not 

same as lower bound it is not same as list element. And similarly, you can construct 

examples of that I shall not going to detail the discussion of that because that is very 

much similar to whatever we have discussed about the maximal element. Now, we 

discuss one very important question, when does a partially order set have a maximal 

element, and answer to that is given by a very well known principle of set theory it is 

called… 

Zorn's lemma and this is lemma, which will be used in many proofs of very well known 

theorems, but anyway before going to that let us first see what exactly this lemma says. 

This says when does a partial order said have a maximal element, so let us say that let x 

be a partially ordered set. So, if every change in x, if every change in x as an upper 

bound remember chain is totally ordered set, suppose you take a totally order sub set of 

x. So, suppose every sets totally ordered sub set as an upper bound, suppose you take 

every then x has a maximal element. 
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We shall not going to the proof of this ((Refer Time: 21:26)) the part that is because it is 

actually one of the axioms of set theory, we do not prove it. In my first lecture I told you 

about action of choice and action of choice, one version of that is that if the you take a 

family of non empty sets then the product is also non empty. Another of course, begin 

also restated it new by making use of the concept of choice function etcetera, it can be 

shown that the action of choice and Zorn's Lemma are equivalent.  

That means if you assure action of choice you can Zorn's Lemma and conversely if you 

assure Zorn's Lemma you can through action of choice, but we shall not discuss any of 

this proves that is because this is not the course on set theory, where those kind of things 

will take lot of time. We are just basically removing certain things in set theory we shall 

we shall require in the real analysis course, and let me again say that this Zorn's Lemma 

is used in many proves of the standard theorems not only in analysis, but in many other 

courses. 

For example, in linear algebra in order to prove that every vector space has a basis you 

have to make use of this Zorn's Lemma, whenever you learn that proof you will say that 

your required Zorn’s Lemma. Now, let go to the next term topic we will I will suspend 

the discussion about the partial order of for the time being. We now want to say 

something about the number of elements in a set, and how that is how one goes about it 

so again. 
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Suppose, let us say that A and B are two sets empty or non empty do not bother about it 

right now, then we define what is define by sail that A is numerically equivalent to B. 

And we shall use this notation for that notation, we shall use this notation A is 

numerically equivalent to B, if there exist a bisection between A and B that is this should 

exist a map from A to B which is 1 1 and 1 2.  

So, let us say that A is said to be numerically equivalent to B, this is the notation if there 

exists f from A to B, which either you can say 1 1 or 1 2 or a bisection. Basically this 

notation which says that A and B have the same number of elements, that is the meaning 

of saying that A is numerically equivalent to B. Now, let us take this set for natural 

numbers, let me also remind you we has we have define what is meant by a function. 
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A function in general a function is a rule, which takes suppose you are taking to sit 

function a rule which takes from A to B, A is called a domain and B is called the co-

domain. If this domain is the set of all natural numbers, then that function is called a 

sequence right. Sequence is nothing but a function whose domain is the set of all natural 

numbers, then you set B can be anything, it can be real numbers rational numbers 

complex numbers any other objects matrixes.  

If it is a matrixes to be sequence of matrixes if it is function it will be sequence of 

functions sequence of real numbers etcetera. This is concept of sequence which we shall 

discuss in more detail little later. For example, when you take a sequence of real numbers 

what is meant by a convergent sequence etcetera, but here all the time the a require you 

to know right now is that if you have a sequence… 
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Then you can arrange the elements of the sequence like this x 1 x 2 etcetera right, that is 

you can label the elements. 

(Refer Slide Time: 26:14) 

 

The sequences x 1 that is x 1 thing, but f of 1 x 2 is the thing, but f of 2 etcetera. Now, 

coming back to this numerical sequence. Suppose, this is the set N that is the set of all 

natural numbers, suppose we take only the first n natural numbers the we take the first n 

natural number, this will denote that say we will give some name for this suppose I will 

call it j is suffix n that is 1 2 etcetera up to n this is called segment of n. 



Before proceeding further let us make one very obvious observation obvious sense 

certain sense. Suppose, I take 2 such elements J m and J n, J m and J n when will this 

happen J m is numerical equivalent to n if and only m is equal to n. So, that is the first 

observation if and only m is equal to n, let me just write this as a theorem. Again I will 

not going to the discussion the proof of this proof is fairly easy. In fact if m is equal to n 

there is nothing to prove it is identity math, you can take J into J this identity map that 

will be 1 1 .  

But only thing is that if J m is cumulatively equal to J m then proving that m is equal to 

m that will require some work, but it is also not very difficult for another way of showing 

the same thing is if m is different from n, then there can be no bijection between say J m 

and J that is little easy to show. But that will also take some time, but I suggest that you 

try to do it on your own. If there is any difficulty then we shall discuss that in the class. 

Now, then let us go to next concept. 
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Suppose, we take as any set A as any set then A is said to be finite, if A is empty or A is 

numerically equivalent to one of this elements segment, if A is numerically equivalent to 

one of this segment, if A is equivalent to say n some. Now, for such finite sets suppose A 

is a finite set, will define what is meant by cardinality of A and instead of writing this 

full cardinality, we shall use this short notation cardinality of card A. This is this we shall 

define as this number n, if it is non empty if it is empty we will define it to 0. 



So, cardinality of A to be defined as 0, if A is the empty set is equal to n, if A is 

numerically equivalent to j and yes. 

Student: ((Refer Time: 30:26)) 

A is equal to empty set thank you, if A is equal to empty set and it is n if A is 

numerically equivalent to J. And can A be numerically given to different show segments 

is it possible that a is numerically product of J 4, J 7 no right. So, that means this come 

for n will be unique if once A is of finite in fact that is what is this observation, that is 

what is this observation J m is numerically equivalent that will happen only if and only 

m is equal to n.  

So, given a finite set it can be numerically equivalent to only one of this J n exactly one 

of this J n or else it should be empty or else, all right? And what we have called is 

cardinality of A that is rough is rough not roughly it basically missed the number of 

elements in the set cardinality of A is nothing but the number of elements in the set, what 

is definition? It is that number n such that A is such that there is 1, 1 correspondence 

between A and J. One thing follows from this and that is the following if A is finite set 

and suppose you take any proper sub set of A then there can be no bijection between 

those two sets. So, why this will happen? Because if A is a if you take any set any sub set 

A of B then B also will be numerically for one of these J m's.  

And then or one of this J m's and then again we use this then there is no bijection is m is 

different from n. So, we can say that finite set cannot be numerically equivalent to any 

proper sub set of itself all right. Of course, one can first show it here infinite follows 

from here if you take proper sub set of this it will be numerically connect to some J m, m 

where m is different from n. And hence there can be no bisection between those two sets, 

so let us just make this observation of finite set cannot be numerically equivalent to, a 

finite set cannot be numerically equivalent to its proper sub set. And once we defined 

what is meant by finite set, the definition of infinite set is clear right, whatever is not 

finite is infinite. So, will set A is of called the infinite set if it is not a finite set. 
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So, infinite this means not finite, what does it mean? First of all it means that it is not 

empty, so and it is not there is no 1 1 identity map between A and any of these segments, 

for no n A is numerically equivalent to J that is meaning of same it is not a finite set it is 

an infinite set. And when obvious example of an infinite set is this set of all natural 

numbers it is easy to show that this is not numerically equivalent to any of these because 

with the any sets segment, you will obviously find one element which is outside. 

You will see that this property is not true, for infinite sets in case of infinite sets you can 

easily find sub sets which are numerically equivalent to the given sets and one can very 

easily find such subject. But just for the sake of completeness we will just take one 

example like this let that let us say that take the set N 1, 2, 3 etcetera and will x yeah fine 

we will take another sets suppose x is 2 4 6 etcetera, etcetera. So, this is the proper sub 

set of x right sorry proper sub set of N, and what is a ((Refer Time: 35:50)) map between 

an index. So, we just define f from let us say N to x by f of N is equal to 2 for, then f is 1 

1 and 1 2. 

Now, the next obvious question should such a thing happen for every infinite set, here 

we some example N is a an infinite set. And N has a proper sub set which is numerically 

equivalent to N. Now, the obvious question is suppose you are not necessarily N, but any 

infinite set will it always contain a proper sub set, which is numerically equivalent to 



itself. The answer is yes, it is not obvious it will require some work. So, let us now 

proceed to do that work. 

And to do that will need one more definition and let one research, among the infinite sets 

we make some ((Refer Time: 37:03)) sub division, we say that say it is count ably 

infinite if it is numerically equivalent to N. So, we will say that this definition let us say 

A is said to be count ably infinite, if A is numerically equivalent to N. That means, there 

is a 1 1 and 1 2 map between A and the set of all natural numbers.  

For example, this set x 2 4 6 etcetera this is the count ably infinite set and we will also 

use another term what is for countable, countable means finite or countable infinite. In 

fact there is a reason for this word countable as the word suggests it means, that elements 

in the set can be counted, what is the meaning of countable? Finite means its 

cumulatively equal if it is empty set we can forget about if it is non empty, it is either 

numerically equal to one of these N or to the whole of N, if it is equal to one of these N 

I can write element it has N elements I can write those elements as a 1, a 2 etcetera. 

If it is numerically equivalent to N we can still write the elements as a 1 a 2 etcetera, but 

only thing is there will no last element. So, when the set is countable its elements can be 

arranged in certain order first, we can talk of what is first element, what is second 

element. And they can be counted in that order that is why it is called countable, so if a 

using language of a sequence if a set is countable you can give the elements of the set A 

as a sequence as a range of a sequence, if it is count ably infinite if it is finite then you 

can you can just write this elements as a 1, a 2, a n etcetera. Then before proceeding 

further let me also say something about this terminology. Unfortunately this terminology 

is not followed in all books certain author has used some other terms. 
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What we have called count ably infinite is also called denumerable, denumerable that is 

ruling rule in us the word is denumerable and what is worse is some books use countable 

for this denumerable, what is called what why do you, some books use countable for this 

and then what we have called countable they call at most countable. So, that there is 

something you should remember when you are looking at a book write in the beginning 

you see how the terms are defined, and then and then see subsequently, but we shall 

follow this notation for us countable denumerable is same as countable infinite. And 

countable means finite or countable finite. Now, let us go to what we were having in 

mind namely about showing that every infinite set as a proper sub set, which is 

numerically equivalent to each set, but even before going to that we need one more 

factor. 
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Let me write at the, it is the following every infinite set, has a count ably infinite sub set. 

See by the way before going to this, suppose I make the following statement that every 

count ably infinite set has a proper sub set which is numerically equivalent to it, is that 

clear to you right because if it is a contemporary sub set I can write the elements as a 1, a 

2 etcetera. Then take the subset this a 2, a 4 etcetera that will be and you can easily 

establish 1, 1 correspondence between this. Now, is this clear to everybody.  

Now, suppose I prove this theorem will it imply that every, every infinite set has a 

countable influent sub set and that countable influent sub set as I said which is 

numerically equivalent set. So, will it immediately mean that every infinite set has a 

proper sub set, for an example suppose let us say you start with the set A. 
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Suppose, this is our infinite set that you started with and suppose B is a count ably 

infinite sub set. Now, this B will have a proper sub set suppose I call that sub set as C. 

So, let us say as a proper sub set of B such that B is numerically equivalent to C right 

then from that can we say that immediately, can we say immediately A has a proper sub 

set which is numerically equivalent to A. 

Student: ((Refer Time: 43:26)) yes, yes. 
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Tell me how, yes right what you do is see there is map 1 1 with B and C, then for those 

elements which are outside B you just identity that is take a map see there is a map, let us 

say f from B to C this is one words, and word 2. Now, whatever we do is that I will 

consider a map… 

From let us say g from A to I will write this set later, the map is defined like this g of x is 

equal to f of x for x in B and equal to just x for x in A minus B, that is those elements 

which are outside B I will take g of x as simply x. And those element which are inside B 

I will take B of x is equal to x, is it obvious that this should 1 1 and on 2. Now what is 

the range of this map, see because the elements B goes to C right and the elements which 

are in A minus B that will go to A minus B. So, C union A minus B, right and is that a 

proper sub set of A yeah because we have moved the elements so this is not same as B 

right A band not yeah A, we have removed elements which are in B, but not in C. So, 

this is a proper sub set A and that is numerically equivalent to A. So, once we prove this 

theorem, let me write as a cardinality. 
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Every infinite set has a proper sub set that is numerically equivalent to itself. Of course, 

you have not yet proved the theorem, but I am sure that we have proved the theorem then 

this theorem will immediately follow from this theorem, this is the proof of that which I 

have discussed and what it means? Is that this is the fact which differentiates between 

finite and infinite sets. A finite set cannot have a proper sub set which is numerically 



equivalent to it and infinite set will always have a proper sub set which is numerically 

equivalent to itself.  

And that is why in some books, this is taken as a definition of an infinite set this is taken 

as a definition of an infinite set, and then you define a finite set as the one which is not 

infinite etcetera, that is another approach of dealing going for the whole things. Let us 

now coming to the proof of this, let us say that the same is let A be the given set, let A be 

the infinite set, we want to show that a contains the count ably infinite sub set. First of all 

can A be empty it cannot be empty right. So, since let A be infinite then A is not empty 

what is the meaning that A is not empty, that there exists at least one element. So, A then 

A is not empty, someone they call that a 1 belong to A. Now, consider A minus a 1 let us 

remove that element a 1 from the set A, can this set finite, why?  

Student: ((Refer Time: 48:09)) 

If it is finite it will be that there will exist some n since that A minus a 1 is numerically 

colon to J n right. That means there is 1 1 and identity map between A minus a 1 and this 

set 1 to N, then what you can do is that you can map this a 1 to n plus 1 then A will 

numerically equivalent to B segment J n plus 1 and that will make A to be finite right 

which is not the case. So, this is the infinite set if at all infinite set it has to be non empty. 

So, A minus a 1 this must be non empty, this must be non empty then what follows from 

this again, if it is a non empty there must be some element in that I will call that element 

a 2. So, then a 2 belongs to A minus a 1 then one has to be done after this is clear. Now, 

consider A minus a 1 a 2 a 1 and a 2 are different now because a 2 is not same as a 1 

right a 2 is taken from A minus a 1. So, it is different from a 1 A minus a 1 a 2 is also not 

finite by this same argument again. And then presenting in this way at the end stage are 

suppose, you follow this procedure for N steps, you will get the elements a 1 a 2 a n then 

consider a minus a 1 a 2 a n, that is also not empty. 

So, what it means is that you can find one more element there that element is a suppose 

you call that element a n plus 1. Remember a n plus 1 is different from all of this a 1 a 2 

a n, and this is un ending process you can continue in this way, continuing in this way 

what you will get? You will get a sequence. So, you can fill up the details will as 

simplessive proceeding in this way, we get a 1 a 2 etcetera a n. And all this elements are 



distinct such that a i not equal to a j for all i not equal to j. Now, what is the next thing to 

do you just collect all this element a 1 a 2 n that is a countable infinite sub set of a.  
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So, let B be equal to a 1 a 2 etcetera, etcetera then B is a countable infinite sub set of A 

and that completes the whole thing. We will stop with that we will consider some more 

property that is countable sets etcetera in the next class. 


