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So, last time we had discussed the relevance lemma for the first order logic. We have 

stated it in a way that only one interpretation is fixed; under that interpretation, if you 

take different valuations which agree on all the free variables of the formula, then it does 

not matter whether you consider this state with one valuation or the other. If one state 

fixing the, one of the valuations, is satisfying the formula, so is the other, and conversely. 

But relevance lemma can also be generalized a bit. Like, you consider the same 

interpretation. Then there might be some predicates, some function symbols which are 

not occurring in the formula.  

Informally it looks that whatever value or whatever relations you associate with those 

predicates or whatever functions you associate with those function symbols, which are 

not occurring in the formula, it should not matter. In other words you can think of 

different interpretation, I is one interpretation, J is another interpretation with the same 

domain D. Suppose the maps phi and psi in different interpretations, now agree on all the 

predicates and function symbols that are occurring in the formula. Then you can show 

that any state l under any one of them by fixing the variables will either satisfy or not 

satisfy accordingly. That is easy to see, because phi P will be the same relation as psi P, 

so it does not matter whether inside the proof you write phi of P or psi of P, anytime. 

You can just exchange between them. That is the generalized form of the relevance 

lemma.  

But then we have told that for sentences something else happens, for relevance lemma. 

Then, if you take the formula Px whether you go for there is x Px, for each x Px, they 

will be sentences from Px by quantifying over the variable x. So we need and we told 

that it might be up to certain extent. For that up to certain extent means what? We have 

to specify it. So, for that reason we will go back to our usual flow of presentation of the 

first order logic. There, we have come across one idea that state can be a state model of a 

formula, but we have not defined how a formula is satisfiable or it is not satisfiable. As 



regards propositional logic that was our scheme. We go for interpretations, then models 

then see how a formula is satisfiable and how it is valid and so on. These are our main 

targets. Let us start with that today. 
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We say that a formula X is satisfiable if it has a state model. This means, it will be called 

satisfiable if there exists one interpretation I, there exists a valuation l under I such that 

the state I l satisfies the formula X, is that so? That is what we mean by telling that it has 

a state model. Otherwise you will say that the formula is unsatisfiable. That means you 

take any interpretation with whatever domain whatever map phi, does not matter, and 

take any valuation under that interpretation. Then the ensuing state I l will falsify it. In 

that case only we say that the formula I X is unsatisfiable. Similarly, we can define 

validity. A formula X is called valid if each state is a state model of X. Just like your 

interpretations in propositional logic.  

Now, we are dealing with the state models or interpretations which are states. In fact, 

states, we are not telling them as a interpretations, is that; then you say that a formula is 

invalid if this does not happen. Which means, you can always find one state which 

falsifies X, then you say it is invalid. Then we can really generalize this to the 

consequences also. Once, we have come across this. You say that a formula X is given, 

and a set of formulas sigma is given. You want to find out when sigma entails X. For 

sigma entails X what we need is, let us go back to propositional logic. It says you take 



any interpretation which is a model of all the formulas in sigma or propositions in sigma. 

Then such an interpretation should be a model of X; that is what it is. Now, we will be 

dealing with state models. So this one, any state which is a state model of all the 

formulas in sigma is said to satisfy sigma. Such a state which satisfies sigma has to 

satisfy X. Then we say that the consequence is valid. We say that sigma entails X, here 

each state which is a state model of sigma, state model of sigma is a state model of each 

formula in sigma, is also a state model of X. If such a state model of sigma exists we also 

say that sigma is satisfiable; lets write it separately. 
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We say that sigma is satisfiable if it has a state model. That means if there is a state 

which is a state model of each formula in sigma. In such a case we also write the same 

symbol say this state is I l, we will write I l satisfies sigma, this the way we will be 

writing. It says, you consider any state I l. If I l satisfies sigma, the I l must satisfy X. In 

that case you say sigma entails X; just like your propositional logic. Instead of 

interpretations I, you are writing there, you are now writing states I l.  

If you take two formulas X and Y, X and Y are called equivalent; so again we write the 

same symbol X is equivalent Y; now, you should be able to do it; if X entails Y and Y 

entails X. Which means you consider any state, that state either satisfies both X and Y or 

falsifies both X and Y; is that so? That means for any state I l, either I l satisfies both of 

them or it falsifies both of them, yes? You can write it this way. It is a criptical way of 



writing because here we are following the same way, if than and everything we are 

writing. So, I not if and only if. We go with this. Which means that you take, consider 

any state; it is either a state model of both of them or it is not a state model of both of 

them simultaneously. Let us see some examples, how it goes. 
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Consider this formula. Now is it satisfiable? It should be. We do not see any 

contradiction there. But then to show that it is satisfiable, we have to really construct one 

interpretation, one valuation and then show how this happens. Let us go for some 

interpretation where we will take, say, I is equal to D phi. Let us take D equal to say set 

of natural numbers, we are fond of it. Now then, say, phi of; we need only for P and for f, 

say, phi of P is something and f is as we have taken earlier, say successor function. Now 

you can read that sentence in this interpretation. This is all that we need, for the sentence 

to be satisfiable or not one interpretation is enough; we do not need to go for the 

valuations.  

But, you can keep the valuation, does not matter; due to the relevance lemma. As it is, 

the sentence now reads: every natural number is less than or equal to its successor; that is 

true. So, it is a satisfiable. But you have to really go for the states. Relevance lemma now 

says that if a sentence is satisfiable, then you need not consider the states, you can simply 

consider the interpretation. Any state, that interpretation, are the same things for the 

sentences. For the sentences, you can really redefine, a sentence X is satisfiable if it has a 



model, not even state model. It has a model because once it has a state model it will have 

a model wherever the interpretation is, the  state is, that interpretation will also satisfy. 

But, if you want to see, let us say, l say, l of x equal to 5 does not matter. Once you go 

through everything, it will be translated as the same sentence. This 5 will never occur in 

that. That is the satisfiability, what about invalidity or validity?  

It does not look like that it will valid, there is no big structure there. Now, for invalidity 

what to do? Again we have to construct one interpretation. You just take say P is greater 

than or equal to; you have done already, a successor. Once you say J equal to D psi, 

where D is the same natural numbers, and phi, or psi, I say greater than or equal to. Now 

we will take greater than. Just take the opposite of that, compliment of that is greater 

than or equal to, works then phi of f same successor function. 

Student: Sir, where psi of P is what. 

Psi of P is greater than or equal to; and here also psi of f is the successor function. Then 

what happens in this interpretation, we say that J satisfies for each x Px f of x, if what 

happens? If, the sentence, the sentence will be for each, for each natural number, the 

natural number and its successor should be related by psi P. So, write it as a sentence 

directly: if, each natural number is greater than its successor. If this is true; this is not 

true. Therefore J is, J does not satisfy for each x Pxfx. So, we say that if you consider 

states, again does not matter. You just take l x equal to something and then J l will be 

translated to the same sentence again. Therefore, this is invalid.  
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What about this sentence? For each x, let us say, Px implies Px. It should be valid, but to 

show validity if you take only one interpretation that will not suffice. Because validity 

requires you take any interpretation, any state under it, that should satisfy it, so you have 

to really start abstractly. 
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Let I be equal to some D phi. We do not have to specify what this phi is. What this phi is, 

something; it is an interpretation. In fact, here also you need not consider states, because 

it is a sentence. Let us start with this; go by the definition.  
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So let l be any valuation under I. Now, I l satisfies for each x Px implies Px if by 

definition, what will it give? Just go by the definition, what does it say? To look at it 

formally, if and only if, for each element d in the domain D, when you go for the states, 

new states, l where x is fixed to d, so we have to see I l x fixed to d should satisfy Px 

implies Px. Then it will, it will come to I l satisfies for each x Px implies Px if and only if 

for each d in D, now this phi will be written in terms of phi; so, you say that I l x fixed to 

d satisfies, you want Px implies Px; so it will go to what? l is Px to d now. It will say, if 

it is translated to English sentence: if x belongs to phi of P or d belongs phi of P then d 

belongs to phi of P; that is how it will look. Is that so? That means you may write this d, 

if d belongs to phi of P, then d belongs to phi of P, because x is fixed to d and p belongs 

phi of p under I.   



So, I l x to x fixed to d satisfy, when this happens and implies become if then in English; 

in fact it is not if then, which I would have written, if d does not belong to phi of p or d 

belongs to phi of P, according to our formal semantics. Let us write that way, or that is 

how we have written; this implies, which is true. Therefore we conclude that for each x 

Px implies Px is valid. Again, when it is valid we will write the same, whereas in 

propositional logic will prefix that with the symbol FL, so this is valid. 
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For equivalence, let us take one more example. Again does it happen? This one says, in 

abstract terms, that there is one d in your domain, there is some particular element d, let 

us say, so that whatever x you take, does not matter, x and d will be related by P. This 

only asks you, whatever element you choose from the domain you will get some d 

corresponding to that so that x and d will be related. So, you take the 7, d as earlier. It 

should work. But then how to prove it? You have to start with interpretation.  

Let I l be a state, where let us say l of x, l of y are given. You are not writing it because 

we have not specified it, where I equal to D phi. Let us start with that. Then suppose I l 

satisfies there is y for each x Pxy. Once this happens, we want to show that the same I l 

satisfies the other sentence. Now, when I l satisfies this, what do we get? It will say, 

there exists at least one element d in our domain; let us write it; then there exists at least 

one d in D such that for each d prime in D we have d prime, d belong to the relation phi 

of P; this is what it says.  



See, we want to show I l satisfies each x there is y Pxy. That means, this there exists at 

least one d and for each d prime, somehow it should come out. Now, how to bring in 

that? If we can visualize this d, for example let us see as natural numbers, then it will 

look like 0 d belongs to phi of P, 1 d belongs to phi of P, 2 d belongs to phi of P and so 

on. Then we can say whatever the natural number is that d works, that is how we are 

thinking. So simply we would say that this d does not depend on d prime. Here, that is 

what it says. You can say it is a vacuous dependence, the same d works for every d 

prime.  
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Then we see that for, then, for each d prime in D and the same d, we have d prime d is in 

phi of P. We have just restated it, to make it understandable in a better way. Which says 

that for each d prime in D there exists d in D such that d prime, d belongs to phi of P. 
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Which means I l satisfies for each x there is y Pxy. Now, then it also says something why 

the converse does not hold.  

Writing this way might give you some problem that they are just commuting. But they 

are not really commuting. There is some understanding, it is going on along with that; it 

is not just formal writing. Here how to show that this does not entail this? If we just go 

on writing like that, it will not. We have to give one particular interpretation where one 

sentence holds the other sentence does not. That is what we need to show. This is not just 

writing like this and then say the same d prime, the same d make not work for all d. That 

will not give the answer. If it really, give one example. Now to show this, what we do, 

take I equal to one particular interpretation, we want and let us say, and some phi with, 

see phi of P is. 

Student: Equality. 

Equality? Less than or equal to will do. Then this interpretation I, I satisfies or each x 

there is y Pxy. Because? What is the reason? It is simply translated to some sentence in 

this interpretation. It is a sentence, right?  
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We do not want to go to I l. Here it is. The translation is what? For each natural number 

there exist a natural number, say for each natural number m, there exist a natural number 

n such that m is less than or equal to n; that is correct.  
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For each natural number there is a greater natural number; that is what it says. For each 

natural number m there exists a natural number n such that m is less than equal to n. But, 

now I satisfies the other sentence: there is y or each x Pxy if and only if what happens, it 

is there exists a natural number n such that, whatever natural number m you take m will 



be less than equal to n. There is a maximum natural number, which is wrong. Natural 

number, which is false. Therefore, this does not entail the other one. 

Let us take this equivalence. It some such law, of De Morgan, right. Because for all or 

for each means for each d and d in D, should be true; which is something like P of d1 and 

P of d2 and P of d3 and so on. And there exists one means for some d, P should hold. 

That means Pd1 or Pd2 or Pd3 and so on. This is something like your De Morgan’s rule. 

Now, can you show it? Well, we have to try with some interpretation say I l satisfies not 

for each x Px. We want to show validity, so no example will do. You have to start 

abstractly. Here, let us take I equal to D phi; l, we need not fix. Here, we can start with I 

itself due to relevance lemma; so let us try that; if it goes like this.  

Now, I satisfies not for each x Px if, what happens, it is not the case that, that for each 

element in the domain Pd holds; d belongs to phi of P. See, phi P is unary here, so phi of 

P must be a subset of D. This says, it is not the case that for each d in D, d belongs to phi 

of P. Which means there is something beyond phi of P. But, it is in D, so, if and only if 

there exists at least one d prime in D, but d prime does not belong to phi of P. It is just 

the same thing as that, which does not belong to, it belongs to phi P complement, that 

corresponds to not. So, if and only if, I satisfies there is x not Px.  
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Let us go back to our discussion on the relevance lemma. Where, we had one formula Px 

and we are thinking of which, where to look at it? Suppose Px is satisfiable. Now what 



will happen to for each x Px or there is x Px? These are the question. Let us try Px is 

satisfiable. That means, there is one state which satisfies Px; it is a state model of Px. l x, 

we do not know what it is. Let us write it as d in our domain. Here, I take I equal to say 

D phi. When you say I l satisfies Px, it means P l of x.  
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So, d will be coming up; d belongs to phi of P, that is what it will say. This particular 

element, to d which l assigns to x, must be inside your relation, subset of that relation, 

subset of that domain D. Will this be true for each x Px? It will say every element is in 

phi of P, P is the totality. P is the whole of D, that is what it is says. But, will this be true 

because it requires there exist one element d which is in P, that is exactly. This is that or 

if you look at this, you say I of, you say there exists x Px is satisfiable. 

If for some state say I l prime, I l prime satisfies there is x Px, that is our definition, now 

I l prime satisfies the x Px, is the same thing as telling I satisfies the x Px because of 

relevance lemma. So, you may have forgotten the l prime. Forget this state. We simply 

write I satisfies there is x Px for some interpretation. It may not be that interpretation, 

some interpretation. We know I satisfies there is x Px. Now, this is done when there is 

some element in the domain which is in the relation, which corresponds to P, that is what 

exactly told by this I also. 

It says, if I start with this I, I of d belongs to phi of P. Instead of any other I, I can take 

the same I, same phi, so d belongs to phi of P, satisfied. That means Px is satisfiable if 



and only if there is x Px should be satisfiable. But if you consider validity case, it will be 

different. It is not there is x Px, it should be for each x Px; let us see why it is so. 
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Suppose we take that Px is valid. Once we say Px is valid, it means whatever 

interpretation you take whatever state you consider under the interpretation, that state 

satisfies Px; that is what it says. Now, we say I of l satisfies Px for whatever state I 

chose. Suppose l of x is some d. It says d belongs to phi of P, for whatever d I chose. 

Because this is true for every I l, every state. I choose the l's, so that every element is, 

now obtained by, some l. Then that is equivalent to varying this d also. Whatever d I 

chose, d belongs to phi of P. So, it is same thing as telling for each d in D, d belongs to 

phi of P. For each x Px is also satisfied by the same I. But why same I? Any I, I choose 

from the beginning, the same way it will proceed. If I chose that, I start with that, I find 

that the same I satisfies for each x Px. And whatever I, I  choose, does not matter. The 

same argument still holds. That means Px is valid if and only if for each x Px is valid.  

This argument, really, we can generalize a little bit. Instead of having only one free 

variable we can have many free variables. We have to go accordingly. Let us give a 

definition.  

Suppose X is a formula with all its free variables as x1 to say xm. Here we are not telling 

that it has, these are the variables which are from the beginning, that x0, x1, x2. We are 

just making it abstract; some x1, xm. Or, you can write y1 to ym, if it is confusing. With 



the syntax, then we write X as X square bracket x1 to xm; just to say that these are the 

free variables, these are all and only free variables in X, nothing else is there, just to give 

that information we write this way. Now, we define that the existential closure of X is, 

there is star X, which is equal to there is x1 there is x2 there is xm, x1 to xm we are just 

giving another notation, because we do not know what are the variables. 
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So, write it this way. There is star X, which means you take any free variable there, 

existentially quantify over all these free variables, whatever sentence you get, that is the 

existential closure. Similarly, we say universal closure. The universal closure of X is for 

each star X, which is for each x1 for each x2 for each xm, X of x1 to xm. Here, as we 

have seen for Px, there is x Px is the existential closure; and for Px, for each x Px is the 

universal closure. And all these quantifications are done in the beginning, not inside 

anywhere. Of course, inside will be arbitrary; where to do it? So this fixes it. Our 

observation can be really summarized. What we have observed from this examples is: X 

is satisfiable if and only if its existential closure is satisfiable; and x is valid when its 

universal closure is valid.  

In fact, the way we have introduced the semantics, had a bit of confusion, now that is 

removed by this theorem. The confusion is this. You consider the formula Px implies Px. 

If you translate, it will look like, if x is a P, then x is a P; something like this. Suppose P 

stands for x is some man, or something. See, if x is man then x is man. But, we do not 



know what x is, so without having a particular thing for this x, it is not a sentence. Also 

how do you say it is valid? Some philosophers will not be able to accept it at all, because 

x is a variable it is a named gap; there is nothing there, how can you say that this P, that 

is, P should not be allowed, that is what they say.  
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But, our semantics says, yes, it is valid; because you take any state, you are now in an 

interpretation; any state I l, that l of x will become some concrete person, in some 

domain, a concrete element. And this P will become a concrete relation. So, x is a P will 

have a meaning. Now it will say d belongs to phi of P. Under any state, it will say if d 

belongs to phi of P, then d belongs to phi of P; so it is allowed. Interpreting open 

formulas by states is philosophically doubtful, but we need them in programs. So, we 

have to do it. But now this theorem says that whatever we have done, whatever 

confusion we have brought in, can be resolved. 

In fact, you look of, look at them as sentences by universally quantifying over it. If it is 

validity, then there is no problem, it becomes a sentence. Now, it will look like this and 

we just say for each x, which is a sentence. And this really gives an alternatives 

semantics. There, what you do, you just interpret the sentences, do not interpret the 

formulas at all; interpret only the sentences by translating them into some concrete 

domain. You know how to deal with the concrete domain. There is some concept of truth 

there, so translate it; verify the truth there. 



Now, sentences can be interpreted. But then how to go for formulas? Through this 

theorem, you say, formula, any open formula is satisfiable if its existential closure as a 

sentence is satisfiable. You do the other way around. That also can be done, if needed. 

And validity, similarly, can be just is this. We will not prove it, because we have already 

proved it. This particular case Px and for each x Px, there is x, there is x Px and Px is 

satisfiable, The proof is same. That is the crucial step; which will come in the inductive 

step. It will be done by induction, now on the number of variables, free variables in X. 

We will just give an outline. 
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Suppose there are x1 to xm, X, k is number of variables, of k, if it is 0, it is a proposition; 

it is a sentence. There is nothing to do. Suppose for k free variables, it is alright. Now 

you have another free variable, that is the inductive step. Then what you do, first write 

Xe equal to there exists x k plus 1 and then all the others x1, xk, x k plus 1, only one 

variable I quantify. What happens, Xe is having only k free variables. Your induction 

hypothesis will apply on x e. All that we have to prove is, X is satisfiable; this X is 

satisfiable, if and only if, Xe is satisfiable.  

Once you do this, you use induction hypothesis and then go for the conclusion on Xe. 

And the proof is that one, which we have done: Px, there exist x Px, there is only one 

free variable, one existential quantification there. So, same thing we will proceed. The 

proof is not a big thing here.  



All that we have done today is, given the satisfiability, validity, invalidity and 

consequence, equivalence. Then we have connected the satisfiability and validity with 

the relevance lemma. We see that sentences can always be interpreted directly. This 

gives rise to one alternative semantics, where you first define satisfiability or validity for 

sentences through interpretations, without going to the states. Then open formulas are 

satisfiable or valid according as they are so, the existential closure or universal closure 

for satisfiability or validity respectively. So, states are not required; that is what the 

simplified semantic says. You can directly interpret this way. But, I told that this is up to 

some extent, so that some extent is, till we are concerned with satisfiability or validity 

alone, nothing else. But you may require something else. So, states really required for 

that purpose. That example you can take. If there is a program and something is 

happening you have to work till termination, that decides satisfiability or validity. But 

inside what is happening, you cannot be, you will not be able to analyze. If you have a 

state concept, you can analyze, in, what is happening in the next step, even if it is not 

terminated, that is that advantage. So, we are going with this semantics. 


