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Goedel's Incompleteness Theorems 
 

By the time of 1900, there are many paradoxes coming from many sources, including 

Russell’s paradox, Buralliforti paradox; so many paradoxes are there. Then there was the 

doubt whether whatever we are doing, are having some inconsistency in between them. Say I 

am working in natural numbers, does there exist one inconsistent or unsatisfiable statement, 

which we are not aware of? What did it present; it is deducible inside the natural number 

system; so this doubt came. 

Then in 1900 when Hilbert gave the programs for the whole century to work out; there is 23 

problems; among those there were two concerning to this. One was this, whether natural 

number system is consistent or not; it was pertaining to this question. And the other question 

was decidability of Diophantine equations. These two problems were taken up by logicians; 

they were easier for them to handle. And Goedel solved this problem of consistency or 

inconsistency in natural number system. And Turing solved the other problem that first order 

logic is undecidable. Therefore, Diophantine equations also cannot be solved. But he has not 

finished it. It took another 35 years to show that there is no algorithm to solve the 

Diophantine equations. This was the story behind it.  

Then what happened in 1931 when Goedel proved these theorems, it is told that; there is a 

story; at that time Hilbert was drinking, and he just threw the glass and smashed it being 

angry; because he has started a big program for proving the consistency of arithmetic. And 

that was called the Hilbert’s program. So, now Hilbert’s program is settled. That was the 

impact and it was really considered as a pinnacle of achievement. It is an intellectual 

achievement of 20th century; that is how the results were considered. It is difficult really to 

complete it in one or two lectures that we have. But then this will be the last lecture. So, it is a 

very fitting lecture, for, that we must discuss about it.  

The problem is whether to find completeness in the natural number systems and whether to 

prove consistency in the natural number systems. We have so many conjunjectures along 

with paradoxes. We have conjectures also. 



Now also there are some conjectures in natural numbers, which are remaining. Like our 

Goldbach conjecture, which tells that every even number can be expressed as sum of two 

primes. Every even number bigger than two. Except 2 all of them can be expressed. So these 

are certain things, which really bother mathematicians. Then Goedel really proved that well, 

there will be some conjectures which will remain unproved. That was basically the 

incompleteness theorem, that there will be true sentences in natural number systems, which 

will have no proofs inside the natural number system. And whatever theory you have 

described for the natural number system. But it is not so exactly, because there is some 

constraint, like natural number system with only operation as addition is a decidable theory. 

So, anything you conjecture can be proved within that. But once multiplication is there, it is 

no more decidable. Then there comes the question of this completeness.  

We will see slowly; how this progresses. I should give a disclaimer in the beginning that the 

formal proof, anyway, we will not be able to do within even five lectures; it needs some more 

machinery. But then I will give an outline and it is almost formal. So, every part I will tell 

you, where its formality is lacking and how it can be done.  

Gödel’s proof really had two ingenious apparatus. One is, he says, that within the natural 

number system you can express something is provable or not. That is a big thing. Something 

is provable; you can say some predicate of natural numbers is true or false; that we can 

express it. Second thing is, he has achieved some fixed points; in the sense that suppose, you 

have one unary predicate. Let us say not exactly predicates, formulas having one free 

variable, they can be considered as unary predicates. Then suppose you consider B of x, or 

say B of y, as one of the predicates; then he says that there exists a sentence X in the natural 

number system so that X if and only if B of X is provable. This is what is called 

Diagonalization Lemma, which he proves. These two are the main things what he does.  

So, B of X means he has to really convert every sentence as a number; then B of n, not really 

B of X, that is what he is going to do. We will see slowly how it progresses. The first 

apparatus will start with, which is called the Goedel numbers. What he does here, is just 

coding everything of first order logic, or even second order, as a natural number; that is what 

he wants to do. Before this he starts with one assumption that suppose we have one theory of 

arithmetic, theory of natural numbers, which is having also multiplication in it. Some 

reasonable theory he assumes; we are not formalizing, again, like your Peano's axioms or 

something. Then we have a theory say N, and we have plus and we have into; we may have 0 



and one also there. Suppose we take a theory having this minimum things, then there can be 

other operations, predicates, functions, you can define from these things. 
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Suppose this theory is consistent. See, the main thing is if it is inconsistent then everything 

will follow, so it is not interesting. Let us start that we have one theory of arithmetic, which is 

consistent. Let us call it T; that is the assumption; from there only everything is starting. So, 

what he wants to do is, you give any formulas, any statements or anything in the first order 

logic, or even second order where, for all over the predicates are there; but he only goes for 

the first order formulation of arithmetic, where you are not using for all P and others, but that 

can be included in the theory. Now what he does is, he encodes them as natural numbers; that 

is the first thing. So, how to give numbers to the symbols? He just gives a scheme. There are 

many schemes now, but we will go to the original, whatever he has done, by using the prime 

factorization there. What he does, you just list all the symbols, may be these things will be 

using, and there can be some predicates, some functions symbols and variables. So, you may 

assume that predicates are finite in number, but even if you do not assume there is a way to 

give the numbers. 

So, first is P 0 next f 0, P 1, f 1, P 2, f 2,... If you have variables then you can post them in 

between say P 0, f 0, x 0, and so on. Make a list of all these things. So, P's can be infinite in 

number, f’s can be infinite, x's can be infinite in number, predicates function symbols and 

variables; then what happens? Suppose you take the n-th symbol here; so it is a list, an 



ordered list. Now define alpha of symbol equal to n, sigma comes as n-th in this list, so 

somehow numbers have been fixed. Now, the thing is given any number you can go back to 

this symbol also.  

Then what happens, he introduces beta of string of symbols. So, not only symbols, we need 

strings, because we want to formulate or form the formulas. We need strings. So he writes it 

as say, 2 to the power sigma, n of sigma 1, which is alpha of sigma 1, 3 to the power alpha of 

sigma, pm to the power alpha of sigma m, where, 2 to pm, these are prime numbers in that 

order; so pm is the m-th prime. Now, you see that property still holds. Then, if you are giving 

some numbers here, you can do its prime factorization, which is unique. Then find out what 

are the symbols; sigma 1 to sigma m can be found out. It is constructive; it is computable. So, 

beta itself is computable and its inverse also is computable. Given a number factorize it; get 

the symbols.  
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Now, we will go to give numbers for proofs also. Any formula would be a string of symbols. 

Now, we will go for a list of formulas. Suppose you take a proof that will look like X 1 up to 

X n. That, you give 2 to the power beta of X 1, pn to the power beta of X n. So, take any 

proof. Now it is a finite sequence of formulas and each formula has a beta. Again, take the 

prime to the power betas. This is also a computable function; and you can see if you take 

these numbers prime factorizations; take the prime factorization, get the indices, get the 

strings again, factorize them, get the symbols, so you can reconstruct. Now, what he does, he 



calls these entire, not he, I am calling; so, will just unify these entire alpha, betas and gamma 

as g. So, g will be a function from all the symbols we are using; union of all the strings, 

which includes your formulas and union all the proofs, to natural numbers. That is how this 

function is defined, these alpha, beta, and gamma all whichever is applicable for whichever it 

is. The other way you could have started with g as alpha then extend it to beta then extend it 

to gamma that is your g.  

Now this g has some properties. Like, g is a function from these, that is a first thing; for every 

symbol, every formula, every proof it is defined. Then if you have g u v, u is a string, v is a 

string of whatever, it is proofs or formulas or symbols, that will be equal to g of u time g of v 

because prime factorization is used; 2 to the power something and so on. So, multiplication is 

there; multiplication is assumed here inside it. So, we are not going beyond arithmetic; and it 

is constructible. And next way is, from any number given if it is g of something then that 

thing can be computed. So, given n equal to g of some entity, this X can be computed. 

So, now what he asks us to think is that given any such entity you think of that entity along 

with that number. Whenever we say something is true of that number, you might intuitively 

think it is true of that thing of which this is the Goedel number. So, next thing what we will 

do is use this Goedel numbers to define a particular type of predicates. Let us call it say Pr m 

comma n, in the set of natural numbers. It is really a relation; the relation is being translated 

to our language as Pr of m n. What we will do for this is, m is the Goedel number of a proof 

of a formula whose Goedel number is n. It says m is the proof of n, if you can suppress that g 

into proof itself, m is the proof of n. So, m is the Goedel number of a proof, n is the Goedel 

number of a formula and that proof is the proof of that formula. That is what this predicate is. 

Then what you do, define P of say g of x as there exists x, such that Pr of x m and x equal to 

n. So, this says there exists a proof; it is over the first variable. 

So, there exists a proof whose Goedel number is m and that is the proof of a formula whose 

Goedel number is n. It simply says that X is provable, so this g X is really equal to n; you 

could have written as n here instead of g X. One of the variables we have quantified;  the 

other variable remains. It should be P of n; so P of n equal to there exists this; it says that 

formula X is provable; there exists a proof of X, that is what it says. It means formula X is 

provable. 

Student: Sir, if number is provable?   



You have defined; we have defined the Goedel number of a proof. Each formula 2 to the 

power Goedel number of that formula, 3 to the power Goedel number of this second formula, 

pm to the power Goedel number of the m-th formula. So, Goedel number of a proof is 

defined therefore. This predicate says it is a proof of X; X is provable rather. It is not exactly 

telling that. It is telling P of n means a formula X whose, Goedel number of which proof 

exists and Goedel number of that X is n that is what it says, intuitively X is provable. So, 

instead of writing just n, we will go on writing g of X; it will tell us what that X of which we 

are telling that a proof exists. This is the first order; we have to go around P of g of X. 

Before that, when you say that it has a proof, it has a proof where? In our system T. So, 

always that is our assumption; it has a proof means proof in our system T. We will also write 

something like: suppose you write the turnstyle symbol for X is provable, X has a proof. It 

means, it has proof in T; so that means we will write like this. We write this X for proof in T; 

we will just make this abbreviation.  
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Now, let us see what are the properties of this P, the provability predicate. Let us call it 

provability predicate. What are the properties? The first is, if X has a proof then P of g of X 

also has a proof. Next, we can say suppose X implies Y P of g of this; this implies P of g of X 

implies P of g of Y. Once you have a proof of X implies Y and you also have a proof of X, 

then we have a proof of Y; it is like a modus ponens; from there it is coming. Third is, P of g 

of X implies P of g of P of g of X. Which means, if X is provable, has a proof, then X is 



provable is provable; it also has a proof. It is easy to see from this existential formula, but 

intuitively also it is clear. 

Student: Sir, what is intuitively? 

First one, if X has a proof then X is provable; as a proof that is what; basically intuitively 

means that. Formally, it will come from this, if we just manipulate the symbols. Now, there is 

one more thing we need. We are concerned with consistency. We can formulate consistency 

with this provability predicate. For example, at least formulate inconsistency. Let us see what 

happens. See, 0 is equal to 1 is an inconsistent statement. We will say that inconsistency is 

written as P of g of 0 equal to 1; inconsistency, 0 equal to 1 is provable; and this has a proof. 

We will take this formulation as a formulation of inconsistency: 0 is never equal to 1, in 

natural numbers. 

When you say 0 equal to 1 is provable, it is inconsistency of natural number system; that is 

the interpretation. When you say it is consistent; our assumption is that natural number 

system is consistent; we should have this. It is not the case that 0 equal to 1 is provable, has a 

proof; this is the assumption of consistency now. Slowly, we will go for other properties of 

this provability predicate and something else. Here, I am digressing a bit towards 

diagonalization, which is a difficult thing to do. I will elaborate it in different way using some 

paradox.  

Let us see now. Look at all the formulas in T having a free variable, one free variable exactly, 

say in N. They all are predicates over natural numbers with one free variable. Now, that set is 

countable; all the formulas are countable. So, these also are countable. Then we can have an 

enumeration of it. Let us enumerate. They are say B 1, B 2, B 3, and so on, with one 

argument each, and so on, this is your enumeration. Now, consider this predicate not P of g of 

B n f of n. This is a predicate having one free variable. Now, this is one of these predicates in 

our list; which one we do not know. Suppose it is B k. So, you have B k of n for some k, 

which k, I do not know; for some k this happens. Now here also B k of n equal to this. Here, 

n is a free variable. Then you have P implies P as a theorem. So, P if and only if P also a 

theorem. Then you can take universal closure, for every n. For every n B k n if and only if 

this side is provable, because that is equal to that if and only if P.  
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Now, once it is for every n, in particular, I can take a universal specification, take n equal to 

k. So, for n equal to k, I have a proof of B k of k if and only if not P of g of B k of k. Let us 

give some symbol instead of always writing B k of k. I write A equal to that. So, I have now 

the fifth property, which says if and only if not P of g of A is provable. Now, you have to 

play with this A. 
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See, what happens; use contraposition; it says P of g of A implies not A is provable; one part 

of it; this not of this implies not of this; which is equivalent to A implies not P of g of A. So, I 



get P of g of A implies not A. Then I have P of g of implies P of g of implies. Look at 

property two of P. Property two says P of g of X implies Y implies P of g goes there. So, that 

is what I have done. This thing is already provable; so it takes P of g of here. So, P of g of A 

comes here; and this one is here. Now I have already P of g of A implies not A, so I take P of 

g of, apply my second property and get this. I use property one. If this is a theorem, then P of 

g of whole thing is a theorem. Now use this one. P of g of this and this one modus ponens. 

That gives P of g of P of g of A implies P of g of not A. Again use 1. 1 again says if P of g of 

A then P of g of this is 3; not 1 use property 3. Now, these are the same if X then Y and you 

have Y implies Z therefore, if X then Z.  

There is another way. I want only P of g of A. So I can say P of g of a implies P of g of g of 

A, again 3, use both of the things and hypothetical syllogism. So, you can write that way; that 

will be easier to see g of A implies P of g of P of g of a by 3. Apply Hypothetical syllogism 

by that, we get P of g of A implies P of g of not A. 
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Call this as the sixth property. We are going slowly, developing one by one now. Let us take 

another, say, A implies not A implies anything, this is the theorem in FL, really. A implies 

not A implies B, anything you can write; so we start with 0 equal to 1. Now take P of g of 

that, apply 1. By 1, P of g of this whole thing. Now what happens, use 2. Use 2 and modus 

ponens; that gives; and modus ponens gives P of g of A implies P of g of not A implies 0 

equal to 1.  



You have to check each step. This is in the form P of g of X implies Y. So, by 2 and modus 

ponens you will get P of g of X implies P of g of Y; clear? Once more we can use, because 

this is also in the form X implies Y. So, if we use once more, then it will come to, once again 

it gives P of g of A implies P of g of not A implies P of g of 0 equal to 1; just P of g of goes 

through implication that is what it says. 

So, you get this implies P of g of this implies P of g of this. Let us keep on writing what we 

have got and sixth was. Then we have here P of g of A implies P of g of not A implies P of g 

of 0 equal to 1. Now look at 5 and 6; this is in the form X implies Y; this is in the form of X 

implies Y implies Z; your axiom 2 says X implies Y implies X implies Z, X implies Y 

implies Z implies X implies Y implies X implies Z. By modus ponens you will get X implies 

Y implies X implies Z and X implies Y is here; so you get X implies Z. 

So, using axiom 2, which is distribution of implication and modus ponens twice we have this 

7, which says P of g of a implies P of g of 0 equal to 1. 
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From this you should get X implies Y implies Z so that gives X implies Y implies X implies 

Z you have X implies Y as 6. So, you get X implies Z, X is P of g of a Z is P of g of 0 equal 

to 1, this is what you get. So, by contra-position from 7, we get not of P of g of 0 equal to 1 

implies not of P of g of A. Well, there is another shortcut. Instead of contra-position, we can 

do that, let us see. 
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Now, let us keep this 7. From 7 we will be doing something. If A is having a proof, by 1, P of 

g of A is having a proof. Now, by 7, it says P of g of 0 equal to 1, this contradict 4; 4 is it is 

not provable, but you are telling it is provable because of our extra assumption entails A; A is 

a theorem; that is why. Therefore, what we conclude A is not a theorem not not A. 

A is a theorem giving a contradiction so A is not a theorem. Now, if not A is a theorem then 

from 5, P of g of A is a theorem. Not A implies P of g of A, contraposition of the other side, 

not of P of g of A implies A. Therefore, not A implies A of g of A; one side of that. That 

gives P of g of A is a theorem. But we have already seen if P of g of A is a theorem there will 

be a contradiction, which is a contradiction. Therefore, not A is not a theorem. That is our 9th 

.  
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I take next line. If not of P of g of 0 equal to 1 is a theorem. Suppose, we start with not of P of 

g of 0 equal to 1 as a theorem then look at 7. Contrapositions of 7 says, by 7, we have contra-

position. And contraposition, we have not of P of g of 0 equal to 1 implies not of P of g of A. 

So, if this is a theorem then not of P of g of A is a theorem. Then by 5, A is a theorem which 

again will contradict, which contradicts; let us write 8. So, what we get, it is not a theorem. 

That is our 10th one; which says and the last one. Proof is over.  
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 What you have proved? Let us see. These three are the main things we wanted. First, it says 

there exists a sentence in T, which is our consistent theory of natural numbers, which is not 

provable, whose negation is also not provable. 

Student: But the sentence is right?  

We do not know; we have no idea about A; A is that sentence here. So, it only says that 

provided T is consistent. In other words, we say every consistent reasonable theory of 

arithmetic is negation incomplete. That is the idea of negation completeness; at least one of 

them is a theorem, here none of them is a theorem. So, it is negation incomplete. That is your 

first incompleteness theorem; which is also written another way. We may write it also this 

way: there exists a true sentence in T, which is not provable. It is look like our earlier proof 

of x to the power y is rational, when x and y are irrational. See one of A or not A is true, 

either A is true or not A is true in the natural numbers, but none of them is provable. 
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So, there exist, well, a true sentence which is not provable. You can find out also which one 

is true and so on. But we are not going to deal with any truth here. You can say in that level 

that one of A or not A is true, but neither is provable. So, there exists a true sentence 

whichever is it, A or not A, which is not provable. That is basically the idea of negation 

incompleteness. Then we have the next one, which says that, well, all these things hold 

provided T is consistent.  



So, the next one is if T is consistent, then it is not the case that, this is what your 10th one 

tells. But what does it say? Can you read this? P of g of 0 equal to 1 is consistency; there is a 

proof of P of g equal to g of 0 equal to 1 is consistent. So, there is a proof of 0 equal to 1 is 

not provable, which is taken as the consistency. So, it says if T is consistent then the 

consistency of T cannot be proved.  

See, one thing is 0 is not equal to 1, true, so 0 is not equal to 1 is provable. It is also provable 

that 0 is not equal to 1 is provable. Now let us look at inconsistency. 0 equal to 1 means 

inconsistency. If it is provable, provability of 0 equal to 1. Now it is not provable; so  this 

expression is consistency, but not that much only; it is provable we can prove that 0 equal to 

1 is not provable, that is an expression of consistency indirectly. So, here when you say we 

can prove that 0 is not equal to 1 is provable, it also expresses consistency, because there will 

be proof that one. If you have a different interpretation of consistency, it does not prove that; 

it only proves this first one. This theorem is interpreted this way. That if T is consistent, then 

its consistency cannot be proved by the mechanism of T; because all our proof apparatus is 

from T only. It might be provable by other mechanism. We do not know; not by this 

mechanism; that is what it says. So, after this Herman Weye said that god exists because 

mathematics is consistent, and devil exists because we cannot prove it. That is what it says, 

and there we should end.  

So, today only we have seen these three theorems of Goedel. The two theorems. One is 

negation incompleteness of arithmetic; another is its consistency, we are not able to prove 

inside the system; both the theorems. When the first theorem says also something else; once 

you take a reasonable theory of arithmetic, it means you have plus, you have multiplication 

and then you have the induction axiom, with those you can do most of the natural number 

things. Once you have taken the induction axiom, it says it is no more in first-order; it is a 

second order theory, because you have to say for every unary predicate this happens. So, it 

also proves that second order logic is incomplete; whatever axiom system you make for it, it 

will remain incomplete. That gives some limit to our thought process itself. That is why it 

becomes so famous. It is something like limitation of human reasoning. We are not able to go 

beyond it. It looks, nothing after that we can go; anywhere; that is the importance of the 

theorem. 


