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Ok last time we discussed this result I want to make an emphasis the result is self adjoint

operator on a finite dimensional inner product space has an eigenvalue.
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I want to just mention that every self adjoint operator on a finite dimensional inner product

space has an eigenvector ok, it is the same thing showing that something an operator has an

eigenvalue is the same as saying there exists a vector x knot equal to zero such that if the

operator is T, T x equals lambda x. What is important is in this result is that, this is, see for,

this is for a finite dimensional inner product space. 

For a finite dimensional vector space we have already proved that for a finite dimensional

complex vector space, we have already proved that any operator has an eigenvalue ok. But if

it is a real vector space there are operators which do not have eigenvalues ok. For example

the rotation matrix ok rotation matrix does not have eigenvalues, if the rotation is not 90 or

270 ok. So this result have been proved earlier that is what I want to emphasize for a complex

vector space an operator T having an eigenvalue is a simple application of the fundamental



theorem of algebra. Fundamental theorem of algebra says that the roots of that polynomial

are the roots exists they are either real or complex ok.

So there is no guarantee that the roots are real, so we have this general result for a complex

vector space. So this is more result for the real finite dimensional inner product space than for

complex finite dimensional inner product space ok. This result is more for the real case more

important for the real case than for the complex case. Complex case has been settled already

ok. There are also one or two comments I need to make. One is this says if you have a

complex finite dimensional inner product space and a self adjoint operator on it.

(Now) for a self adjoint operator you can look at the matrix corresponding to that operator

relative to some orthonormal basis, then that matrix is a Hermitian matrix if A is the if T is

operator and if A is the matrix of T relative to some orthonormal basis then this A is equal to

A star ok. I am still in the complex finite dimensional inner product space so the entries of A

could all be complex ok but this theorem says that the characteristic polynomial has only real

coefficients because it has only real roots. If it has only real roots then it can be written as the

characteristic (equa) characteristic polynomial can be factorized with linear factors lambda

minus lambda 1, lambda minus lambda 2 etc lambda minus lambda n where each of these

lambda 1, lambda 2, lambda n are real ok.

So it  maybe  a  completely  complex  matrix  but  if  it  is  self  adjoint  then  its  characteristic

polynomial is real, no this is not a trivial observation, this is the consequence of the previous

the proof of the theorem and finally finite dimensionality is important. If the space is not

finite  dimensional  and  if  the  operator  is  self  adjoint  then  we  could  we  need  not  have

eigenvalues so I will give that example. So I am saying that this is not true in the case of an

infinite  dimensional  inner  product  space so again for us the familiar  infinite  dimensional

space will be C 0, 1 this time I will take real value (so) it need not be complex value.

Real valued continuous functions on 0, 1 with the inner product f, g being 0, 1 f of t, g of t dt,

this an inner product space. Let’s ok, real inner product space I am not taking the complex

conjugate. 
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Let’s look at the operator T on V defined by T f this must be a continuous function so T f

acting  at  T  is  T  times  f  of  t,  multiplication  operator  we  have  encountered  this  before.

Obviously it is continuous because it is product of two continuous functions. So this is well

defined T is an operator on V, T is linear that can be verified.
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T is also self adjoint that is an exercise,  simple exercise.  T is a self  adjoint  operator ok.

Suppose that I want to show that this T does not have an eigenvalue, suppose that there exist

an f such that T f equals lambda f ok just look at the definition of T f then it means T f minus

lambda f is zero I can write this as T minus lambda f of t this must be zero for all t in 0, 1. 



If this equation holds for some lambda then that lambda must satisfy this equation for all t ok.

Lambda is if this equation holds for some fixed lambda so lambda is fixed when t is not equal

to lambda this  means F t  is  zero,  lambda is  just  one number provided offcourse lambda

belongs to 0,1 ok. But for if a continuous function it is zero at all points except at one point in

0,1 then what must be the value of the function at that point? Also be zero.

You take either a left limit or the right limit depending on the situation, depending on whether

you are to the left of lambda or to the right of lambda so it simply follows that F must be

identically zero so F cannot be a Eigen function, eigenvector it is a function here continuous

function that we are seeking so there is remember the condition on the eigenvector is that x

knot equal to zero. T f equals lambda f T x equals lambda x, x knot zero, F is zero is the only

function  that  satisfy  this  equation  so  T  does  not  have  an  eigenvalue  ok.  So  T  has  no

eigenvalues.

But we have proved that in the finite dimensional real inner product space also if it is self

adjoint then it has eigenvalues. So finite dimensionality is important ok. The next result is

how is given an invariant subspace of corresponding to a linear transformation how does the

orthogonal  compliment  of  that  subspace  behave.  This  question  comes  for  the  following

reasons. 
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If see all Eigen spaces corresponding to a given eigenvalue are invariant subspaces ok we

have seen this before. If you are in an inner product space what more can be said. If w is a



subspace invariant under a linear transformation T then W perpendicular will be invariant

under T star ok. This result will prove useful and only for finite dimensional spaces.

So Let be a linear operator over a finite dimensional inner product space, let W be finite

dimensional inner product space I will call it V, let W be a subspace of V invariant under T.

For instance you could take the Eigen spaces. Then W perpendicular is invariant under T star,

the proof is really straight forward. 
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Proof is as follows so all that I want to show is given T W contained in W it follows that T

star W perpendicular contained in W perpendicular, this what we want to show ok. W is

invariant under T, W perpendicular invariant under T star.

So lets take Y in W perpendicular and T star y to be x, so this x belongs to this left hand side

subset I  must  show that,  that  is  perpendicular  this  vector  x is  perpendicular  to  W. I  will

rewrite it as x perpendicular to W. Ok so take an arbitrary W ok lets say U let U belong to W

and consider the inner product of x with U, I must show that this is zero, I want to show x is

perpendicular to W, x is taken from the left hand side subset, x is star y, y belongs to W

(perpendicular). So look at inner product of x with U, it is T star y with U and this is y with T

U, the proof is through right.

See this T U, U is in W, T of U must be in W so this is in W so I can write this as y, U prime

where U prime belongs to W. But y has been taken from W perpendicular. So this a dot



product of a vector in W perpendicular and a vector in W which is zero by definition. So x is

perpendicular to U and so x belongs to W perpendicular. 
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Ok in particular will apply this result for the case of a self adjoint operator. So for a self

adjoint operator if W is invariant under T then W perpendicular is invariant under T ok, will

make use of this, that is our next result. So the next result is an important corner stone.
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Let T be a self adjoint operator on a finite dimensional inner product space. See we have

shown that V has sorry T has real Eigen we have shown that all eigenvalues of T are real ok.

What we want to mention further is that, there exists an orthogonal basis self adjoint on a



finite dimensional inner product space there exists an orthonormal basis for V such that each

basis vector is an eigenvector. Remember that we proved already the converse of this result,

that is how we started the section.

If  T is  a,  is  that  agreeable?  We started  with the  following assumption,  let  T be a  linear

operator on a finite dimensional lets say real or a complex inner product space lets say T is a

finite T is a linear operator on a finite dimensional inner product space with a property that

there exists an orthonormal basis B such that the matrix of T relative to this B is a diagonal

matrix ok, then we have seen the T must be (())(15:27) in the real case we have seen T must

be self adjoint, in the complex case we have seen that T must be normal T-T star equals T star

T ok.

In the real case normality is not possible in the real case only self adjointness is possible that

is only for self adjoint, so all that I am saying is this is the converse of that result the question

that one could ask is in the complex case there is normality of the transformation T, in the real

case there is self adjointness of T. So I am saying that the self adjoint case the answer is yes.

Can you see that the matrix of T relative to this basis must be diagonal? If this happens, there

exists a basis V each of whose vector is an eigenvector. So the matrix of T relative to that

basis is a diagonal matrix, so this is a converse of that result ok.

We, ok let’s take up the complex case a little latter  but let me mention presently that the

equation  similar  to  normality,  that  is  if  T-T  transpose  lets  say  A-A transpose  equals  A

transpose A does not necessarily imply that A is diagonalizable ok. This is the real case for

the definition of normality. Definition of normality over complex is A-A star equals A star A

ok, the claim is that if you have a complex matrix that satisfy if you have a normal complex

matrix then it can be diagonalized ok that is the claim.

That is the claim that I am making now, I told you that this is the converse of the question

that we stared with which we will see is true. We are only look at the real case for real case

remember that normality when you replace star by transpose does not hold ok. Example is

again the rotation operator. The rotation operator for theta not equal to pie by 2 or 3 pie by 2

(trans) satisfies the equation A-A transpose equals A transpose A identity infact ok but the

rotation  operator  we know that  for  these two values  does  have an eigenvalues  ok so no

question of even asking for eigenvectors.



Ok so lets  prove,  so this  is  the  result  both fore real  and complex case right,  I  have not

mention  anything about  the  underlying  field.  You have  a  self  adjoint  operator  then  it  is

diagonalizable by means of a unitary matrix or an orthogonal matrix depending on whether it

is a complex space or a real space ok that is what this theorem says. So the proof will make

use of the two results that we proved earlier, for a self adjoint operator we have shown that

there are all eigenvalues are real we have shown that a self adjoint operator has eigenvalues

ok, these two results are important offcourse I will also make use of this result.

The proof is by induction, so lets take the case proof is by induction lets take the case when

dimension  of  V is  1,  I  know that  T has  an  eigenvalue  and so  an  eigenvector  T has  an

eigenvalue value and offcourse an eigenvector ok, what I mean by this is that if you are in the

complex case offcourse is this make sense if you are in the real case let us just remember

once again that we have shown for a self adjoint operator that there exists a real eigenvalue

and which actually means the corresponding eigenvector can be taken to be real ok.

So T has an eigenvalue and an eigenvector, lets take see if dimension V is 1, so let me call it

ok let us say T x equals lambda x, lambda is eigenvalue x is eigenvector. In this case lets call

x1 as x by norm x, x is not zero so norm is not zero call x1 as x by norm x then just look at

the basis B consisting of this vector alone, the matrix of T this is the basis for V and this is an

eigenvector  by construction.  So the induction  the first  step of  induction  principle  that  is

satisfied ok. V is one dimensional this is a basis, this vector by construction is an eigenvector.

So lets assume that the result is true for all finite dimensional vector spaces of dimension less

than n ok that is I have a self, whenever there is a self adjoint operator on a finite dimensional

vector space of dimension less than the dimension of V the there is an orthonormal basis each

of whose vector is an eigenvector ok. 
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Ok so lets now look at this construction can be done in any case T has an eigenvalue real

eigenvalue in the real case x is a real eigenvector so this construction can be done. What I

will do is to look at W as the subspace span by this vector x1 ok then this is this eigenspace

an eigenvector so obviously T of W is contained in W and W is invariant under T by the

previous theorem.

So T of sorry T star of W perpendicular in contained in W perpendicular but T start is T self

adjoint operator. So T of W perpendicular is contained in W perpendicular. The dimension of

ok T is self adjoint. The dimension of W perpendicular is one less than the dimension of V

because the vector remember V is equal to W plus W perpendicular finite dimensional vector

space V is W plus W perpendicular the dimension of W is one so dimension W perpendicular

is one less than the dimension of V. So now I will define an operator U on W perpendicular

using the operator T.

Lets set U from W perpendicular to W perpendicular, so U must be a linear operator, the

spaces must be the same, 
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set this defined by not set now it is let U be defined by U is T restricted to W perpendicular,

the restriction of T to W perpendicular that is my operator U, and remember you need to

verify that see when you look at U as T restricted to W perpendicular it means you are restrict

your attention in the domain, the domain is W perpendicular you are making sure but what is

the guarantee that the co-domain is W perpendicular?

Because I am saying U is an operator from W perpendicular to W perpendicular, that comes

from this, see this comes from this will tell you that T takes that element in x, that element x

in W perpendicular to W perpendicular again it won’t go to W and so this is well defined ok

this that U is an operator on W perpendicular is well defined because of this ok. Now U is an

operator on ok T is self adjoint  implies U is self  adjoint,  I am going to leave that as an

exercise. T equal to T star implies U equals U star ok, this an easy exercise you have to again

use the fact that V is W plus W perpendicular that is all ok.

So U is a self adjoint operator on a finite dimensional vector space W perpendicular whose

dimension is less than dimension (W) dimension V so by induction hypothesis see this is

another  induction  principle  that  I  am using  ok so  U corresponding  to  this  U  there  is  a

orthonormal basis. 
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So I am sure you will agree when I write that there exists an orthonormal basis I will call it B

prime because I have already used B the reason orthonormal basis B prime I will call the

elements x2 x3 etc x n there exists an orthonormal basis B prime for W perpendicular it’s a

spaced W perpendicular that we are concerned about. 

For W perpendicular which also has the extra property that such that each such that ok you

tell me if this is ok such that T xi equals some lambda i xi for (one) sorry 2 less or equal to i

less or equal to n. 

X2  I  have  used  for  the  first  vector,  this  is  an  orthonormal  basis,  so  they  are  mutually

perpendicular  and  norm  of  each  of  these  vectors  is  one,  each  vector  must  also  be  an

eigenvector sorry corresponding to U, (())(26:24) have objected corresponding to U, U is a

operator that we are talking about, such that U xi equals lambda i xi for each of this vectors.

So  I  varies  from  2  to  n.  So  the  natural  thing  is  to  ask  whether  this  vectors  are  also

eigenvectors for T. If they are eigenvectors for T then I am through, there is one eigenvector

x1 already these are n minus 1 eigenvectors, the dimension must add.

Dimension 1 there, the dimension of this is n minus 1 this must add to the dimension of V so

that this union will give me a an orthonormal basis for V and the matrix of T with respect to

this basis will be a diagonal matrix. Each of each vector of this basis is an eigenvector ok. So

does it follow that each xi is an eigenvector for T also from this that is by definition. See



these xi’s belong to W perpendicular and U is T restricted to W perpendicular. So it follows

immediately that T xi equals lambda i xi.

Some of these lambda may repeat but doesn’t matter to us. What we are interested in is, the

vectors. Do I have a basis? Orthonormal basis ok. So I have these vectors together let me say

x1 together with B prime gives an orthonormal basis, basis for V with the desire property I

have repeated this too many times ok. So the story stops for the real inner product space

because you must take this theorem along with the rotation operator to conclude that you

need self adjointness in order to conclude that there is an orthonormal basis, each of whose

vector is an eigenvector.

For the rotation operator there are no eigenvalues, it is normal with regard to a real inner

product space. The rotation operator T satisfies T-T transpose equals T transpose T equals

identity but T cannot be diagonalized in I mean it fails in the worst possible case in the sense

that it does not even have real eigenvalues ok. So T as a rotation operator on or to on real

space does not have eigenvalues so for real space this is the result and remember the question

of diagonalizablity has been specialized here. See the original question of diagonalization is

for a finite dimensional real vector space there you are interested only in a general basis.

But if it is an inner product space it is only natural to require something extra from the basis

which is orthonormality ok. So for orthonormality you need A equals A star ok for if you

want orthonormality  then the operator must be self  adjoint  especially  if  it  is  a real  inner

product space the matrix version as we always do. 

(
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The matrix is the following, the matrix version is a corollary of this result. Let A be see in the

case of complex self adjoint the word Hermitian is used. 

Let A be a Hermitian operator Hermitian matrix of order n, then ok let me also emphasize that

it is complex, be a complex Hermitian matrix of order n then there exists a unitary matrix I

will call it P such that P inverse A P equals D where D equals diagonal lambda 1, lambda 2,

etc lambda n, lambda 1 etc lambda n being the eigenvalues of A. 
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If A is real symmetric then there exists an orthogonal matrix I will call it Q different from P

there exists an orthogonal  matrix Q when I say orthogonal matrix  it  is  a real  orthogonal

matrix because if it complex then will call it a unitary so there exists an orthogonal matrix Q

such that Q inverse A Q equals D where D is diagonal as before diagonal entries of D being

the eigenvalues of A.

Ok so here I need to only emphasize that P inverse is equal to P star because P is unitary.

Similarly here P inverse is P transpose ok, what is the proof? Is the corollary of the previous

result Q, Q inverse Q transpose ok this is the corollary of previous one so we can appeal to

the previous result. 
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You are given a complex Hermitian matrix A so you can define linear transformation through

this so you define C n with a usual inner product. Define T on V by T of x equals A x. You

have a matrix through which you can define a linear transformation then this definition means

that the matrix of T relative to standard basis is A.

The matrix of T relative to the standard orthonormal basis is the matrix A. A is complex

Hermitian so A is A star so T is T star. So I have a self adjoint operator on a complex inner

product space then I know that by the previous theorem there is an orthonormal basis for C n

satisfying the property that each vector in that orthonormal basis is an eigenvector  for T.

Eigenvector for T means T x equals lambda x but T x equal to A x so A x equals lambda x.

Collect all this eigenvalues collect all the yeah, collect all these eigenvalues, arrange them as

a diagonal matrix then we know that this is the same as writing down matrix of T relative to

the new orthonormal basis that we have construct ok.

So I will simply say appeal to the previous theorem, appeal to the previous result to construct

an orthonormal basis this time I will call it B so I have x1, x2, etc x n for C n for V. What I

know is that each of these vectors is an eigenvector for the operator T so if I look at the

matrix of T relative to this  basis then I  know that  that’s a diagonal matrix  lambda 1 etc

lambda n ok. The proof is complete if I tell you what must be P, just give one choice for P ok.
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Let us call P as matrix whose first column is x1 second column x2 etc x n. You have these

vectors constructed by the previous theorem existence not construction.

So collect those vectors so this is something that we have done even in the ordinary case

without the inner product space say P equal to this then this P this matrix P has a property that

its columns are mutually orthogonal and the norm of each column is one. So this is a unitary

matrix that is P star equal to P transpose. So then P is unitary. Finally this equation must be

verified but as before this equation we have seen before. Look at A P, A P by definition is A

into x1, x2 etc x n, we know that this A can be brought inside to write A x1 etc A x n. 

Each of these is an eigenvector so I have the eigenvalues coming now, lambda 1 x1, lambda 2

x2 etc. Let me just write down the last step which is a little exercise for you, verify that this is

equal to P times D. Yes, which is almost obvious, you first write P and then D ok. So A P

equals P D you know that P is invertible so you can pre-multiply by P inverse and the you get

this equation ok. Real case is similar, in the real case you know that the eigenvalues are real

corresponding vectors can be taken to be real so this will be basis consisting of real vectors.

Now real vectors giving you Q for instance then it is an orthogonal matrix right it will be an

orthogonal matrix and the rest of the proof is as before ok. So this is just version matrix

version of this important theorem. The last part is really for normal operators that I will do in



the next class ok. So what is means is that, an operator is diagonalizable by means of an

operator on a complex vector space this time, just complex vector space is diagonalizable by

means of a orthonormal transformation  by means of a  unitary matrix  if  and only if  it  is

normal ok.

So there is a significant difference between the question of a real symmetric matrix and the

complex symmetric  matrix  that  is  if  A is  real  and if  A is  equal  to A transpose then  this

theorem says A can be diagonalized ok. Take A to be complex, A equal to A transpose there is

no theorem which can guarantee that A is diagonalizable ok. Whereas you take A complex A

equal to A star the conjugate transpose then A is diagonalizable ok. So the question is really

about what is the corresponding operation for transpose in the complex case? 

The corresponding operation for transpose in the complex case is conjugate transpose ok. So

remember that the statement is wrong a complex symmetric matrix is diagonalizable is wrong

ok. A real symmetric matrix is diagonalizable, a complex Hermitian matrix is diagonalizable

ok, so let me stop here.


