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Lecture - 21 

Completeness 
 

So, we were discussing the property of Completeness that metric space may or may not 

have. Let me recall that metrics paces said to be complete, if every Cauchy sequence in it 

converges to appoint in that metric space. We also seen some examples of complete 

metric spaces. Also, some examples of incomplete metric spaces. Now, coming to the 

examples of complete metric spaces. We have seen that discreet metric spaces is always 

complete whatever be the under lying set x. In the next set of examples that we have seen 

was that R and C. These are the complete metric spaces with the usual metric and next 

we are seen that these two. 
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These spaces R k, C k in fact a familiar spaces. These are all complete metric spaces in 

the next group of metric spaces, which we are discussed. Let us look at this sequence 

spaces this spaces l p were one less nor equal to p less nor equal to infinity its, so 

happens that all this spaces are also complete. Let us just look at this space l 1 and proof 

will be more always similar to the proof. In the case of l 1 in other spaces also, l 1 let us I 

call it is a spaces of all sequences x of l to R such sigma mod. Let us say x k going from 



one to infinity is finite that this is a convergence series. So, to show that this is complete 

will have to consider a Cauchy sequence x n in l 1 Cauchy sequence in l 1.  

So, if this is a Cauchy sequence what we can observe from here is that or something that 

we have already observe, that these implies that for each x n j this is a Cauchy sequence 

in R. If x n is a Cauchy sequence in l 1, if you take the z component that will form a 

sequence x n j, that is a Cauchy sequence in R. Since, we already seen that R is complete 

this converges. So, s converges to some x let us its some x j in R and this happens for 

each j this happens for each j. So, you get a sequence x going from n to R for each j you 

have some x j, what remains to prove this new sequence x is in l 1. This sequence x n 

converges to x in that l 1 metric induce by this l 1 R to do that. 
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Again, will we see that x in Cauchy this means that, suppose you are given some epsilon 

bigger than 0 then there exist n 0 in n. Such that if you take to induces n and m bigger 

nor equal to n 0. Then this means distance between x n and x m that is less then epsilon 

distance between x n and x m that is less then epsilon, but what is the distance between x 

n and x m? It is nothing but norm of x n minus x m suffix 1 norm of x n minus x m suffix 

one. What is norm of x n minus x m? That is sigma mod x n j minus x m j going from 

one to incite, this is this is nothing but what we had call set d 1 between x n and x m. 

This must be less than epsilon this must be less than epsilon. 



Now, the argument usually given after this is that keep some 1 n fixed choose someone n 

bigger nor equal to n 0 keep it fixed. Let m go to infinity in this in equality. So, doing 

that what you will get is that this x m j will go to x j, see this these in equals to true for 

every m. So, suppose you keep n fixed this in equalities to true for every m. Hence, it is 

true in the limit also, that will imply that x m j goes to x j.  

So, that will imply the distance between x n and x is less than epsilon. In other words it 

will imply that distance sigma mod x n j minus x j that is less than epsilon. So, what it 

will implies that, so we can say that letting m tend to infinity will get norm of this x n 

minus x suffix 1. That is less than epsilon that is keeping n fixed that is choose some n 

bigger nor equal to n 0. That is choose let us say choose some n bigger nor equal to n 0 

and then let m go to infinity. 

Of course, this argument as be to made precise, but it is I think we are used to that kind 

of agreements by now. So, using that will get that norm of x n minus x is suffix 1 is less 

than epsilon, which means. Suppose, we write in the full format will mean that sigma 

mod x n j minus x j that is less than epsilon? So, in particular it will mean that this 

sequence x n minus x that sequence is in l one. 

That is if it is a sequence x n j minus x j that is in l 1, but x n is already in l 1. So, that 

will give that x is in l 1 that will give that x is in l 1. So, this will say for example, the x 

is nothing but we can say x n minus x n minus x and x n is in l 1 this is also in l 1. So, 

this let us some is also in l 1, so this is also in l 1. Again, this same inequality will show 

that x n convergys to x in inferior. Here, we have shown that x n there exist n 0. If you 

take any n bigger nor equal to n 0 norm of x n minus x suffix 1 is less than epsilon. So, 

that is the that shows that l 1 is complete l and with slight modification you can show 

that all the other l p's are also complete. Slight modification of this proof will work for a 

any other value of l p’s. 

Now, among the sequence spaces the space, which is not complete is this space C naught 

naught. Let us recall what is C naught naught, C naught naught was this space of 

sequences were all, but finitely many of x n's and zero. That is for each sequence x every 

sequence x in becomes constant sequence of zero after some time those sequence, which 

are eventually 0. 



(Refer Slide Time: 07:40) 

 

By the way l p as well as this c, c naught these are complete, all of these l p's as well as 

the sequence space. That is the set of all convergent sequences similarly, c naught the 

space of all sequences which come as to 0. These are complete metric spaces and proves 

will be both are less similar to what we have done now so among the sequence spaces 

this C naught naught is the example of incomplete metric space. 
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Of course, since C naught naught can be viewed as a sub space of any these, we should 

decide what metric we are giving on C naught naught. Suppose, we are regards C naught 



naught as a sub space of l infinity, suppose we regards C naught naught that means we 

are giving this supreme. Of course, we can as also regard a sub space of l 1 also right 

now to show that a space is not complete. There is only one way you have to exhibit 

Cauchy sequence given example of Cauchy sequence, which does not converse. 

Because, till now we have only done that subsequently. If we do when we do some 

properties of complete metric spaces, then we can another way of showing that is spaces 

not complete. Will be to show that metric space does not have that property, but now we 

can use only a definition.  

Let us take some example suppose we take x n as this sequence, say 1, 1 by 2 etcetera 1 

by n and then 0, 0, 0 that is first n and three z are 1, 1 by 3 z to 1 by n at subsequently the 

sequence become 0. So, this becomes C naught naught were this becomes c naught 

naught. Now, first of all we have to see that this is a Cauchy sequence. Now, you see that 

this is a Cauchy sequence again as I say since we are regarding it is infinity. 
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We have to look at distance between x n and x m and show that for large values of n and 

m. That distance is small distance between x n, x n is nothing but the this we are taken 

this x suffix infinity in norm. Let us take some let us say m bigger than n. So, x n is 1, 1 

by 2, 1 by n up to 0 and x n will be 1, 1 by 2. Let us say 1 by m up to 0, 0, 0. So, what 

will be x n minus x m? That is tequilas start from the first n and it is will be zero. When 1 



by m plus 1 sorry 1 by n plus 1, 1 by n plus 2. It will go up to 1 by m and then again 0, 0, 

0. 

So, what will be the norm of that? Remember, norm is norm of any x is maximum of 

mod x. Here 1 upon n plus this will be 1 by n plus 1. Now, can let be made arbitrary 

small, suppose given any epsilon can be always use some n 0, such whenever m and n is 

bigger than that n 0. This number becomes less than epsilon, that is true. Because, 1 by n 

plus 1 tends to 0. So, this something we can always do, so that is clear. Then this x n is a 

Cauchy sequence is a Cauchy sequence in c naught naught, but the question is does it 

converge?  

Of course, it converges in an infinity is complete, that is what we have seen. It converges 

an infinity it convergys in an infinity to which sequence? It will be the sequence 1, 1 by 2 

1 by n for all. That sequence obviously does not belongs to c naught naught, that is clear. 

So, in let us let us just xn converges to x, what is x? x is the sequence one 1 by 2 etcetera 

1 by n plus 1 in an infinity. 

So, this element x that is not in c naught naught. Because, in C naught naught what we 

require that after some space all entries should be 0. That is not happening here, now can 

it converges to some element in C naught naught also obviously not. Because, that will 

be in that it converges to two different elements in an infinity. So, we have a shown 

given example of Cauchy sequence, which does not converges. So, that proves that this 

space C naught naught is incomplete. Now, let us just look the last clue namely functions 

spaces. Here I will just make a small comment here that is suppose, we are look that the 

space let us say C is 0 1. 

Of course, we can take any interval a to b, remember this is a space of continuous real 

valued functions on the interval 0 to 1. On this spaces we had consider two different 

metric, one metric was this given by norm suffix infinity. So, distance between two 

functions f and g was supermom of mod f x minus g x for x in 0, 2, 1. Now, with respect 

to that this is complete. So, C 0 1 with respect to this norm is complete, but this proof we 

shall do little later. Because, the convergence in this particular norm or this particular 

metric is what is usually called uniform convergence. We shall discuss the properties of 

uniform convergence of sequences etcetera little later.  
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So, that time we shall prove that this spaces complete, we also discuss one more norm on 

this. That is C 0 to 1 norm suffix 1, what was this norm? Let us I call that ah norm suffix 

1 of f this was defined as interregnal 0 to 1 mod f X d x. This is not complete in this 

norm it is not complete. So, it can happen that is saying set with respect to one metric 

can be a complete metric space and with respect to some other metric, it is not a 

complete metric space. 

Now, how does when show that this is not complete, again will have to give a sequence, 

which Cauchy, but not convergent. I will not discuss those business, here I will give that 

to you as a problem. Now, let us go the next task namely we shall discuss some 

properties of complete metric spaces. The first question is given a complete metric space 

we have seen that given any metric space every subset can also be regarded as a metric 

space. 
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So, suppose X d is complete metric space complete metric space. Let us say Y is a subset 

of x y is a non empty set that is a subset of x. Then we know that y also can be regarded 

as a metric space on does a metric induce by the same metric d. Obvious question is 

when is y itself a complete metric spaces as a subs, as a if y is a subset of x where and if 

x is complete. When is y complete and the answer to that is very simple y is complete if 

and only y is closed. If y is a closed subset of x then its complete metric space. On other 

hand if it is complete metric space it is a closed subset of x. So, that is the first theorem 

that we shall prove y is complete if an only y is closed. Let us first assume that y is close 

y is complete. 

So, let us look at the proof in this proof is very simple. Now, how does one show that 

any set is closed. Take a point in the question, so let x belong to y closer and we should 

we should show that x belongs to y. Now, we have already discuss one characterization 

of point in the closer in terms of sequences. Obviously, since when whenever we talk of 

completeness we should look at sequences. So, what do we know? If x is in y closer what 

should happen? There is sequence in y there is sequence in y, which converges to x. So, 

this implies that then there exist a sequence of elements in y n. Suppose, I call that 

sequence y n, say y n converges to x. Now, each y n is in y. 

Remember, each y n is in that that is what the meaning of this elements in y x means y n 

belongs to I, for all n. Now, y n is a convergence sequence does it mean, there is a 



Cauchy sequence? It means there is a Cauchy sequence. Does it also mean that it is 

Cauchy sequence in y? So, let us just say, so y n is a Cauchy sequence in X, hence in y, 

because the metric is same. Now, we have assume that y is complete then its starting y 

and this y n is Cauchy sequence. So, y n must commons to some point in y. 
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So, there will bounties, since y is complete y n converges to Y for some y in y or some 

small y in Y. Now, what is the obvious last part of the argument for limit of a? 

Convergence sequence unique. So, y n is a sequence in X also and X and Y both are 

points in X. So, if y converges to Y and converges to X, you must have X is equal to Y. 

so, since limit of a sequence unique we have. Therefore, we have X is equal to Y, which 

belongs to Y. That is what we wanted to show that x we started with X in Y closer. We 

show that X belongs Y. So, this shows that Y is closed. Now, let us look at this way 

assume that Y is closed. 

We want to with y is complete, any way how does one start showing that any spaces 

complete? Take a Cauchy sequences in that sequence an issue of show it converges. So, 

let y n b Cauchy sequence in Y and what is to be done is clear? It is a Cauchy sequence 

in Y. Hence, it is also Cauchy sequence in X, because Y is a subset of X. So, hence y n is 

a Cauchy sequence in X, hence X is complete y n converges to some point in X. So, 

since X is complete. 
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Since, X is complete there exist some Y in X, such that y n converges to Y in X. What is 

the next part of the argument? y n converges to Y and y n is the sequence of elements in 

Y. So, its limit must be in y closer, so this implies y belongs to y closer, but we assume 

that Y is closed. So, y closer is same as Y. 
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Just recall that we have started with a Cauchy sequence y n in Y. We have shown that 

that converges to a point in y that converge in a, so for example, in the real line any 

closed subset of a real line, will be a complete metric space in particular any closed 



interval. A complete metric space cantor set is a complete metric space. So, take any 

close set in a any complete metric space that self will be a complete metric space. Then 

the next important theorem. 
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In the complete metric space is what is called Cantor's intersection theorem. Cantor's 

intersection theorem are in some books it is also called intersection principle Cantor's 

intersection theorem. Now, to understand what is inwardness intersection theorem.  
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Let me just invest one more term here what is called a decreasing family or decreasing 

sequence of sets decreasing family of sets, it is clear? What is meant by this decreasing 

family? That is suppose you have family of sub sets of x, let us these are A n, this is 

called decreasing family. If A 1 contains A 2, A 2 contains A 3 etcetera. In general and 

contains A n plus 1 that is, if A 1 contains A 2, A 2 contains A 3 etcetera. 

Now, what does Cantor's intersection theorem say that, suppose you have a complete 

metric space. If you consider a decreasing family or decreasing sequence of closed sets. 

You assume one more condition that the diameter of F n goes to 0 then intersection of F 

n contains exactly one point. 
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That is what Cantor's intersection theorem says. Let us first look at the statement. So, let 

X d be a complete metric space. Let F n be a decreasing family or decreasing sequence 

of closed sets. Such that diameter of F n stands to 0 as n tends to infinity then 

intersection F n going from 1 to infinity is a single term set intersection. F n is a single 

term set it contains exactly one point is a single term set. Now, let us look at what are the 

hypnosis there are three thing, assume that each F n is closed. That is important each F n 

is closed, what is the second hypnosis? That is a decreasing sequence that is F 1 contains 

F 2 F 2 contains F 3 etcetera. The third hypnosis is this diameter of F n stands to 0 as n 

tends to infinity.  



So, under these three conditions we have to prove that intersection is consist of c exactly 

one point it consists showing that. It is consist of exactly one point, means what? First of 

all it contains some for it is non empty. Secondly, it cannot contain more than one point. 

The second thing is little easy that we shall prove first that it cannot contain more than 

one point. That follows from this last assumption here. 

So, let some let us give some empty this intersection. So, let us call it f let f be equal to 

intersection of x n going. Of course, one more thing it is a decreasing sequence of non 

empty close set that is also important. Because, it is clear, if one of this F n is empty then 

of always intersection is going to be empty. So, each F n should also be non empty, each 

F n should be closed it should be a decreasing sequence and diameter should go to 0. 

These are all the requirements, what can you say about diameter of f, but how is diameter 

of f and diameter of F n related? Can we at least say this f is content in F n, f content in F 

n. So, what does it say about the diameters A? So, diameter of f must be less nor equal to 

diameter of F n. 

So, diameter of f is less nor equal to diameter of F n. We should happen for all n. 

Diameter of f is less nor equal to diameter of F n for all n. We know that this goes to 0 as 

n tends to unity. So, what does it say about diameter of f? So, diameter of f must be zero 

If diameter of f 0 then obviously f cannot contain more than one point. So, we have 

proved this second part that is one part that is required we want shall it is. It contains 

exactly one point and this type it is proved that it is certainly cannot contain more than 

one point. Let us now show that it contains at least one point. Now, to show that it 

contains at least one point. Let us first use the five that each F n is non empty. Since, 

each F n is non empty we can consider some point belonging to F n. 
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So, we can say that let x n belong to F n. Let x n belong to F n then our idea is to show 

that. So, this automatically forms a sequence if you choose one x n from F n, for each f 

for each n. Then it is a sequence we will show that this is a Cauchy sequence. Then will 

use the assumption of the completeness. Using the completeness assumption it will 

possible to show that, this sequence converges. They will say show that that limit should 

belong to f that is the idea. Remember, here you have f is a close set, is that clear? It’s 

intersection of a say intersection of family of closed sets. So, f is closed, so we can if you 

want to you call here f is closed. 

Now, to show that this is Cauchy sequence we use the fact. First of all there are two 

things used here first thing is that F n is decreasing sequence. Second thing is diameter of 

F n goes to 0. Now, if x n belongs to F n can you also then see, let us look at x n and x n 

plus 1. So, suppose you take x n plus one that belongs to F n plus 1. That belongs to F n 

plus 1, but we know that it is a decreasing family. So, F n plus 1 content in F n, so x n 

plus 1 belongs to F n also. Similarly, x n plus 2 x all them belong to f, so we can say that 

this set x n plus 1 x n plus 2 etcetera. All of them are content in F n. Now, if I take let us 

say any m bigger than n if I take any, so what it means is that for if you take say m 

bigger than n. Then x m belongs to F n that is what is says, right? 

So, suppose now if x m and x n is any way belongs to F n if you take m belong bigger 

than n then, in fact we can say both that is x m and x n belongs to F n. Hence, what must 



happen is, it if you look at a distance between x m and x n, then this must be less nor 

equal to diameter of F n. This must be less nor diameter of F n and diameter if F n tends 

to 0. Does it mean it x n is a Cauchy sequence? Because, since this tends to 0 given any 

epsilon. Because, always find some n 0 such that diameter of F n is less than epsilon for 

n bigger nor equal to n 0. Then the for any m and n bigger nor equal to that n 0 distance 

between x m and x n will be less than that epsilon.  

So, this shows that x n is a Cauchy sequence. Now, we use this first type of this that is 

how we started. It is x is a complete metric space and this Cauchy sequence in that. So, 

this must converge this must converge to some point in x. Since, x is complete x n 

converges to x for some x in x. Now, we want to show that these x belongs to the 

intersection is x belongs to the intersection. Now, how does want to belong to the 

intersection?  

Then there is only one way we have use that it belongs to each of this happens. Now, x is 

a limit of the sequence x n is a limit of the sequence x n is also limit of this sequence x n 

plus 1, x n plus 2 etcetera. Suppose, you take any fixed value of n and take the sequence 

x n plus 1 x, then also subsequent to the original sequence. So, that is also that should 

they should also converges to x, but all these points are in F n. We assume that F n is a 

closed set. So, each of this, so x must belongs to f x, because x is a limit of a sequence of 

points in F n. So, it must belongs to F n. So, x belongs to F n. 
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We can say that since this sequence x n plus 1 x 1 plus 2 etcetera. This sequence 

converges to x and this is this sequence F n contains this and F n is closed x belongs to F 

n x belongs to F n for all. That is same saying that x belongs to the intersection. So, have 

you proved everything? We already proved it cannot contain more than one point. Now, 

we have shown there it contains one point. So, intersection contains exactly one point. 

So, what are the hypnosis? We are used we use practically origin in that it is a complete 

metric space, it is each F n is non empty. It is a decreasing family and diameter goes to 0. 

Now, at this point let me ah recall with I do not remember, whether I made this point 

earlier or not.  

So, paragraph in the introduction of Simian’s book, where he says that any proof will any 

theorem will contain some hypnosis and some conclusion and a proof may contain 

several steps. Suppose, you understand how n plus 1 step follows from the n steps for 

each n. That does not really mean that you have understood proof, you should understand 

proof as whole, as an idea. What is what, are the main ideas involved in the proof. What 

is the what is the way of really deciding, whether you understood proof or not.  

One way is you look at various hypnosis, all the theorem here we have seen. So, many 

hypnosis and then ask yourself, whether any of this hypnosis can be draw at that means 

what? Suppose, to begin with suppose assume that x may not be x is not complete, but, 

all other happen is a true. Then does the conclusion wholes still then you can say that just 

drop the passionate F n is a family of closed sets instead of close set. Suppose, you take 

the sets, which they are not necessarily closed will those conclusions still hold. So, do it 

for each of the hypnosis and see whether the theorem is still true if it is, if theorem is 

false.  

Then for each such case you will should get one example for dropping one hypnosis. 

You should get one example to show that the conclusion does not whole. If you can do it 

for all those hypnosis, then only you can be sure that you have understood proof 

completely. So, do it for this theorem, because this is the first major theorem that we 

have we have discussed in this course. So, do it for this particular theorem. Now, let us 

go to one more very famous theorem about the complete metric space. It is called Baire 

category. Now, to understands what is meant by Baire category theorem? Again, it some 

terminology we have already defined. What is meant by a dense subset for this? What 

the meaning of dense subset? Let us again recall. 



So, suppose X d is metric space and let us say A is a subset of x. Recall, that we are said 

that a is dense in x a is dense in x. If a closer is equal to x a closer is now we are going to 

define something that is exactly opposite to being dense. We want to say and because 

seen that what is implied by saying that A is dense in A among this. So, many equivalent 

conditions that we have seen that saying that A is dense means, if you take any open set 

in x, it as an non empty intersection with A. That is meaning of set mean that follows if 

A is dense in X, what is the exactly opposite concept of that? It means that if you look at 

see A closer is x exactly opposite. That means A closer does not have any interior point.  

So, such a set is called nowhere dense. So, let us see that definition first A is said to be 

nowhere dense in x. If look A closer and look at its interior that is empty. Let us again 

see some examples before proceeding further with this. Suppose, X is a discrete metric 

space, then we if you take any subset it is going to be closed. Suppose, let us take an non 

empty subset it will be closed. Hence, it closer will be that same subset also every subset 

is open. So, it is interior will again with the same subset obviously it will not be a non 

empty. So, it will not be empty, because we use to started with a non empty subset. So, in 

discreet metric space non empty subset will be nowhere dense, non empty subset will 

satisfies this property. Now, let us look at the real line in real line we know. For example, 

that set of all rational numbers is dense. So, Q closer is R. So, Q closer interior will also 

be R. So, let us just see Q closer is R. 
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So, if I look at Q closer and it is interior that will be again R. So, Q does not satisfy this 

property though Q interior is empty, remember this fine q interior is empty. In fact if 

think you have been using this notation for interior of Q. So, let me do it here also that is 

interior of A closer. I think I have also mention that this is also fairly common notation 

used for the interior. Now, it is implore to realize that if a interior is empty that does not 

mean A is nowhere dense. What must happen is that interior of it is closer must be 

empty. Suppose, we take let us say n, suppose we take n what is a closer of n, n is closer 

is n itself and what is the interior of n closer. 
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That is same as interior of n and what is that what is interior of n that is an empty set. So, 

n is an example of a nowhere dense set and once you understand this, now you can 

constructs some any other example. For example, z is also an example of a no where 

dense set. So, that is about a about nowhere dense sets dense let us look at the next 

concept it would depends on this. We say that A set is a first category we said that A set 

is a first category. If it can be expressed as a countable union of nowhere dense sets, say 

that suppose I call the set B suppose let us B is content in X B is set to be of first 

category. 

If B can be expressed as a countable union countable union of nowhere dense sets. B can 

be express a countable union of nowhere dense sets. Again, what is a obvious example of 

set of first category it in R take this set. Suppose, you take any single tends n can be 



express countable union of single term x. That is n is you can say n is union single term 

n. If you take each single term set it is closer is that same single term set and it is interior 

is empty. So, each single term in R is nowhere dense. So, n is an example of a set first 

category not only n, but you can say that, since each single term set is count to be 

nowhere dense. Every countable subset of R is an example of set of first category. 

So, in pitiable of an example q is also an example of this set of first category it is not an 

nowhere dense set, but it can be expressed as a countable union of nowhere dense sets. If 

A set is not a first category it is called second category. Let us say, so if this not true it is 

B is said to be a first category. If B can expressed as countable union of nowhere dense. 

It is otherwise we said B is second category otherwise B said to be of second category.  

What does it mean? It means that it cannot be expressed as a countable union of nowhere 

dense sets. Another way of saying the same thing is that, if at all you write B as 

countable union of sets. Then at least one all the sets occurring in that countable union 

should be not nowhere dense, should be that is a meaning of that second category. Now, 

coming back to Baire category theorem, Baire category theorem is statement is very 

simple. It is simply says that every complete metric space is a second category. Now, let 

me just write that theorem here. 
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Every complete metric space is of second category. So, what does it mean? You cannot 

express a complete metric space as a countable union of nowhere dense sets. That is the 



statement of Baire category theorem it is a very useful theorem. It is used in the proofs of 

many important theorems, but the only problem is that all those important theorems, 

whose proofs use Baire category theorem.  

You will not learn in the course of real analysis, but most of those theorems you will 

learn in functional analysis, that is. There are many important theorems in functional 

analysis known as close graph theorem and open mapping theorem and also, called 

uniform boundedness principle. They are fairly important theorems from the points of 

few of applications and proofs of all those theorems use this Baire category theorem. So, 

we shall consider the proof of this Baire category theorem in the next class. 


