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Conditional Convergence 
 

Now, there are a few things that are remaining in the discussion of the series and those 

we shall complete today. We discussed for a long time the series of non negative terms. 

Only in the last class we discussed the series of the terms which may have positive and 

negative signs and we discussed what is known as a bells test. 
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A series which is convergent, but which is not absolutely convergent it has a special 

name it is called conditionally convergent. That is to give of more formal definition, 

suppose if this is a series sigma a n, n going from 1 to infinity. This is said to be 

conditionally convergent or we say it converges conditionally. If the series converges 

that is if sigma a n converges, but it is not absolutely convergent. That means and a 

sigma mod a n diverges. We have seen an example of a series of this kind. 

For example, we saw this series yesterday 1 minus half plus 1 by 3 minus 1 by 4 etcetera. 

We have seen that this series converges, but it is not an absolutely convergent series. So, 

this is an example of a conditionally convergent series. Now, in case of this conditional 



and absolute convergence, there appears one very important question and that is what we 

shall also discuss today. 
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That is what is called rearrangement. Now, to just motivate this after all series is 

something like an infinite sum. Now, if we take a let us say a finite sum, suppose we take 

say something like a 1 plus, a 2 plus, a 3 plus, a 4 plus, a 5 etcetera. Since the addition is 

commutative as well as associative it does not matter. 

In what way I take the sum, whether I add a 1 to a 2, then add to a 3 or I take a 1, a 5 

here or a 3. There it does not matter whichever way you write this the sum is going to be 

the same right, but that may or may not happen in case of the infinite series. So, now 

here actually what is meant by rearrangement, it is that you write these terms of the 

series in some different order that is called a rearrangement. To make it more precise, 

suppose we take a map tau from n to n, suppose it is a bisection. 

It is 1 1 on to as you know such maps are also called permutation. If it is a finite set, you 

call 1 1 on to map is permutation. So, if you consider a series sigma a suffix tau n that is, 

suppose your given series is sigma a n instead of that you consider sigma a suffix tau n. 

Then this is called rearrangement of sigma a n. That means basically what the term says 

that rearrangement, that you just rearrange the terms of the series write the terms in some 

different order. Now, what is the obvious question here, if the original series converges 



does this rearrangement also converge and does it converge to the same sum if it 

converges does it converge to the same sum 

Now, it so turns out that that is true if the series is absolutely convergent and the things 

are very bad if the series is conditionally convergent. We can just see an example here, 

let us take this same example we have seen that this series is 1 minus etcetera. We have 

seen that this is a convergent series suppose its sum is s suppose its sum is s. Now, let us 

just rewrite the series in some different order what I will do now is that, I will write the 

series as follows. So, 1 minus half minus 1 by 4, that instead of taking 1 by 3 I take the 

next term as 1 by 4 then I will take plus 1 by 3, then I will take the next 2 immediate 

term 1 minus 6 minus what is a. 

So, 1 minus 4 the next negative term will be minus 1 by 8 right, then take the next 

positive term that is 1 by 5 and then minus 1 by 10, minus 1 by 12 etcetera. I suppose 

you are not the original series was there was 1 positive term 1 negative term etcetera, 

followed by that. Now, what I am doing is that I am taking that same series I am taking 

the first positive term, then the next tqo negative terms then the next positive term. 

Again followed by next two negative terms and do like that all right. So, it is a, this is a 

rearrangement of this same series. So, all right now let us see a few things here for 

example, this 1 minus half is half 1 minus half is half. So, this is 1 by 2 minus, 1 by 4 

plus, again this 1 by 3 minus 1 by 6. You can say that is same as 1 by 6 that is same as. 

So, 1 minus. So, the next will be 1 by 6 minus 1 by 8.  

Then similarly, you can say that 1 by 5 minus 1 by 10 again 1 by ten. So, that is. So, the 

next 2 terms will be 1 by 10 minus 1 by 12 etcetera this will be the series after 

simplification right. You can see that I can this half is a common factor from all of them 

ok. So, suppose we take that common factor out what remains half into 1 minus this will 

be 1 by 2, that will be plus 1 by 3 then minus 1 by 4 etcetera plus 1 by 5, minus 1 by 6 

etcetera all right. Do you see that it is the same series here ok. 
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So, now what is its sum it is half s it 1 by 2 s right. So, it is the rearrangement of the 

same series, but it converges to a different number right, it converges to different 

number. So, this idea of this example is to show that, if the conditional convergence 

behaves very badly with respect to rearrangements.  

In fact what is known is something much worse not only that rearrangements will 

converge different number, in fact given any real number we can find some 

rearrangement of the series, such that that rearrangement converges to that given real 

number. Not only that we can also find a rearrangement. So, that that real, the new series 

with that that new rearranges that new rearrangement diverges. On the other hand, if the 

series converges absolutely then all its rearrangements converge ok. 

All those rearrangements converge to the same sum. So, let us just write this as a 

theorem. So, if sigma a n converges absolutely, then all it rearrangements converge and 

converge through the same sum. On the other hand, if sigma a n converges conditionally 

then given any real number, we can find a rearrangement such that that rearrangement 

converge to that re real number. So, what I was saying that for every s in R there exist a 

rearrangement sigma, I will call it rearrangement sigma a suffix tau n converging to s.  
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Also we can find a rearrangement. So, that that rearrangement diverges. So, we can say 

that also there exist rearrangement sigma a tau n that diverges. So, that is the importance 

of absolute convergence. If you know that a series is absolutely convergent or the series 

is of non- negative terms, remember this if the series is of non- negative terms, there is 

no difference between convergence and absolute convergence.  

So, in that case you can rearrange the terms of the series in any manner you like and that 

will not change the convergence or divergence or it will not also change the sum. 

Whereas in case of conditional convergence things are quite bad all right. Now, there are 

a few elementary properties of the series which perhaps we should not discuss 

immediately after discussing the series and those are as follows.  

Suppose we take two series sigma a n, n going from 1 to infinity and let us say sigma b 

n, n going from 1 to infinity. Suppose both of them converge then we can say that if you 

take the series sigma a n plus b n that should also converge. It is sum should be same as 

the sum of sigma a n and sigma b n. So, let us let us just see that, if sigma a n and sigma 

b n converge then, sigma a n plus b n also converges and sigma a n plus b n n going from 

1 to infinity, this is same as sigma a n plus sigma b n equal to. By the way, you may 

wonder we are not going to discuss the proof of this theorem here because it is proof is 

somewhat lengthy.  
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Those a few who are interested in proof you can see the proof in Roudin's book. This 

theorem is given in Ruded coming back to this. So, what it says is that if the two series 

converge their sum also converge. Similarly, if you multiply the series by some real 

number lambda then the new series will also converge. That is also we can say that also 

sigma lambda a n this is also convergent series and it sum will be same as lambda times 

sigma a n n going from 1 to infinity all right.  

This will follow simply by taking the partial sums. Suppose s n is a partials of the series, 

suppose s n is a 1 plus a 2 plus a n and t n is say b 1 plus b 2 plus b n, then saying that 

sigma a n converges is same as saying that s n converges, s n converges to s and t n 

converges let us say t. Then use the corresponding theorem about the sequences then s n 

plus t n converges to s plus t.  

Similarly, lambda s n converges to lambda times s that is all in there is a proof. I said 

already that, whatever we want to prove say or prove about the series, everything can be 

done using the sequence of partial sums. Using the corresponding theorem about a 

sequences, but what you will also notice further is that, we cannot give a similar 

characterization if we take the product. For example, if we take this series.  
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Let me again recall, that is suppose we take this s n as the sum sigma. Let us say sigma a 

j, j going from 1 to n and say t n as sigma b j, j going from 1 to n. Then partial sum of the 

series sigma a j a n plus b n that is same as s n plus t n that is fine, but suppose I take 

these series, sigma a n b n, n going from 1 to infinity. Then the partial sum of this will be 

a 1 b 1 plus a 2 b 2 plus a n b n and that is not the product of s n and t n right that is not 

the product of s n and t n. So, we cannot say that if s n converges and t n converges, this 

series also converges. 

So, in general we cannot say that if the two series converges that is, if the sigma a n and 

sigma b n, if both of them converge we cannot infer from that that sigma a n b n is also a 

convergent series. So, to consider the products there is totally different notion, what is 

called cauchy products. Cauchy product is something like this for example, the first term 

suppose I denote the term, say product as sigma c n I denote that terms that are wrote as 

sigma c n. I think going from 1 to infinity, then this first term let, I think for this for 

considering this, it is convenient to start with 0 to infinity, take both the series, starting 

from 0 to infinity. 

That is sigma a n also going from 0 to infinity and sigma b n also going from 3 to infinity 

just a minor convenience here. So, sigma c n will also I will take from o to infinity. So, 

the first number here is c naught, the first number here is c naught. So, that is taken as a 

naught b naught, that is just the product of the corresponding terms. Then the next 



number c 1, that is taken as a 1 b naught plus a naught b 1, a 1 b naught plus a naught b 1 

right. Now, you can understand how we will proceed for example, next number c 2 that 

will be taken as a 2 b naught, plus a 1 b 1, plus a naught b 2 that is what we are doing 

here. 

We are taking all those indices such that the sum becomes 2, here. Now, we can 

understand that how the general term will be. So, in general the term c n that will be 

sigma a k b n minus k, k going from o to n ok. So, suppose you form a series like this, 

then that series is called the cauchy product of these 2 series, sigma a n and sigma b n. 

We can say something about the cauchy product, if sigma a n and sigma b n converges 

then whether cauchy product also converges are not, there are some conditions for that, 

but since that is not very important right. 

Now, for us we shall not go into theorems of those kind for the time being. All that you 

should remember is that convergence of these two series sigma a n and sigma b n 

certainly does not imply that sigma a n b n converges right. Of course, directly it also 

does not imply that sigma c n converges you need some additional conditions for that ok 

all right. Now I think for the time being we shall close the discussion of the series and let 

us move on to next topic, but to move out to the next topic, let us start something with 

which depends on the series. I shall define a new set. 
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Let us say I will call that set l 1, l super script 1 this is also let us say this is a set of real 

sequences and a real sequence. As you know a sequence is nothing, but a real sequence 

is nothing but a function from n to r. So, suppose I denote any such function as x, x from 

n to r. Then image of any number n here by using this notation I should denote by x of n 

right, but in a sequence it is customary to denote it is as x suffix n all right. We can 

continue to use this notation. So, I will just say that x means this sequence x n, x means 

the function from n going to R and that is nothing but same as the sequence x n. 

Now, this notation is some times more convenient, when you also want to talk about 

sequence of sequences. Then for example, suppose I want to talk of sequence of this 

sequences, then you will need some more either super script or sub script. So, instead of 

that for that this notation is more convenient all right. So, what I want to do is that I shall 

take the set of all sequences x. So, x is a sequence, such that sigma x n is absolutely 

convergent, that is take the series sigma x n, either write x n or this way whichever way 

you want like sigma x n is absolutely convergent all right.  

That means what sigma mod x n is convergent, that is what sigma mod x n is convergent 

for example, if you look at these theorem. Here can I say if sig a sigma a n and sigma b n 

if both are absolutely convergent will it follow that sigma a n plus b n is also absolutely 

convergent right because you take mod a n plus b n, that is less nor equal to mod a n plus 

mod b n. Since sigma mod a n and sigma mod b n those are convergence. So, what you 

can say that sigma mod a n plus mod b n that is a convergent series. 

Then use comparison test right. So, that is trivial. So, if there are two series which are 

absolutely convergent, then their sum is also absolutely convergent. In other words if I 

use this notation I can say that if x and y x and y belong to l 1, then x plus y also belongs 

to l 1 all right all right. Next is I will say that if x belongs to l 1 and let us say some alpha 

belongs to r, then alpha x also belongs to l 1 right because the series alpha x n will be 

nothing, but mod alpha times mod x n, that is also convergent series right. 

So, what it means is that if you take these set l 1, then if you take any two elements in 

this set their sum is also in this set. Product of a real number and any element in this is 

also in this set, in other words this set these two operations, addition of two elements and 

multiplication of a scalar. A element in this right scalar real scalar is real number. So, 



what is the obvious thing to do next right, you are also learning linear algebra 

simultaneously right. So, you have all heard of vector spaces right. 

So, vector spaces is structure with has which has these two operations. So, what is the 

next obvious question that we should ask that, whether these is a vector space and what 

is the answer right because see after all what is the operation here. If you take two any 

way it is a sum of two functions operation. So, we can say operation is co-ordinate wise 

x plus y nth entry of x plus y is x n plus y n right. So, what is the zero element, constant 

sequence 0 right. So, it is this operation of x plus y, it is associative commutative and 

simply also you can also verify all other axioms that alpha times x plus y is alpha x plus 

alpha etcetera all right. So, I will simply say that l 1 is a vector space. 

Well that is the thing right, but there is something more about this. Now, because this I 

could have said even if I did not use this for absolutely convergent. Suppose I taken the 

sequences only of convergent sequences still I could have done this. I could have 

converted that into vector space, that is also done. Now I shall make use of this fact 

because of this fact what I can now is that the series sigma mod x n is a convergent 

series. 
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So, what I will do is that i shall call that, I shall give some notation for that sum I shall 

call it norm of x this is used it is called norm of x it is nothing but sigma n going from 1 

to infinity, mod x n. We know that once x is in l 1, once x is in l 1 this is a real number 



that a it is absolutely convergent. So, this is defined. So, norm of x is defined. So, norm 

now it means it is a function from l 1 to R it is a function from l 1 to R right. Now, let 

ask some very obvious questions, what properties does this function have. 

So, we have function norm, which goes from l 1 to R right. Of course, we are using the 

notation in a slightly different manner since if norm is a function from l 1 to R I should 

have denoted norm of x by this right. Something like f of x right, but any way this is 

customary to denote bring this x here all right. What are the properties let me just say 

first property. For example, can you say that this norm of x is bigger naught equal to 0 

for all x in l 1, norm of x is bigger naught equals to 0 for all x in l 1 all right.  

What is the norm of the 0 element 0 all right. Suppose norm of some element is 0, then 

what can you say if sigma mod x n is 0. Then all of this x n 's must be 0. So, can we say 

this that norm of x is equal to 0 if and only if x is equal to 0 norm of x is equal to 0 if and 

only if x is equal to 0 all right. Second property I want to say something about norm of x 

plus y norm of x, suppose you take 2 elements x and y in l 1. I want to know how is 

norm of x plus y related to norm x and norm y right. That is something we saw just now 

right. We can say that for example, what we are asking is this, what is the relationship 

between norm of x y is nothing but sigma mod x n plus y n right.  

That is norm of x plus y and what is no R m x it is sigma mod x n and what is mod y it is 

sigma mod y n. Now, are these 3 numbers related, it is clear because mod of x n plus y n 

is less not equals to mod x n. So, this is less not equal to this right. So, we can say that 

this is less not equal to norm of x plus norm of y, for all x and y in l 1 ok. Lastly I want 

to say that norm of alpha times x norm of alpha that is alpha. Suppose, alpha is an real 

number, now alpha times x means sigma mod alpha x n. Is it clear that this should be 

same as mod alpha times norm x mod alpha times norm x. 

This should be true for every x in l 1 and alpha in R right. Now, what can you say about 

these three properties, have you seen something similar earlier. It is these are properties 

very similar to the absolute value function on the real line, on the real line we have 

defined the function modulus of real number. When we listed a properties of that 

function those properties were very similar right. All these things for example, say 

suppose x were a real number all these things are true, if x and y are real number. 



 So, this is a function which basically has a properties which very similar to the 

properties what is called absolute value of real number. Now, such functions can be 

defined on several vector spaces. When it can be done that function is called a norm. The 

corresponding vector space is called a normed vector space or norm linear space ok. 
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So, let us just make a formal definition as follows that is suppose v is a real vector space 

and a function, let us say norm going from v to R is called a norm is called a norm on v, 

if it satisfies these three properties all right, if you want we will write once again. If first 

is norm of x is bigger not equals to 0, for every x in v and norm of x is equal to 0 if and 

only if x is equal to 0 all right. Second property is norm of x plus y is less nor equal to 

norm of x plus norm of y, for every x y in v. Third property is norm of alpha times x is 

same as mod alpha times norm of x for every x in v and alpha in R right. 

What I said last is that a norm linear space, a norm linear space is a pair v norm is a pair 

v norm. So, this is a term that where called norm linear space or we can also call norm 

vector space, where v is a vector space and this is a norm on v. So, is a pair where v is 

vector space and norm is a norm on v all right. Why we say that why we talk in terms of 

this pairs. So, it is possible that on the same vector space there may exist several 

functions satisfying this right. On the same vector space you may be able to define 

different we will see examples of these kind of things little later. 



So, as a vector space those two objects will be same, but as norm linear spaces those two 

objects will be different. So, we with sum, let us say norm 1 and we with norm 2 as 

vector space is no other those are the same, but as norm linear spaces is those are 

different. So, that is why we usually talk about a pair of course, again as is the practice 

where it is clear from the discussion what is the norm that we are talking about. Then we 

will simply say that v is a norm linear space also there is one. 

 Obvious question here why we are taking real vector space. What can we not take vector 

space on some other field of course, we can also take vector space on complex numbers, 

you can take complex vector space. Then see as far as these first two are concerned there 

is it has no reference to the scalar. Only this last axiom, that refers to the scalars and that 

will change this will become for every x in v and alpha in c every x in v and alpha in c 

these two. That will be call complex vectors space and. 

 So, corresponding it will be a complex norm linear space and this is what we can call 

real norm linear space right. Since there is not much difference as far as the definition is 

concerned we shall not bother too much about this. Now, this is an example of a real 

vector space. Now, instead of taking the sequences from n to R, suppose I have taken 

sequences from n to c, then also you can define absolute convergence. All that in the 

usual way that would become an example of a complex vector space all right. Now, the 

next question why exactly we are discussing all these things. What is the idea of 

discussing this norm linear spaces. To understand that let us again look at our definition 

of the convergence of a sequence. 

How did we define the convergence of a sequence. Suppose x n is a sequence in R, 

suppose we take a sequence in R, then when did we say x n converges to x we say that x 

n converges to x, x n converges to x. If you remember what will this we said that this 

bend for every epsilon bigger than 0 there exists n 0 in n, such that n bigger nor equal 

that is, if n is bigger than or equal to n 0 n bigger n 0 implies mod x n minus x less than 

epsilon. In other words the concept of convergence of a sequence depends on this 

function mod, x n minus x. 
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We proved several theorems about the convergent sequences about the real numbers, 

using this properties of this absolute value function and of course, some theorems using 

the all the completeness of the real numbers etcetera, but you can say that sequence can 

be defined on any set ok. After all what is a sequence, sequence is a function whose 

domain is the set of all natural numbers, core domain can be anything. So, instead of take 

considering sequence of real numbers I can consider the sequence of any objects right. 

Sequence of say elements in R 2 or R n, sequence of vectors, sequence of matrices 

sequence of functions. 

Suppose I want to ask the question, how do we define what is meant by such a sequence 

converges. Suppose you are given sequence of matrices ok. Suppose that sequence is a n 

each a n is a matrix of some fix order, let us say 3 by 3 and I want to say that this 

sequence an converges to a what is the meaning of that or whole this one define. We can 

say that, if we had some notation is like this norm hundred. Then I put on simply imitate 

this will simply change to norm of x n minus x. 

So, instead of sequences in a real line sequences, in a real line I can take sequence in any 

norm linear space and define what is meant by the sequence converges in that norm 

radius space right or more generally. This is one idea, that is the reason for discussing 

norm radius spaces. More generally see by mod x n minus x is the thing, but a distance 

between these two numbers x and x n x and x n and. So, if you remember what we had 



said all the time saying that sequence converges means distance between x n and x 

becomes small as n becomes large that was the idea. 

So, one can say similarly, that if we have a concept of distance in any set. Suppose we 

have the concept of distance, then we can talk about the convergence of a sequence in 

that set. All that we need is the concept of distance right. Similarly, for example, other 

concept of limits continuity etcetera all those concepts depend in some sense. either on 

this like absolute value function or on the concept of distance. So, we can also develop 

all those concepts in more general sets like that. What is the advantage, see now we have 

proved let us say some theorems about convergent sequences. 

For example, we have proved that every convergent sequences cauchy or every 

convergent sequences bounded we proved all these things for the sequences of real 

numbers. Let us say some time letter we talk of sequences in R 2 or R 3 or R n or 

sequences of matrices or sequences of functions. Then again we can define what is meant 

by convergence and again we may have to again separately prove, that every convergent 

sequences is cauchy or every convergent sequences is bounded and things like that. That 

means essentially you will be repeating the same proof again in various different context.  

What is the way to avoid that instead of avoid this repetition, that is the method is what is 

called abstraction and very commonly used in mathematics. You may heard this word at 

mathematics is a very extract subject. People use it in a some sort of a negative way that 

mathematics is an extract subject, but extract subject is a very powerful tool. It is used in 

all sciences and as I said because of this abstraction, we can avoid these repetitions. It 

saves lot of time and energy and it is more efficient way of doing this. So, what we do is 

that we see for example, what you have done, we have this long linear space is an 

abstraction ok. Abstraction of what a real line and that l 1. 

So, many spaces whatever common to all those spaces those properties we have taken 

and defined that as a norm linear space. So, similarly we will do about a distance and 

then follow the idea. Then after that we shall just develop all the theory in those 

particular either in norm linear spaces or those new x objects likewise let me just tell 

what this new objects are called those are called metric spaces. Once we develop in 

metric spaces it can applied to any different any of this other specific examples, R r 2 R n 

l 1 and all those things ok. 



Now, let us come to this what is what is a metric space or what is a metric. This is 

something more general than norm linear spaces. Here what you have seen we shall 

subsequently show that every norm linear space is also metric space, but before that yeah 

which is basically same as saying that metric space is a more general concept because 

norm is defined only on a metric space. Starting point has to be a vector space, we the 

starting point has to be a vector space whereas, metric 10 can be defined on any set. So, 

we take x as a x as any non empty set.  
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X as any non empty set then what is a metric it is nothing but a function which says 

something. Suppose we take two points x and y, in that it says what is the distance 

between those two points. So, that function which satisfies the property which we 

normally associate with the distance between the two functions. Whatever we commonly 

associate some of those properties are taken and those are taken as a definition of a 

distance or definition of metric space. 

So, obviously we talk about the distance between the two points. So, it means it is a 

function from the pair of points, it will associate some real numbers to appear of points. 

So, we will say that a function, it is a function d from x cross x 2 R, function d from x 

cross x 2 R is called a metric. If it satisfies some properties. 

What are those properties, those properties are again very similar to this. First property is 

that suppose you take two points. If you take distance between it is called a metric and 



metric is a must distance this is just a different word met. So, d x y distance that is a 

distance between in fact strictly speaking, I should write one more bracket here because 

it is d of this some element in x cross x, that element is x comma y. So, strictly speaking 

I should use this definition, but I will just what we will understand we mean is this. 

So, d this is let me just remove this, just for the convenience. So, d x y this is bigger nor 

equal to 0 for every x y in x. That is what we normally expected the distance between 

any two function in non negative number and it should be 0 only when or it should if I 

that x and x distance between the points should be 0 and the distance between two points 

are 0, those two points must coincide. So, which is same as saying this and d x y is equal 

to 0, if and only if x is equal to y ok. Then second property is that distance between x and 

y this should be same as distance between y and x. It should not matter whether I call 

distance from x to y or from y to x, that should be the same. This should be true for every 

x y in x. 

 Lastly whether this property has a name in fact it is an obvious name this is called 

symmetry. So, we explain this by saying that distance is a symmetric function. This 

property is called symmetry. Then last property suppose we take 3 points x y and z, then 

we want to compare the distance between x and z and the distance between x and y and 

distance between y and z, suppose we take 3 points. You imagine that those 3 points 

form a triangle, then the distance between x and z is the length of one side and distance 

between x y is are the other two sides. So, what we should expect is that, this should be 

less nor equal to that this should be less nor equal to that. 

So, this is true for every x y z in x and because of the comma is which might. Just now 

this last property is called triangle inequality. This last property is called triangle 

inequality. By the way similarly, in this definition of a norm this property 2 is also called 

triangle inequality, this is also called triangle inequality. We will there is a reason for this 

a little later. 
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So, that is about a metric and. So, what is a metric space, again in a similar way metric 

space, is a pair x d where x is a non empty set and d is a metric defined on it. So, let us 

just recall it once again. 
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 So, metric space is a pair x d where x is a non empty set. Here also I should have said is 

called a metric on x, this is called metric on x. So, coming back to this a metric space is a 

pair x d, where x is a non empty set and d is a metric on x. Again why pair again because 

when one can define several metric on the same set x. So, for example, I can define say d 



1 as 1 metric d 2 as the arbitrary d 3 as. So, the set underline set with the same, but a 

metrics may be different. 

So, in this case those become different metric spaces. Now, you can see that all these 

actions which we have written here or the properties which you have. So, said with the 

usual concept of distance and those are the ones which are taken for defining the 

distance. Now, you may ask there are some many other things also which we associate 

with a distance. For example, we also know that given two points we can talk of 

something like a midpoint of the two. Then that has not come here in the actions, but 

again which of the property is to be chosen for making definition. 

That is a matter of convenience and also matter of history because this definitions like 

this arise after several years of efforts from various mathematicians by trying various 

axioms. Which were better etcetera and ultimately it will decided which exactly the 

things that go into the definition. So, let us not into that end of history right. Now, let us 

see some examples of the metric spaces. So, in example is what it should be some non 

empty set and function defined like this. Usually ah with given function like this to check 

whether it found a metric or not. Usually these two properties are very easy to check. 

 In fact by trivial and if at all anything takes some time it is this last property triangle 

inequality. There is one very famous example where this a metric which you can define 

on any set. Suppose x is any non empty set and suppose you define set d x y is equal to 0 

if x equal to y and one if x not equal to one ok. It is easy to see that it is only this last 

property will take some time to check as I said other two properties are trivial. So, this is 

also a well known metric, it is called a discrete metric. The space is called as a discrete 

metric space it is called discrete metric space. 

The main use of this discrete metric space is basically for understanding. It is not much 

of practical importance you do not come across discrete metric in any applications, but in 

order to understand the various concepts in metric spaces and to check whether you have 

understood or not, this example is very useful all right. Then the next obvious example is 

that of a real line, you can take the real line and define d x y as mod x minus y distance 

between x. That is the usual distance between the two real numbers. Again it is easy to 

see that that satisfies all this three properties ok.  



Now, let us come back to this, will just finish this. So, we have seen that this function 

norm is nothing but the generalization of the function of the absolute value. So, we can 

use this idea in any norm linear space. Suppose I take this instead of taking x and y as 

two real numbers. Suppose I take x and y as 2 elements in a vector space and define 

distance between x and y as norm of x minus y. Then that should also satisfy all this 

properties because those are basically followed from the properties of the absolute value. 

Let us just quickly see how this happens and then we will stop with this.  
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Now, suppose let us say v is a norm linear space and take any 2 x and y in the. Define d 

x y s norm of x minus y right. Then we will just quickly verify these properties one by 

one, but in the first thing that we require. The distance between x and y should be bigger 

nor equal to 0 right. Is it true norm of and this should be 0, if and only x equal to is does 

the norm true that follows from this pattern norm of x minus y will be 0, if and only x 

minus which is same as x equal to y all right. What about this distance between x y is 

equal to distance between y x. 

So, distance between y x will be norm y minus x right. By this definition are these two 

things same y, what it follows from what you, it is nothing but minus 1 time is this. That 

follows from this last property, if you take alpha is equal to minus that is the basically 

form norm of minus x is same as norm of x for every x. So, this symmetry follows from 

this property 3 right. What about the triangle inequality, this is norm of x minus z this is 



norm of x minus y and that is norm of y minus z. Is that true that norm of x minus z is 

less nor equal to norm of x minus y plus norm of y minus z. Again you see you can first 

for example, suppose you take a as x minus z, b as x minus y and c as y minus z, then 

you can say that norm of a plus b is less nor equal to norm a plus norm b. It will give 

this. 

So, this property 2 implies this triangle inequality here and that is why that is also called 

triangle inequality right. So, what it what follows from it is that, every norm linear space 

can be made into a metric space. Every norm can will lead to a metric on that factor 

space and. So, this is big class of examples of metric spaces and that is what. Most 

important in applications most metric spaces which are important from the point of few 

applications are basically norm linear spaces. I think let us stop with that, we shall see 

more examples of this in the next class. 


