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Let me recall we are proving this result.
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Let  W be  a  finite  dimensional  subspace  of  an  inner  product  space  V and  let  E  be  the

orthogonal  projection  of  V on  W ok  then  E  is  an  idempotent  linear  transformation,  an

idempotent linear transformation of V onto W so we must show that this am onto map, such

that the following hold. First condition is that W perpendicular is the null space of E and see

remember in order to write this we must know that the E is linear, see what we knows is that

the null space or range space of a linear transformation is a subspace.

So in order to write this we must know that E is linear ok, this is one condition that E must

satisfy and more importantly V is the orthogonal direct sum of this two subspaces ok. For the

proof I remember that we have done E is idempotent and V is linear ok. So let me just write

this already we have shown that E square equal to E that is E is idempotent and E is linear,

we must show that V is onto in W perpendicular is null space of V and this ok. Lets first

dispose this off, this is straight forward V is onto W that is given any x in W can I find ok,

given any U in W can i find an x in V such that E x equals U? It is the same thing.



So let me write like this, if x belongs to W then what we know is that E x equal to x so there

are (())(03:28) x itself. So that E is onto let me just emphasize W, see E is a linear operator on

V so from V to V it is not an onto map but if you look at the subspace W think of E as a

mapping from V to W then it is onto ok, that is what this means. So it is the orthogonal

projection of V onto W we must show that W perpendicular is null space of E ok.

So lets take we need to show this and then this. Let’s take ok lets say Y or u or z ok, Z

belongs null space of E implies E z is zero by definition infact if and only if isn’t it  by

definition? But E z is equal to zero if and only if remember that to any fixed vector z in V, E

assigns the best approximation the unique best approximation to Z from W. So and we also

know  that  condition,  what  is  that  condition?  If  V  x  equal  to  U,  then  x  minus  U  is

perpendicular to W this happens if and only if x minus U is perpendicular to W that is I am

writing it like this, Z minus zero belongs to W perpendicular, that is the same as saying, z

belongs to W perpendicular.

And so we have proved in one single step that the null space of E is W perpendicular ok, this

is  just  the  definition  how  is  E  defined,  to  any  vectors  Z  it  assigns  the  unique  best

approximation and that best approximation U satisfies x minus U perpendicular to W that is

what I have used ok. 
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Finally this equation we need to show that but that straight forward we show that V is W

direct sum W perpendicular. Lets take x in V then x can be written as I wanted to be in this

plus this so I can write E x plus x minus E x.

Let’s call this as x1 and this as x2, x1 plus x2 then x1 belongs to range of E but range of V is

by definition W and x2 is x minus E x so I want you to look at E x2 is E of x minus E x that is

zero E x minus E square x but E square is E, so E x2 is zero just now we have shown that null

space of E is W perpendicular so x2 belongs to W perpendicular. So for one thing we have

shown that V can be written as a sum of W1 sorry W and W perpendicular, we must show

that it is a direct sum that is we must show that the intersection is the subspace consisting of

the zero vector alone but that is straight forward.

So what we have shown is that, E is contained in W direct sum W perpendicular so I can

write equality because this is a subspace direct sum is also a subspace so this is equal, I am

sorry,  W equals  just  W plus  ok  finally  if  lets  say  Z,  Z  belongs  to  W intersection  W

perpendicular then by definition the inner product of Z with itself must be zero because Z is

orthogonal to every vector in W and Z belongs to W perpendicular also but this means Z is

zero. So the intersection is single term and so it follows that V is that direct sum of these two

subspaces.

So remember that there is no restriction on V, the restriction is only on W, it must be a finite

dimensional subspace V could be an infinite dimensional inner product space but if W is not a



finite dimensional subspace then this is not true ok. If time permits I will provide an example

later. Ok so this is finite dimensional result. Ok corresponding to E, we have this result the

version for F which kind of compliments E that version is similar, so let me give you that

version for the record. So the following is a consequence of the previous result Corollary.

Remember the mapping F, F is I minus E, ok and we have seen that F is a projection of V

onto of V on W perpendicular but what follows from this theorem is that it is an idempotent

linear transformation of V onto W perpendicular this time and what is a null space of F? What

do you expect the null space of F to be? What is F? F is I minus E, null space of is W

perpendicular I am sorry just W ok. Null space of F is range of I minus E ok so lets null space

of F is range of E yes that is W so lets quickly dispose this one.

Corresponding to E we define an S do.

(Refer Slide Time: 10:37)

Let  W be  a  finite  dimensional  subspace  of  an  inner  product  space  V and E  denote  the

orthogonal  projection  of  V  on  W  as  before  then  I  minus  E  is  an  idempotent  linear

transformation of V onto W perpendicular such that the null space of I minus E is W. So

previously we had W perpendicular to be the null space of E that is I am looking at the null

space of the orthogonal projection at any stage. So a null space of I minus E is W, the proof is

almost there so I will not write down.

The fact that E is idempotent and linear implies that I minus E is linear in the first place and I

minus E we have seen this last time I minus E square is I minus E so it is an idempotent



linear transformation. I minus E that is the mapping that takes x to x minus E x we have seen

last time that it is the orthogonal projection of V on W perpendicular that was proved, we

called it F the mapping F from V to V defined by F of x equals x minus E x is the orthogonal

projection of V on W perpendicular but from what we have seen just now it must be onto also

similar to E, I minus E behaves very similar to E but its complimentary to E.

So it is an orthogonal projection of V onto W perpendicular so this is done and null space of I

minus E equals W is straight forward very similar to what we have done before ok, so I am

going to leave this last part also ok, before so this is kind of the summary of the notion of best

approximation ok how it helps in decomposing an inner product space in terms of a finite

dimensional subspace and its orthogonal compliment ok. So what is important is the notion of

best  approximation  ok  for  but  remember  that  for  finite  dimensional  subspaces  the  best

approximation exists and it is unique that is I mean this two are important for us to do al this

things.

Using again this notion we will go to the concept of adjoint of a linear transformation then

the notion of unitary operators, normal operators, finally spectral finite dimensional spectral

theorem ok but before that lets look at two examples ok, two numerical examples where I

will show how ok where I will try to give you another clue as to what you must expect of the

linear transformation E when it is the orthogonal projection ok I asked you this question,

what is a difference between an ordinary decomposition direct sum decomposition and an

orthogonal direct sum decomposition ok.

You may be able to answer by looking at this example so this is kind of reinforcing what we

have done till now. So lets look at this example really two examples, lets take R2 ok, for R2 I

have the following two decompositions, let me call W1 as a subspace that is span of 1, 1 W1

is span of 1, 1 ok W2 is span of 1, minus 1 and I will write this are row vectors then what is

the relationship between this two? Can I say W2 is W1 perpendicular? Ok observe that W2 is

W1 perpendicular lets look at another pair, I will call it Z1, Z1 is span of I will take the same

vector as before, so Z1 is really W1, Z2 lets say is span of the vector 1 2.

In the first instance obviously W1 direct sum W perpendicular is R2 in the second case can I

say Z1 direct sum Z2 is R2? (First) the answer must be instant, answer is yes, why? This are

independent vectors together they form a basis and this vector does not belong to the span of

this, this doesn’t belong to the span of this, so the intersection is single term zero ok. So for



the record R2 can be written as W1 direct sum W2 perpendicular and equal to ok let me write

like this and R2 equals Z1 direct sum Z2, the intersection is single term zero and this two

vectors together form a basis so any vector can be written as a linear combination of this two.

So sum Z1 plus Z2 is R2 is clear, Z1 intersection Z2 single term zero is also clear because

this  are  independent  vectors  just  by  inspection.  W1 direct  sum W2 or  I  will  write  W1

perpendicular yes, ok lets find the maps E in both this cases ok. What is the property of the

map E that we are going to use? So subspaces are given we want to find E, what I will do is

not find E, I will just take E to be a matrix itself, remember there is this 1 to 1 correspondence

between the matrix of a linear transformation and the transformation itself.

I will write down the matrix of E relative to the standard basis and see how it looks like by

the  way can  you geometrically  differentiate  between this  two direct  sum decomposition,

(geometric) for the first one it is 1, 1 you can think of the line y equals x ok that is a line

which makes 45 degrees with the positive x axis the line 1 minus 1 ok makes 135 degrees

with positive real axis and observe these two lines are perpendicular.

In the second case this is the same subspace but look at Z2, Z2 is not perpendicular the line

passing through 1, 2 is not perpendicular to the line passing through 1, 1 ok but then you

know that since they are independent the span of these two vectors must be the entire space

but remember that the angle between this two lines, one passing through 1, 1 the other one

passing through 1, 2 are not perpendicular this is crucial.
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In the first case I want to determine E, such that ok, let  E be the matrix I am using the

transformation notation itself if to denote the matrix let E be the matrix corresponding to ok,

the projection of W1 onto W2 and so E is lets say alpha beta gamma delta E must be a 2 by 2

matrix, it is a linear transformation on R2, E is this to determine E completely I must use a

property that E acts like identity on the range of E W1 and it must act like the zero operator

on the perpendicular, do you agree? Range of E is W null space of E is W perpendicular ok

and over range of V that is if x belongs to range of E then E x equal to x.

So E acts like identity on its range E acts like identity on W, it acts like a zero operator on W

perpendicular, two conditions but you will get four equation in four unknowns alpha beta

gamma delta so will determine E completely, so lets do that in both the cases, in the second

case also this time we cannot talk about the orthogonal projection we will just talk about the

usual projection, it is called an obliged projection, obliged projection so I will determine E in

the second case such that E acts like identity on W1 that is Z1 and E acts like zero on Z2 then

I will compare this two case, look at the structure of E how does E look like.

So first E x equals x if and only if x belongs to W that is range of E and so I am using this

condition W1 right and E x equal to zero if and only if x belongs to W1 perpendicular that is

W2in this example range of E is one dimensional W1 is one dimensional and span by the

vectors 1 1, see I have not taken an orthonormal basis that does not matter, span by W1 is

span by 1, 1 so E of that vector must be itself. So for one thing alpha beta gamma delta



operating on 1 1 must be 1 1, 1, 1 belongs to W1 infact that is only vector in this only

independent vector in W

Student: (())(22:48)

Professor: Yes it is V, V onto yes, projection of V onto W1 yes, I have this in the back of

mind that this will correspond to W1, W2 yes it is a projection of V onto W1 ok. So I have

this so this equation gives us rise to two equations ok, this matrix equation tells me alpha plus

beta  equals 1 gamma plus delta  equals 1 ok two equations  in four unknowns, two more

equations  will  come from the  second set  of  equations  E x  equal  to  zero  so  all  the  four

unknowns can be determine. So look at this E x equal to zero if and only if x belongs to W2 I

will take that vector 1, minus 1 equate that to zero alpha beta gamma delta into 1, minus 1

that must be this time the zero vector 0, 0 ok.

That gives rise to this two equations alpha plus beta is zero gamma sorry, alpha minus beta is

zero gamma minus delta is zero, so alpha equal to beta equals half gamma equals delta equals

half ok. 
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So let me write down E in this case, are my calculations correct? Ok lets go to the second

case now, in the case when R2 is Z1 direct sum Z2, you remember that there is I don’t know

if  I  have  told  you  this  before  there  is  this  terminology  associated  with  perpendicular

subspaces this E is called the projection of V onto W1 along W2, E is a projection of V onto

W1 along W2 that is what you are (calcu) along W2



Along you can look at  the geometry, ok,  what  is  a  geometry?  Let’s go back to  the best

approximation problem. 

(Refer Slide Time: 25:41)

Say I have subspace pass through the origin, this is x ok, this is my subspace W and I want

the projection of x onto W along W perpendicular, so I must go along perpendicular that is

all. See this is perpendicular so I reach W along the perpendicular to W from x ok that is the

reason it is called along W2. In this case it is the orthogonal projection but if you look at the

case Z1 Z2 the second decomposition it is not orthogonal projection but we can still say that

E is a linear transformation or the matrix is a linear transformation of R2 onto Z1 along Z2.

We can still say along Z2 ok, this time it is not an orthogonal projection, ok what I have tried

to do is I have done the whole thing for orthogonal projections and I am trying to imitate this

for the ordinary obliged projection I have taken the property of the orthogonal projection and

trying  to  imitate  to  what  it  satisfies  in  the  non-orthogonal  case,  what  do  I  expect  of  a

projection in the non-orthogonal case (what do I) essentially what do I expect? The property

of a projection is that offcourse it is E square equal to E and it is a linear transformation ok.

Apart from the what are the important properties, range of E is W1 null space of E is W2 this

is essentially what I am trying to imitate in the non-orthogonal the obliged case and I am

trying to see what is a difference between the matrixes that I get what is a difference between

the transformations in this two cases? Ok, so lets go to this case when I write R2 in this

manner again I will do a similar thing, so I will use this calculations.
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I want E to act like identity on W1 which is Z1 and E x equal to zero this time Z2 ok, observe

Z2 is not perpendicular to Z1 ok, identity this equation will remain as it is ok, Z1 is the same

as W1 but the other one will be 1 2 ok this is the only change the other one will be 1 2. So I

give this equations alpha plus 2 beta equals 0 gamma plus 2 delta equals 0. 
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In the case when R2 equals this E is given by the matrix just to avoid the confusion I don’t

want to write two E’s, so E is given by this matrix, so what is that this time?

Can someone make the quick calculations alpha is minus 2 beta, beta is minus 1, alpha is 2 is

that correct? Beta is minus 1 alpha is 2, the next one I will  write without looking at the



equations, what is the next one? It is not the same is it the same or a minus of that? It’s a

same ok, (the other) see this will be a rank 1 matrix, so the second row will be a multiple of

the first row in this case it is the same as the first row This will be rank 1 matrix, you know

why? This will be a rank 1 matrix, this is also a rank 1 matrix I mean this is not invertible this

will also not be invertible ok, in this case why is it not invertible?

Professor: No-no please that is not my question, you mean I will give you a 2 by 2 matrix ask

you to tell me the determinant, I want a qualitative answer.

Student: (())(30:33)

Professor: E is linear transformation from R to 2R, what prevents E from being a bijective

linear transformation? This is the question, pardon, why is it not an injective?

Student: (())(30:56)

Professor: Why should it not be? That is the question.

Student: (())(31:02)

Can we expect E to be invertible? That is the question. Can we expect E to be invertible?

Student: if W equal to V then we expect.

Professor: Yes that is the only situation, only this are the only two extremes you expect so the

only injective see E square equal to E if E is invertible what happens? E is identity, the other

extreme, E square equal to 0, the other extreme is that E is 0, now in one case V is equal to W

so W perpendicular is trivial in the other case V equal to single term 0, so W perpendicular is

the entire space V, this are the two extremes ok. Invertiblity cannot happen for a projection, if

it happens it is a identity, identity there is no problem, the problem is not there in the first

place ok.

So E can never be invertible, ok range of E equal to W so if E is invertible the W is the whole

of V so W perpendicular is trivial ok, so this is my E in the second case, what is a difference

between the structures of E? Is there any difference? You can offcourse verify that E square

equal  to E in  this  example as well  as in this  example  ok but what  is  there a  qualitative

difference  between the  structures  of  E in  this  two examples?  If  yes  what  is  it?  Is  there

something that you can say for the first one, which you cannot say for the second one?



Structure, looking at the form E transpose is E, that is essential E transpose equal to E is

infact  another  characterization  for  an  orthogonal  projection,  E  transpose  not  equal  to  E

corresponds to the obliged projection. So E square equal to E, E transpose equal to E and

range of E determine E completely E square equal to E, E transpose equal to E, range of E

that is the subspace range of E must be known to me these three determine E uniquely in the

orthogonal direct sum case, in the obliged direct sum case I must know range of E I must

know I must know null space of E as well as the fact that E square equal to E.

In the obliged projection case, E square is not equal to E, sorry E transpose is not equal to E

ok. So remember there is another important thing which I hope you have observed which is

for the subspace W1 there is a unique sub space which together with the W1 forms a direct

sum decomposition, this unique subspace is unique in the sense that it is perpendicular to W1

ok but for the second setup Z2 is just one complimentary subspace of Z1.

In  place  of  Z2  I  could  have  taken  span  1,  3  I  could  have  taken  span  1,  4  all  this  are

complimentary subspaces to Z1 ok. So in the case of orthogonal projection there is a unique

decomposition of the vectors space V into W plus W perpendicular. In the case of ordinary

projection there are infinitely many direct sum decomposition that is given a subspace W

there are infinitely many complimentary subspaces that those can be obtained by an obliged

projection. The unique subspace is obtained by the orthogonal projection ok.

So this is really  the essential  difference between an orthogonal projection and an obliged

projection ok. So lets then move on to the next topic, ok the topic is linear functions and

adjoints.  Adjoints  of  linear  transformations,  linear  transformations  and  adjoints  of  linear

transformations, linear functionals is what I want to discuss first. 
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Linear Functionals and Adjoints, Adjoints of linear transformations, the notation of adjoint

will generalize a notion of symmetry the operator, the operation of taking given A taking the

operation A transpose.

Given A doing the operation A star that will be generalized in a inner product space will call

that as a adjoint operation but before that linear functionals ok. So what is a linear functional?

Definition, a linear functional definition, underline (())(36:39) ok that is a linear functional

ok. What we will do is first give a representation for linear functions, this result is easy and

this also should immediately remind you of a theorem in functional analysis which you will

do a little later. Linear Functionals and Adjoints, so first I have the following, let V be a finite

dimensional inner product space and F be a linear functional on V.

So the underline field is real or complex, so F is our linear transformation from V to R or C

then  the  representation  theorem says,  there  exists  a  unique  vector  Y in  V such that  the

operation of this linear functional is like taking inner products with the vector Y such that the

action of F on nay vector x is given by the inner products x, y for all x and V, for a fixed Y if

it is a linear functional then it arises precisely in this manner ok the proof is just by producing

the vector Y ok and will show that Y is unique ok this is called a representation theorem that

is any linear functional is represented by this inner product .

The proof is we start with an orthonormal basis and give the formula for Y, lets say this is U1

U2 etc U n let B be an orthonormal basis of V, V is assumed to be a finite dimensional so it



has an orthonormal finite orthonormal basis I know F I want to find Y which I must show is

unique and satisfies this equation. Define Y by Y equals summation j equals 1 to n F of U j

bar U j define Y to be this vector F is known so I can determine Y. Look at the image is of the

basis vectors under F take the conjugates and then from this particular linear combination ok

so will show that this Y satisfies this equation and show that this Y is unique.
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Consider for 1 less and or equal to k less and or equal to n the inner product of U k with Y

this is inner product U k, Y is this summation j equals 1 to n F U j bar U j the inner product is

conjugate linear with second one, so when this comes out it goes with the conjugate double

conjugate summation F U j into the inner product U k with U j with j being the running index

k has been fixed.  So when j  takes a value k this  is  1 or all  other terms are 0 this  is  an

orthonormal basis so the only term that remains is when j is equal to k you substitute here it is

F Uk.

So we have shown F Uk is Uk with Y this is an orthonormal basis so for any x this will be

true because any x there is a linear combination right, is that clear that is if x belongs to V

then x can be written as summation j equals 1 to n infact the coefficients are x U j with U j

and so if you look at f x then f x is summation j equals 1 to n f is linear so it is x Uj F Uj but f

U j is I want to show f x equals x, y ok x U j f U j this is ok could have been better to ok

doesn’t matter can I just say this is inner product x with Y, you can verify, you could have

started with x with y start with inner product x with y then it is x into that formula f U j goes

out and then I must take the inner product of U j with x so I get this ok.



So you have this representation for any linear functional f, so there is a unique y uniqueness

we have to show. 
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Suppose there is Z in V such that f x equals x, Z ok the you can compare this two it follows

that inner product x with Z is inner product x with y this means that ok this means that inner

product x with y minus Z equals zero for all x in V, this means since this is true for all x I can

replace x by y minus Z which means y equal to Z, so uniqueness follows immediately. Ok so

every linear  functional  on a  finite  dimensional  inner  product  space  arises  from the inner

product with a particular vector.
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Observe that this y belongs to null space f perpendicular which is not coming from the proof

but this can be shown, y belongs to null space of f perpendicular that is can you see why this

is true? Proof, let x belong to null space of f I must show that inner product of x y is zero then

f x is zero that is zero equals f x but f x I know is inner product of x with y. So this means y is

perpendicular to null space of f if x is random vector from f then y with x is zero we have

shown. So x belongs to null space of f V itself is finite dimensional null space of f is also

finite dimensional so it has an orthogonal compliment.

So I can write V as null space of f direct sum null space of f perpendicular whenever you

have a finite dimensional subspace it holds but V itself is finite dimensional so this holds. So

what this means is that a linear functional on a finite  dimensional inner product space is

completely  determine  by  its  action  on  null  space  of  f  perpendicular,  f  is  completely

determined by its action on the subspace null space of f perpendicular. Offcourse the first

term is null space of f so f takes a value zero there, f is completely determined by its action

on null space of f perpendicular this is something which does not hold for a general linear

transformation.

For a linear functional this result is true ok, using this representation theorem we will show

how the  conjugate  transpose  it  is  called  the  adjoint  operator,  will  show how the  adjoint

operator  for  a  linear  transformation  on a  finite  dimensional  vector  space exists  and it  is

unique and also derives some of its properties yeah that will do next time.


