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Lecture - 40 

FC, Semidecidability of FL, and Tableau  

So, we were discussing the axiomatic system FC for the first-order logic. Then along 

with the axioms we had now two inference rules unlike your PC; PC had only one. The 

same we have kept as MP plus another for universal generalization. And in the axioms 

we have all the three axioms of PC plus there are some more. So, two more for the 

quantifier and two more for the equality predicate, right? That is how we have started; 

then we proved two theorems: monotonicity and deduction theorem. Then just like your 

PC you can also formulate reductio ad absurdum, the same formulation, and the same 

proof, right. 

But, there is nothing much there; and just we tell them what it is. You have one 

consequence to be proved, sigma entails X. In that case what you do is, add not X as a 

new premise and then show that sigma union not X is inconsistent. And this process is 

reversible: if sigma union not X is inconsistent, then you say that sigma entails X; fine? 

This is your reductio ad absurdum, basically. Then, let us apply all those meta theorems 

in proving some of the theorems. In fact we will not prove them as theorems, because we 

are not going to give a proof of that directly. 

That means, we will show that it is provable, fine. Which means, you take some formula. 

And then may be using some reductio ad absurdum or deduction theorem, you transfer it 

to some other consequence. Then give a proof of the consequence, because of the meta 

theorems the original formula is provable as a theorem; that will be the approach. So, let 

us see Example 1, which is really propositional. X implies not Y implies not of X implies 

Y. There is no quantifier involved directly though they are now formulas from FC, not 

propositions necessarily. Begin. For any formulas you have, the reductio ad absurdum 

and the deduction theorem, you can apply, and get it done.   

One easy way to look at it is, see you have the law of contraposition;  if you can prove X 

implies X implies Y implies Y, then it is done, if you use law of contraposition. Even 

without using it you can do, because you have RAA. Let us try that way; say, first is by 

deduction theorem. 
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It is enough to prove X entails not Y implies not of X implies Y, fine. Then you say 

again, another application of deduction theorem says X not Y entails not of X implies Y, 

right. Then with reductio ad absurdum you show X not Y and X implies Y that is 

inconsistent. Then you say, again by reductio ad absurdum X, X implies Y entails Y, 

right. Choose this one as your formula; which has come from the consequence. We look 

from this to this; you will see easily not Y is added; and that is inconsistent. And there is 

nothing to prove; it is your MP, right; for which you can give a proof, say, X implies Y. 

Therefore, Y or just give: this a premise, this a premise, this is modus ponens; that is all; 

is it clear? So, this contraposition has been proved inside it; these are not new to you; ha, 

the same technique of PC, that is what we have done; is it clear? We proceed to next 

example.  

Here, we have for each x x equal to f of y implies Q x, then you show that Q f of y. 

Again, deduction theorem might be handy. Let us say, by deduction theorem, you just 

show for each x x equal to f of y implies Q x entails Q f of y, right. Now this can be 

shown. It is easy to show here. Just what you have to do is, take a suitable instantiation 

of this universally quantified variable. You start with our premise for each x x equal to f 

of y implies Q of x; that is a premise. Next one axiom for instantiation. So, x equal to f of 

y implies Q x implies f of y equal to f of y implies Q of f of y right. Is that ok? For each 

x x implies x x by t, is that right? This gives you, which axiom; f of; next, use MP to get 

f of y equal to f of y implies Q f of y. Next, use another axiom: equality axiom; and then 



modus ponens. We will leave it there; this is which axiom? Again, just to remember 

them. 

Three were from PC, two were from universal, next one, A6, and then an application of 

MP finishes it; clear? Let us try next example.  

For each x X implies Y implies not for each x not X which is really your there is x X. 

And you are given in that form; that is also fine. You can use the definition and reduce it 

to this one. Finally, this is to be proved, so this will say for each x X implies Y implies 

there is x X implies there is x Y, right?  
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Again, we use deduction theorem. This says, for each x X implies Y entails not for each 

x not X implies not for each X not Y. Here itself you can use contraposition, right; by 

contraposition, it is enough. But, contraposition, we cannot use here; it has to be used 

inside the proof again. Only metatheorems, we can use outside the proofs. Then, let us 

use again deduction theorem. This says for each x X implies Y and not for each x not X 

entails not for each x not Y. Next use RAA, because this not will be difficult to use as a 

premise; fine. So, you take for each x X implies Y not for each x not X along with for 

each x not Y is inconsistent. Once more you use RAA to take that negation to the other 

side. You say for each x X implies Y for each x not Y entails for each x not X. Now you 

see contraposition has been used through RAA. You should be able to prove this. It does 

not look to be more simplified than this. So, let us try a proof.  



For each x X implies Y, premise; for each x not Y, premise. Next, well we can just say X 

implies Y; and similarly. In fact we did not go in one stage; axioms has to be used, and 

then MP has to be used; it has to be brought; right. So, what do we do is, for each x X 

implies Y implies X implies Y, that is axiom four. Then MP, which will give you X 

implies Y; two steps will be required; right. Similarly, another two steps will give you 

not Y; there you will be using PC. So, this comes from, again same Y; you can fill it up.  

Next, seven will be, not X; right. Then, universally generalized; for each x not X; is it 

ok? So, eighth line will be for each x not X; UG. All that you have to see is, x is not free 

in the premises; which is not; in no premise it is free. So we will use that; for whatever it 

is, x is free, x is not free in all the premises you used till now. So, for each x not X; 

clear? Now, next one. 
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By deduction, we have to not for each x X implies Y entails for each x not of X implies 

Y, right. Now, some mental block. How to use this not? Well, we use RAA; transfer it to 

the other side; see what happens. This gives, by RAA, not for each x X implies Y and 

then not of this; this is inconsistent, right. Then again RAA, which gives not for each x 

not X implies Y entails for each x X implies Y; fine. Then use deduction theorem, which 

says, not for each x not of X implies Y for each x X entails Y; clear? Again, this not is, 

again, with for all. 

Student: Take Y 



So you have to take it inside. 

Student: Not Y. 

You can take not Y also. RAA will give for each x X, not Y entails for each x not of X 

implies Y twice; ha, we have used it twice, right. Not Y comes here; which is 

inconsistent, right. Then, I take it to the other side by RAA again. So, for each x X not Y 

entails this; clear. Now, probably this will be easier to show. One, you have for each x X; 

then second, rather third line, use axiom four; for each x X implies X; next use modus 

ponens to get X; both will be used; is that ok?  

Second line will be for each x X implies X; that is your axiom four. Then modus ponens 

on this two, to get X. After you get X, you have not Y, premise. Now, what is your 

target? For each x not of X is there; so this can be obtained by universal generalization: 

UG. You want to get this. Now, that is propositional; which is your Example 1, right? 

So, use Example 1 as a theorem, previously proved theorem; then use modus ponens 

with X, you get not Y implies not of X implies Y. Again, modus ponens with not Y, 

right? You get not of X implies Y. 

Student: What is this, we din not know one example. 

Hm, you proved it. 

Student: Sir in exam how are we. 

You will have to prove it; no? 

Student: We will.  

So, once you see that X and not Y gives not of X implies Y; right. That is really a PC  

theorem; it is a PC consequence; so you can always bluff it as PC. And then continue, 

fine. But then it need not be a theorem; so better show it, is that ok? But, it can be done 

some other way; your bluff might be correct.  

See, there is a, there is one nice thing. How to prove the trigonometrical identities? There 

is a nice algorithm to prove them; which we never know in our high schools. Otherwise, 

you would have scored hundred percent. The algorithm is, suppose there is a 

trigonometrical identity, left side equal to right side. You know it is an identity, right. It 



is given in the book, so it must be identity. So, what you do is, start from left side, 

writing whatever identity you know; go on applying it; and here from the bottom you 

start from the right side; whatever you know, go on filling it; leave it there, right. And it 

is not wrong; whatever you get in between that is correct identity. Is that ok? So it 

depends on how much you have to spare, in the paper.  

The same way you can leave it here. You know that X, not Y should give you not of X 

implies Y, semantically. Because X, not Y both are there. It is equivalent to X and not Y 

and not of X implies Y is equivalent to X and not Y. So, it should be provable, because it 

is complete system; PC is complete. So, there is a proof of it; right. But what the proof 

exactly is, we do not know. Leave it as a theorem, PC theorem. But better to prove it. 

And we have proved in Example 1. That means, it will give, after some steps. Let me 

write it. Some eight star. I do not know whether its eighth or ninth, ha. There, you get not 

of X implies Y; then we use UG; that gives you for each x not of X implies Y. 
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Then, let us see this. See, with not of a equal be b, it is not easy to get, right? So, use 

RAA from the beginning. By RAA, we try to show P a, for each x P x implies Q x, for 

each x R x implies not Q x, and R b, and a equal to b, is inconsistent. Now, with a equal 

to b, it will be possible; right? But, there are constants a and b. So we do not know which 

one we will instantiate. If you instantiate wrongly you may not get that, fine. We do not 



know exactly where we will get not P a or not R b or even or Q a or not Q b. Something 

which will bring the inconsistency, that is not very clear. 

Now, that always happens whenever there are instantiations. Earlier what happened? 

Earlier cases of RAA, there was no instantiation; they were almost propositional; 

everything should be possible. But, now there is instantiation and a equal to b; so I do not 

know which one I will be able to derive: not Pa, I will be able to derive or not R b. 

Which will contradict Q a not Q a, Q b not Q b; I do not know which one. So, let us keep 

it in this one and continue towards deriving inconsistency, right. Now, you start from, 

say for each x P x implies Q x; this is a premise. 
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So, third line, second line, I want to use my P a, right. Since, I want to use my P a. I want 

to instantiate it. So, write in the second line: for each x P x implies Q x implies P a 

implies Q a right. It is axiom four, A4. Then use modes ponens to get in the third line P a 

implies Q a, right. So, A4 and modes ponens. Then I can use P a as the premise and get 

by modes ponens Q a, right. But, here I have R a, not Q x. Anyway I can use RAA still, 

because I have already Q a, or for R b; I can use b also. Any one of the instantiations will 

do; which one we will go for, a or b?  

Student: b 



With b, fine. Then sixth one, introduce the premise for each x R x implies not Q x. Then 

again, eighth line will be R b implies not Q b. Then you have ninth line as R b. That is a 

premise. So, seventh line, I have left it, there is axiom four. So, it should have 

justification here as A4 and M P, fine. You have to fill it up; do not leave it like 

this.Then ninth is R b; I get in the tenth line, not Q b, by modes ponens, fine. Then a 

equal to b has to be used. So, eleventh line is, a equal to b, premise.  Twelveth. 

Student: Q x. 
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We have already Q a; we have not Q b, a equal to b; that should give the contradiction, 

right. That should bring an inconsistency. We have to use A7, a equal to b implies Q a 

implies Q b; X, s equal to t, X x by s, X x by t. So, our X is Q x, fine. This is A7. Then 

modes ponens. That gives Q a implies Q b; and we have already Q a. Q a is which line, 

fifth line. So, you just have Q b. That is the end of the proof, right? You have to write a 

line. Where is the inconsistency? So, inconsistency is proved due to formulas in lines: 

not Q b is in 10, and 14 clear? It is easy now, how the proofs will be going.  

The next concern will be, whether this system really captures FC or not? It does capture, 

and we will not do the proofs. Now, proof again follows the same line as that of PC to 

PL, right. It is sound; it is easy to see. Because all the inference rules are the valid 

consequences in FL, and all the axioms are really valid formulas in FL. Therefore, it is 

sound, by induction. Soundness is easy; completeness will be a bit difficult; because here 



you have to instantiate with all the terms. So, there is potentially infinite number of 

terms. For all instantiations you have to consider the formulas; whenever there is some 

for each x X you have to really consider X substituted by all possible terms. All those 

formulas have to be extended in order to get one maximally consistent set; because there 

is our approach to go to a maximally consistent set. To get that, you have to really add all 

these instantiations. That makes it difficult; but then it can be done. Because all of them 

are countable, so they can be enumerated the same procedure still can be used. 
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We will not prove that; but will mention. FC is adequate to FL. Which really means, you 

have two results: soundness and completeness. Soundness you can say sigma entails in 

FC X, then sigma semantically entails X in FL; that is your soundness. And 

completeness is the converse of it. If sigma semantically entails in FL X, then sigma 

entails in FC X, for any set of formulas sigma and any formula X. Which you can write 

also with reductio ad absurdum in a different way, right. Once you show that it is 

adequate you can prove something else; like, can you generate all the theorems in FL, all 

the valid formulas in FL.  

Suppose first-order logic is there; you know what are the formulas; you have the laws. 

But, they are only the basic laws; then there are so many others, infinitely many valid 

formulas are there. Can you generate all the valid formulas by using the laws? That is no 

completeness there; we are in a semantic domain. Now, well since FC is complete, it is 



enough to say by using the axioms and the rules of inference of FC. Can you generate all 

the valid, provable formulas? Yes, because we have the definition of a theorem, 

definition of a proof. So, what you have to do is, just feed all these things to a machine 

and program. Write a program; just go on generating by following the rules, whatever it 

is, right. We are not asking you to prove a particular theorem; we are just asking it to go 

on generating all possible theorems, right. So, it generates one by one, it gives you right; 

so that means the set of all theorems of FC is recursively enumerable. There is a program 

to generate all these things; it is an output of a Turing machine, right. So, it is recursively 

enumerable since it captures all the valid formulas in FL. 

So, all the valid formulas in FL, set of all that, is also recursively enumerable, right. 

There is a program to generate all the valid formulas in FL; the program is just 

programming of PC, implementation of PC, FC, right? Is it clear? It is the next strong 

question we have to ask, because it does not say when you will get your theorem, when 

you will get your valid formula to be proved. It just goes on generating on its own way, 

the way you have written the algorithm, right. But, problem is suppose you want to have 

a proof of something like this, right. That is a targeted one. It did not have any target till 

now. You just say, go on generating all the valid formulas. Now, you say whether this 

formula is valid or not? Give a particular one, that algorithm may not work, right? If it is, 

then it will work right; so that is the problem.  

Suppose you know that something, some formula is valid. Now, your algorithm 

generates all the valid formulas, so at some finite time it will be generated. And once it is 

generated it stops there, you can write another module on it, right. Use that as a module, 

and once this is generated, stop there, fine. So it stops it gives “yes I have got a proof of 

it”. That means, if your conjecture is true, you get a proof of it. If it is false?  

Student: No idea 

No idea. It may not stop at all; it can run on infinitely, right? So that is the idea of 

recursive enumerability, fine. If there is a targeted theorem to be proved, we do not know 

when we will get the proof, but we will get it if it is a theorem. If it is not a theorem, it 

does not say anything, the algorithm need not terminate, fine. It is one side of our strong 

question, that given any formula, can you decide whether it has a proof or it does not 

have a proof? It only answers it partially, right. And the undecidability theorem for the 



first order logic says that, the answer to the next question is negative, right. It is not 

decidable at all. It is recursively enumerable, but not decidable. Means, given some valid 

formula you do not know whether it is a theorem or not. Once it is a theorem you have a 

proof of it. Once you have the undecideability result you may say this recursive 

enumerability is a semidecidability result rather, because one part of it is decidable, the 

other part is not decidable. That is why they are also called semidecidable problems. So 

it is giving some more information to recursive enumerability. It is recursively 

enumerable, but not decidable; they are called semidecidable. Undecidability, we have 

not yet proved; we will see that once time comes. But, recursive enumerability, it gives; 

that is all.  

What about your Herbrand interpretations? For example, suppose you do not use FC, you 

just go to the Herbrand expansions. What happens there, you are given with one formula, 

FL formula; then you compute its Herbrand expansion. Now, it is potentially infinite set; 

but infinite set of propositions. Suppose it is unsatisfiable. We leave the question of 

validity, because by duality it is enough to consider unsatisfiability. Now, suppose the 

formula given is unsatisfiable. Then that means, its Herbrand expansion is unsatisfiable. 

Once it is unsatisfiable, by compactness theorem for propositional logic, there is a finite 

set which is unsatisfiable, right? Now, let us write an algorithm how to prove 

unsatisfiability from the Herbrand  expansion.  

We know, there is a finite subset; so start first one, is it unsatisfiable? Yes, stop there. If 

not, take the second one, ask the same question, is it unsatisfiable? If unsatisfiable, stop; 

otherwise add the third one, continue. If it is really unsatisfiable, it will stop somewhere. 

And that is one finite set, you have got, which is unsatisfiable. Compactness theorem 

guarantees that there is one finite subset, once it is unsatisfiable, right? That is why the 

algorithm will terminate; is that right? But, if it is satisfiable, again, algorithm will not 

terminate; it will not be able to show that it is not unsatisfiable, right. Again the same 

thing is coming there. Unsatisfiable sentences or unsatisfiable formulas in FL are 

recursively enumerable. So, you can get the same result from the Herbrand expansions 

also. But it does not say anything about the other side, undecidability, fine.  

Suppose that you need some more results like that; you start with a Turing machine, for 

example. Now, any Turing machine, its operation you can stimulate by one first-order 

sentence. Let us say first-order sentences. Just the way we are translating some natural 



language arguments. What you do there? Say, all horses are animals; therefore, legs of 

horses are legs of animals. In this argument what you do is, you take anybody is a horse 

H x, anybody is an animal A x; go on symbolizing it. You get one consequence in first-

order logic, with your translation of those English sentences or English phrases to 

predicates. And similarly definite descriptions to functions and so on. With that you do 

the translation. Now, suppose it is a Turing machine. Then you have to see what are its 

fundamental propositions or fundamental predicates. One is, a Turing machine can go to 

the right, come to the left, and so on.  

Suppose you number the tape, one, two, three, four, and so on, start from the finite left, 

left side cut, to right side only it is just extended, not both the sides; that always can be 

done. Starting from there, (even if you take both the sides you can again manage with 

negative integers, right) starting from zero. So, let us try one to infinity. Now, what do 

you do? If it is in some particular place, then you say where the Turing machine is. So, 

you say W5 means, now it is scanning the fifth square. Next what you do, if it is just fifth 

square and some transition is applicable, which says that “go to the right by reading this 

symbol being in this state” right. Now, you have to say what is the state of the machine, 

what symbol it is scanning. So, it is in W and it is scanning so and so symbol. So, for 

each symbol you have predicate S of something, what is being scanned. In which state is 

it, you write T of something, so T of that. Now, you say W have this, S of this, t of this 

implies? If there is a transition with that thing, so, you have to introduce a predicate “if 

the transition is such and such”. Then action of the machine means after the next step the 

machine will be in this configuration, right. So, it will have this state; it will be scanning 

this square, and so on. This can be again represented by the predicates, fine. Each step of 

the Turing machine can be represented by a predicate, by a formula. If such and such 

predicates are satisfied then such and such predicates are satisfied, right. That is how you 

will be formalizing the whole Turing machine.  

Once the Turing machine, its functions are given, you can just formalize, get a 

consequence. Now, you ask the question whether this Turing machine will halt or not. 

So, that means the halting state you have to translate now, right? It is in particular state h, 

that is again another predicate with h as the argument. So, halting of a Turing machine 

can be translated. Therefore, you have a consequence: this Turing machine entails 

halting state, right? So this translation is done now. Once it is done, that means halting 



problem for Turing machines is translated as a consequence. But, halting problem is 

undecidable; so consequences will be undecidable. Particularly, that consequence, that 

set of consequences what you get from the Turing machines will always be undecidable, 

fine. So, first-order logic is undecidable.  

In fact, this is the main thing why Turing started his Turing machines, to prove that first-

order logic is undecidable. That is how we got the computers; it came from logic. So, 

that is the undecidability result of first-order logic. There is another way of doing it like 

you may be using so many predicates and other things for translating the Turing 

machines. You do not need so much; you may need only one binary predicate. If there 

exists a binary predicate in your language, first-order logic language, it is enough to give 

undecidability result. In contrast, if you have a language where only the monadic 

predicates are there, then it is not undecidable; it is decidable.  

For example, if you have all the, all your consequences of this type where you look at the 

predicates, there is one predicate P which is unary another predicate Q which is also 

unary. Another predicate R which is also unary; all these are unary predicates. So, 

suppose you get all consequences which use only unary predicates no functions involved, 

right. That is your Aristotelian logic, monadic logic of Aristotle, like your Aristotelian 

sentences; now all men are mortal, Socrates is a man, therefore Socrates is mortal. And 

all those sentences, they are all monadic first-order logic sentences. Every predicate there 

is unary; it is also called monadic, unary or monadic. (Similarly, binary or dyadic there 

are some different languages.) Now, what happens, if that is so, then it is decidable. But, 

if there is at least one binary predicate or one function symbol, then it will not be 

decidable, fine.  

See its traces can be there in the Herbrand expansions. In the Herbrand expansion. If you 

have one function symbol f, then we get one infinite domain. So, its traces found there. 

That, probably that will be undecidable; that can be proved to be undecidable. If there is 

at least one function symbol or there is at least one binary predicate, then also you can 

show that it is undecidable. 

 We are not proving that strong result also. But monadic predicates, if the language only 

concerns monadic predicates or unary predicates, it is decidable; how do you show it? 

How do you show that if it is only monadic predicates, then it is decidable? FC 



arguments do not show it, right? FC says it is recursively enumerable, fine. What about 

undecidability or decidability? Herbrand expansion will be finite, right? There is no 

function symbol, is it not? Suppose like this, you have a. There is a constant b, there is 

another constant. So you make the Herbrand expansion. What about the equality 

predicate?  

Student: Sir, binary predicate. 

Hm. It is binary, that will create problem. So, in Aristotle's logic equality predicate is 

also not there, right. So, there is no problem. You get only a finite number of constants, 

maximum, in any consequence. So, you have got a domain consisting of those constants 

only. In that domain, you do it; transfer to Herbrand expansion, that is a finite set. So, it 

is decidable. Easy from the Herbrand expansions, right. Also the algorithm was given by 

Aristotle himself; there is another way of doing it, anyway we do not need it now, right. 

This is the story about decidability results. With this we stop our discussion  on FC. We 

go to another proof method. So, what is our next proof method to discuss?  

Student: Analytic tableau. 

Analytic tableau, right. That is what we have not yet discussed. You have propositional 

analytic tableau and now we want first-order analytic tableau. 
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Again, it is an extension of propositional analytic tableau, all the connective rules are 

there, whatever we had earlier. Now, we need not confine ourselves to implies, for all, 

everything can be tackled there at a time, just like your connectives. All the connectives, 

even top, bottom symbols are there in PT. To extend it we need some more rules for the 

first-order logic, specific to it. One is, your for each rule, this says, for each x X you can 

derive X x by t. But then we add something else, which says that the same thing can 

again be used, because with this one instantiation you may not be able to prove it, you 

may need some more instantiations. In practice when we use it will not write this, but 

will remember we used it. In contrast, you have there exists. You can instantiate only 

once; after that you cannot use again. We will have there is rule, which says, there is x X, 

so get X x by t. It is not repeated; you cannot use it once more; but what is this term t?  

Student: Is that particular generated form of all the premises it should be. 

No. Suppose you have already Pc in the premises; you cannot write again c, right. In 

some context, in mathematics, you are doing some problem. You say there exists one 

number between zero and one, having such and such property; you say let that be alpha. 

Now, again you find there exists another number within zero and one having some other 

properties; you cannot say, let alpha be that, right? It may not be. It can be some other 

thing. So, that is what exactly done. This t should be a new term to the branch, to the 

path; whole path from the root to that place where it is being applied. It need not be new 

to the whole tableau till now generated. Because all the tableaux are generated only path- 

wise depth-wise. 

We are doing it breadth-wise because of our convenience. By definition, tableau is only 

depth-wise. It concerns only through the path, nowhere else. When it is closed, we go to 

the next path; that is the way it is being implemented. What we do, we say that t is new 

to the path, new term in the path. We will again say what is the meaning of this new. 

Right now, we will remember this t, means it is constant; let us say it is a constant right. 

It is a new constant; that will simplify. It will need some experience to go for a 

generalization, where you can use terms also, not only constants, any closed terms any 

other terms even you can use. 

Student: Variables or not variables 



We will see that. There are some other constants, we will see slowly. Let us think of this 

t as a new constant for the time being, fine. Similarly, we will have rules for not for all. 

That will say not for each x X, you can get not X x by t; again t new. It is really 

existential, right. Not for each is really there exists not X. So, we will not write, it is 

equivalent to there exist not X, therefore this a tableau rule. It will proceed this way. 

Then we have not there is, which says not there is x X, from which you get not X x by t, 

for any term t. And also repetition of the rule, repetition of the formula; it can be used 

once more. So, these two are really universal rules, these two are existential rules.  

(Refer Slide Time: 46:40) 

 

And there are two more for the equality. In equality, you have reflexive property of 

equality, which says anywhere you can add t equal to t, just as in resolution. It is like an 

axiom; anywhere you can add it. And there is substitutivity, which says, if you have X, 

ok; let us start from equality; s equal to t, X x by s, then infer X x by t; fine. Here, it 

needs two, just like your MP; if both the things occur in the path, then you can extend the 

path by adding X x by t.  So, these are all the rules, extra rules for FT comparing with 

PT.  

Then, in same way we will be proceeding as in PT, extend the tableau path-wise. Then 

once you get negation and that formula itself, both in the path, close the path, right? If 

the whole tableau is closed, then the formulas introduced at the root are inconsistent. The 

set of all those formulas is inconsistent. So, you are proving only inconsistency; nothing 



else. Then to prove sigma entails w; we show sigma union not w is inconsistent; RAA is 

a definition now.  


