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Ok so let  me emphasize what I  said yesterday the notion of inner  products spaces  more

generally norm linear spaces this has relevance to practical notions like approximation and

convergence,  these will  be made mathematically  precise a little  later  ok.  So we are only

trying to develop the background material for that ok. 
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Lets also recall (())(00:44) I want to give two examples, (())(00:48) in an inner product space

ok, modulus in a product  x y this does not exceed the product of the norm of x and the norm

of y this is true for all x y, the right hand norm comes from the inner product ok.

So lets just remember that again, what does this inequality say with regard to the three inner

products spaces we have seen before. In particular we have the following, look at C N for

instance, I will call it one summation J equals 1 to N I am using xi yi bar and then I take the

modulus, this is a inner product of two vectors in C N this does not exceed norm of x into

norm of y, norm of x is summation J equals 1 to N mod xi square to the 1 by 2 into norm y a

similar expression, summation J equals 1 to N mod yj square to the 1 by 2 ok, this is one

particular case.
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Look at what happens to the inner product space C N cross N with the trace inner product.

Trace of A, B star modulus of that this is less and or equal to norm A norm B, norm A is trace

of A A star to the half norm B similar expression trace of B B star to the half, finally if you

look at the infinite dimensional example, infinite dimensional inner product space C 0 1 we

have the following, modulus integral 0 to 1 inner product x y, f of t gt bar dt modulus of this

does not exceed the product of norm f norm g, what is norm f? Norm f is integral 0 to 1 mod f

t square dt to the 1 by 2, the second factor 0 to 1 mod g t square dt to 1 by 2 ok.

Inequalities are important when you discuss notions of approximation convergence etc, so

you will encounter these if not in this course some other course. So this are specific instances

of the (())(4:15) ok. 
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We have seen yesterday that the notion of a norm can be introduced for a vector inner product

space, more generally we have the following, that is a norm need not be induced through

inner product. One can have a general norm linear space. A norm on a vector space V is a

function it will be denoted by these two parallel lines, I am sure you must have encountered

this. it is already there in inner product spaces.

It is a function from V to R unlike the inner product which can be a complex number so this

is a function from V to R such that the following conditions are satisfied.
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Norm of X is greater than or equal to 0 for all x and V and this goes along with this norm x

equal to 0 if and only if x is equal to 0. Condition 2 is again a condition that we have seen in

the context of inner product spaces. Norm of lambda x is mod lambda norm x for all lambda

in lets restrict lets look at the case of a complex vector space. So I will take the scalars from

C for all x and V, second condition. Third condition is just a triangle inequality norm x plus y

must be less nor equal to norm x plus norm y.

A norm on a vector space is a function that satisfies this conditions a vector space together

with tis norm with a given norm is called a norm linear space norm vector space. A norm

linear space or a norm vector space, vector spaces are also called linear spaces, a norm linear

space is a pair, it is a pair V, some norm where this is a given norm, norm V ok and so every

inner product space is a norm linear space, every inner space is a example of a norm linear

space it is a sub class. 
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This  normed linear  space with respect  to  the induced norm. Just  to recall  norm x is  the

positive square root of inner product of x with itself ok.

What is also important is to observe that on a given vector space you can define several

norms and what can be shown is that not all norms are induced by inner product ok. Now let

me  give  you  atleast  two different  on  norm on  C n  for  instance,  this  will  also  serve  as

examples of norm linear spaces. Consider V to be C n with the two norms defined as follows,

I will define two norms with respect to which C n becomes norm linear space. One is called

as the one norm sometimes called the absolute value norm. So it is it goes with the subscript

1 norm x goes with 1 this is summation J equals 1 to n mod x j where the usual convention is

that x1 x2 etc xn are the coordinates of x, this is called the 1 norm.

This is 1 norm and yeah all that I am saying is that this satisfies you can verify that this

satisfies this conditions ok. So C n with this norm is a norm linear space there is also called

the so called supremum norm or sometimes a maximum norm, this is equal to the supremum

of actually it is maximum ok, there are only finitely many numbers here. Maximum of mod xi

1 less (and) or equal to I less (and) or equal n. Maximum of the mod I of the coordinates of

the vector x, this is called the infinite norm or supremum norm maximum norm. C n is a

norm linear space with respect to both these norms ok.

C n already has a norm with respect to the standard inner induced by the standard inner

product ok. In numerical linear algebra one would like to ask questions like whether this



norms are equivalent ok, will not deal with those but it is in that context you would like to

know whether norms are equivalent. If norms are equivalent then see a norm linear space can

be shown to be a metric space D x y equals norm x minus y then with respect to this metri we

ask questions about conversions, then the question is if its if a sequence xn is convergent with

respect to one norm, should it be convergent with respect to another norm? And this is related

to the question as to whether two given norms are equivalent ok.

That is why it is of interest to know different norms on the same space and different norms

have different, different norms are suitable for different applications. For example, when we

do calculus it is the stand, it is a norm induced by the standard inner product, it is called the

two norm or the Euclidian norm ok. 
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Let  me write  that  also,  it  is  called  the Euclidian norm or the two norm that  is  from the

standard inner product so can you tell me what the two norm is? J equals 1 to n so norm x

square ok, that  is mod x j  square,  this  is  called the Euclidian norm or the two norm. In

calculus it is a two norm which is important whereas in a robot trajectory planning etc it is a

infinite norm that is used ok.

So different applications ask for different norms. The question however is we need to go back

to this question, the two norm is induced by the standard inner product what happens this

two? The claim is that, this two are not induced by any inner product ok, how do you prove

it? In order to prove it the following result is useful, it is called the parallelogram law, which

holds in a vector space. So let me state and prove that and then I will leave it for you to verify



that this two norms are not induced by inner products by any inner product ok, parallelogram

law let me state that here and prove it there in an inner product space.
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Let the V be an inner product space then we have the following, this the role that I am going

to write is motivated by what we have seen in two dimensions even three dimensions. Norm

of x plus y the whole square plus norm x minus y the whole square. You can think of x and y

as two dimensional vectors on the plane then if then x plus y is the length of one of the

diagonals  x  minus  y  is  the  length  of  the  other  diagonal,  the  sum of  the  squares  of  the

diagonals must be two sides two times the sum of the square of the sides. Two times norm x

square plus two times norm y square for all x y this law holds, this is the parallelogram law.

In an inner product space this holds where the norm is offcourse the norm induced by the

inner product ok. So if V is an inner product and this is the norm induced by the inner product

parallelogram law holds. If I have a norm linear space where the parallelogram law does not

hold then it cannot be the norm cannot be induced by any inner product, that is what you

should use to prove that these two are not induced by any inner product. You have to take

sample vectors x and y calculate this numbers and verify that this law does not hold for this

two norms. I am going to leave that as an exercise this two are not induced by any inner

product  that  is  an  exercise.  But  let  me  prove  the  parallelogram  law, the  rather  straight

forward.
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You simply look at see this is induced by an inner product so you need to use that so look at

norm x plus y the whole square plus norm x minus y the whole square, this is inner product of

x plus y with itself plus inner product x minus y with itself. Just expand and simplify x with x

is norm x square y goes with y for norm y square and you have a y x and an x y the second

term gives you norm x square plus norm y square minus y with  x minus x with y, so you get

right answer. This is two times norm x square plus two times norm y square ok, so that proves

the parallelogram law straight forward but it is still powerful in showing that certain norms

are not induced by any inner product.
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So the exercise for you is show that the one norm and the infinite norm are not induced by

any inner product, the context is C N you also have similar results for the space of continuous

functions over 0 1, whose space of continuous functions over 0 1 there is a two norm induced

by the inner product which I have given there but there are other norms that can be defined on

C 0 1 so let me also mention on C 0 1 I will define two norms similar to the one norm and the

infinite  norm on  C 0  1  norm f  the  one  norm is  any guesses  about  what  this  is,  f  is  a

continuous function over 0 1. This is similar to the one norm integral mod, integral 0 to 1

mod f t dt, f is continuous modulus is continuous so the integral exists.

Similarly the infinite norm, what is a infinite norm? Supremum, supremum of modulus of F

of t, tn 0 1, the supremum exists because f is continuous mod is continuous composition of

two continuous functions. So there is a maximum and a minimum, I want the maximum. So

infcat I can replace supremum by the maximum. So with respect with this two norms 1 and

infinity C 0 1 is a norm linear space it can again be shown using the parallelogram law that

this are not induced by any inner product ok. So lets move on, this are some of the basic

notions  one of  the  motivations  for  an  inner  product  spaces  is  that  it  should  allow us  to

generalize  a  notions  of the usual  dot product  the notions  of  angle  between in vectors  in

particular orthogonality ok.
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Lets look at this notions, so in particular I want to look at the concept of an orthogonal basis

and orthonormal basis I will simply say orthonormal sets ok a notion of orthogonality. See it

is done through the inner product so this definition is natural. Let V be an inner product space

take two at vector x or y then x is said to be perpendicular to y or x is said to be orthogonal to

y, if the inner product of x with y in this fashion is zero ok. If x if the inner product of x with

y taken in this manner is zero then the inner product of y with x, y first x next that is also zero

because of the conjugates symmetry ok.

So then we can say that x and y are orthogonal, can say that x and y are orthogonal to each

other ok. 
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For a subset A contained in V is called orthogonal a set is called an orthogonal set if distinct

elements are orthogonal distinct (vectors) distinct elements in A are mutually orthogonal if

distinct  elements  in  A are  mutually  orthogonal.  Zero  vector  is  the  only  vector  that  is

orthogonal to itself that is if A, A is equal to zero then A is zero that comes from the first two

(())(22:23) inner product. Orthogonal we need something more A is called orthonormal if A is

orthogonal and its vector in A has norm 1, which vector A has norm 1 so such a set is called

an orthonormal set that is for every a b in A we me must have the inner product of a b is zero

if a is not equal to b it is one if a is equal to b.

So we write like this, distinct vectors are orthogonal and each vector has norm 1 so such a set

is called an orthonormal set, do you have examples of orthonormal sets. 
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Look at the vectors that belong to standard basis but before that I will give another example,

consider  the  following  vectors,  U1  is  1  minus  1,  U2 is  1  1  these  two vectors  form an

orthogonal set not orthonormal, these two form an orthogonal set not orthonormal because

they do not have norm 1. Norm of U1 or U2 is infact 1 by root 2 sorry just root 2, U1 U2 both

have norm root 2. On the other hand if you look at the standard basis vectors.

The standard basis vectors in C n are orthonormal infact just emphasize what the standard

basis  is,  look at  e1 e2  etc  e  n  where  ei  is  0,  0  etc  1,  0,  0  where this  occurs  in  the  ith

coordinate, this is an orthonormal set ok. This is this probably the simplest orthonormal set

one would encounter. I want to explain a procedure, the question is the following. Given a

linearly independent set can we get can we construct an orthonormal set out of it? Ok, the

answer is yes, but before that we must understand that orthonormal (vect) orthogonal vectors

are linearly independent ok. But even before that I want to prove Pythagoras theorem then I

will come to this.

Pythagoras  theorem which  holds  we have seen  in  the plane  holds  in  a  general  normally

general in a product space. 
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So I want to prove this and then look at the process of constructing orthonormal vectors from

an  independent  set  linearly  independent  set.  Pythagoras  theorem,  the  setting  is  an  inner

product space so if x y belong to inner product space such that x is perpendicular to y then the

inner right triangle there is a hypotenuse there are other two sides look at the square of the

lengths of the other two sides, that sum is equal to the length of the hypotenuse.

Norm x plus y square is norm x square plus norm y square ok. Just to recall if this is 90, this

is x and this is y this are the lengths ok, I think I should use alpha beta numbers then this is

alpha square plus beta square, alpha and beta are the lengths norm x norm y are the lengths of



the side this holds in a general inner product space, I will leave the proof ok. You have to as

before start with norm x plus y whole square use the inner product and one line the proof ok.

So the high school notion of Pythagoras theorem you see holds in a abstract inner product

space ok.
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I told you that orthogonal vectors are linearly independent, let me prove that lets recall the

following. Let V be an inner product space and let me take this as a basis, so I am considering

a finite dimensional inner product space, B equals lets call the vectors U1 U2 etc Un let this

B a basis of V ok so it is a finite dimensional inner product space. Given a its as before it’s an

ordered basis ok, that is U1 is a first vector, U2 so second vector etc Un is the last vector. So

that when we write down the matrix of a linear transformation or the matrix of a vector we

know what is the first component, second component etc.

So this is an ordered basis it means that any x in V can be written as ordered basis. See when

you write down the matrix of a vector then it is always done with respect to a basis, that is

this x there is a representation, this x can be written given this basis this x has the following

(representation) unique representation alpha 1 U1 plus alpha 2 U2 etc plus alpha n Un, where

the numbers alpha 1 alpha 2 etc alpha n are unique for this x ok and we always deal with

standard basis for the reason that we will have occasion to talk about the first coordinate of x

second coordinate of x etc when we do matrix operations.

So it is natural to call alpha 1 as a first coordinate of x, alpha 2 as the second coordinate of x

etc. Do you remember this we used to write the matrix of x relative to this basis and then that



is a column vector coming from the first term coefficient of the first term, coefficient of the

second term etc. now what is to be understood is that, the sum does not change if you alter

the first and the second term for instance but when you write down the matrix of the vector

corresponding to the basis, it does make a difference ok. So we will always have in mind that

there is an ordered basis. 

So there is a first coordinate,  second coordinate etc.  So this an ordered basis I have this

representation as I told you these numbers alpha 1 etc alpha n are unique for the particular x

that  we  started  with  ok.  How do you compute  this  numbers?  Given a  vector  x  do  you

remember how we compute this numbers alpha 1 etc alpha n, in a general vector space. See

U1 U2 etc they do not form an orthogonal basis orthonormal basis they form just a basis,

ordinary ordered basis. So how do you find this numbers? 
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Solving a system, you can write this as ok see x is given, I need to find this numbers so what

we do is look at the matrix whose columns are U1 U2 etc Un and then I want to determine the

numbers alpha 1 alpha 2 etc.

 This left hand side is given I know what x is, I want to determine the numbers alpha and the

coefficients of x relative to this basis, I know what this is, this is also given the basis is also

given I need to determine this, this is unknown. So this is essentially solving a linear system

of equation. So you need to do elementary raw operations and then determine the unknowns

from the system of equations ok. Now that’s we know that takes a little effort. In the case of a



so to determine the coefficients of a vector x you need to solve a system of linear equations

but if this is not just a basis but an orthonormal basis then this is very easy.

 That is a advantage of an orthonormal set an orthonormal basis. By the way what is an

orthonormal basis? A basis which has a property that the vectors are mutually orthogonal and

have each have norm 1 is an orthonormal basis. 
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If  this  is  an  orthonormal  basis,  so  in  addition  if  B  is  an  orthonormal  basis  then  this

computation immediate, there is no computation involved, it is immediate, then we have the

following. Ok I will go back to this equation alpha 1 U1 plus alpha 2 U2 etc alpha n Un I take

the inner product of x with Ui, I runs from 1 to n  then this is alpha 1 U1 Ui plus etc alpha I

Ui Ui etc plus alpha n Ui ok how do I write the terms? U1 you consider the first I am taking

on the right yeah so Un Ui.

Since is orthonormal basis all terms cancel except this one of this as zero this is one and so

this is alpha I and so the coefficient alpha I is determined as inner product of x with Ui. So

the  coefficients  can  be  computed  by  multiplication  the  dot  product  by  the  dot  product

immediate. But the price you have to pay is the computation of an orthonormal basis from a

linearly independent set. It is just a basis ordinary basis it is a linearly independent set, there

is some effort involved in going from a linearly independent set to an orthonormal basis there

is a (())(35:41) process Gram Schmidt procedure, numerically it can be modified but will

simply locate the Gram Schmidt procedure.



That tells us how to go from a linearly independent set to an orthonormal set, so once you do

that certain computations become easier ok. I told you that orthogonal vectors are linearly

independent, can you see that to happening here immediately? In general orthogonal, if x is

zero that is if I take a linear combination of the vectors U1 etc Un equate that to zero then is it

clear  that  you comeback  see  that  the  coefficients  must  be  zero.  So  an  orthogonal  set  is

linearly independent not conversely. Any orthogonal set there is no orthonormality that we

are using here any orthogonal set is linearly independent but not conversely.

That the converse is not true has been exhibited already you look at those vectors 1 minus 1

11 I am sorry they are linearly they are orthogonal ok. You give an example ok that is easy,

linear independent vector 1, 1 1, 2 they are linear independent but not orthogonal ok. So this

means we need to look at the procedure that takes linearly independent to an orthonormal

basis, this is called the Gram Schmidt procedure let me discuss that next.
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So we have what is called as the Gram Schmidt orthonormalization process ok, what is this

process? I will state that as a result let U1 U2 etc be linearly independent set in an inner

product space V so I start with a linearly independent set in an inner product space then I can

construct  then  we  can  construct  an  orthonormal  set  I  will  denote  that  by  V1  V2  etc.

Remember this can be an infinite set so you can apply this to an infinite dimensional space

C01  for  instance.  We can  construct  an  orthonormal  set  V1  V2  etc  which  satisfies  the

following such that see for one thing it is an orthonormal set they are mutually orthogonal

and the norm of each vector is one.



There is another thing it satisfies such that the following holds. 
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Look at this span of U1 U2 etc Uj for any j you can show that this span is a same as the span

of V1 V2 etc Vj for each j ok. Step by step that is look at a span of U1 that is the same as this

span of V1, span of U1, U2 is equal to span of V1, V2 etc for every j, this two sub-spaces of

V are the same ok, the proof I will complete the proof today the proof is by induction. The

proof is by induction on j, ok to apply the induction principle you need a base step and then

an inductive step ok. Base step take the case of equal to 1, j equals 1. I have the vector U1 I

must show how to construct V1 such that span of U1 equals span of U ok.

But remember that we start with a linearly independent set so this U1 cannot be zero any

vector that contains a zero vector is linearly dependent ok. So none of this vectors is zero, U1

is not zero so I can divide by norm U1. So I will call V1 as the vector U1 by norm U1, norm

U1 is not zero because U1 is not zero then this V1 satisfies the requirements, for one thing

norm V1 is 1 and you don’t have to take another vector to take the dot product etc there is

this is a basis step there is only one vector plus also clear is its span of U1 is span of V1 that

is because V1 is a multiple of U1.

Anything that is in the span of U1 is a multiple of V1 that is obviously a multiple of V1.



(Refer Slide Time: 42:09)

So this two subspaces coincide.so the basis step holds so we apply the inductors suppose that

V1 V2 etc Vn have been constructed such that span of ok such that for one thing this is

orthonormal  ok,  set  ok  I  want  to  write  that  again.  Suppose  this  is  orthonormal  and this

condition must also hold span of U1 etc Un is equal to span of V1 V2 etc Vn. So you assume

that you are able to construct n vectors then you must show that you can do it for N plus 1

vectors then by the induction principle it follows that this can be done forever indefinitely ok.

I need to give a formula for Vn plus 1 then we are done ok, given V1 etc Vn I must tell how

to construct Vn plus 1 that is done as follows. Consider the vector it is a new vector that I will

define I have n vectors V1 etc Vn I define new vector Wn plus 1 as lets take Un plus 1 the

one that we started with and then subtract the following sum, J equals 1 to n take the inner

product of Un plus 1 with each of the vectors that we have constructed each of the vectors V1

etc Vn that we have constructed Vj and then take dot product of that with Vj.

There is a geometric significance to this but this can be explained only a little later ok you

remember U1 U2 etc that infinite set is given to us so I know what Un plus 1 are I have

computed V1 upto Vn only those I am using here so I delete this from the vector Un plus 1.

The first observation is that to this is not Wn plus 1 is not the zero vector, can you see that? If

you can see that then I can skip that step, Wn plus 1 is not the zero vector, how do you prove?

 As usual  by contradiction,  if  Wn plus 1 is  zero then this  vector  is  zero,  so what  is  the

contradiction? If Wn plus 1 is zero then, yes Un plus 1 can be written as this sum it’s a it is in



the linear span of V1 etc Vn but V1 etc Vn the span that is equal to this, which mean Un plus

1 is our linear combination of this contradiction to the fact that we started with this as a

linearly independent set so no vector can be written as a linear combination of the previous

vectors.
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So this can’t be zero, so Wn plus 1 is not zero it makes sense to talk about the norm W1 and

then divide that by divide a vector by that so I will do something that similar to the first step

call Vn plus 1 as Wn plus 1 by norm Wn plus 1, this is well defined because denominator is

not  zero the claim is  that  this  V n plus 1 obviously has norm 1 but the claim is  this  is

orthogonal to the vectors V1 etc Vn ok then we are through almost. For one thing norm Vn

plus 1 is 1 however the orthogonal how was Vn plus 1 orthogonal to the previous n vectors,

that is that follows from this formula. Simply look at Vj, Vn plus 1 ok, look at Vj, Wn plus 1,

so this is I am doing it for the first argument.

So using this formula it is Vj, Un plus 1 minus summation j equals 1 to n that is the first

argument so this will go with a complex conjugates so can you see that this is what we have.

Summation j equals 1 to n the complex conjugate Un plus 1 Vj oh this is I need to change

this. The summation index is j I will call this L so this is L this is j this with respect to this so

that is be L Vj is that ok? The summation index is j I do it for all L, L is fixed L runs between

1 and n I am looking at the inner product Wn plus 1 with V L, Vl in the first argument, so V l

with Un plus 1 V l with this now this will go out with a complex conjugate, V L, V j is that

clear?



J is running index L is fixed this is zero if j is different from L so all terms are gone except

the term corresponding to j equals L when J is equal to L this is 1, this becomes Un plus 1 V

L with a conjugate that is V L Un plus 1 that’s get cancel with this so this is zero ok. So V L

is orthogonal to W n plus 1 for all L so how do I choose L? This is true for all L such that one

less and or equal to L less and or equal to n. So Wn plus 1 the new vector is orthogonal to V L

alright but since V n plus1 is just a multiple of Wn plus 1 it is also orthogonal to the vectors

V1 etc Vn.
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So V1 V2 etc Vn together with Vn plus 1 is an orthonormal set. The last point is to verify that

the span of this is equal to the span of U1 etc Un plus 1 ok just consider that. I will prove one

inclusion the other one is similar, look at span of V1 V2 etc Vn Vn plus 1, this  span is

contained in I will keep the first n vectors V1 V2 etc Vn and observe that Vn is a multiple of

Wn plus 1 so instead of Vn plus 1 I can use Wn plus 1 ok. But when I write Wn plus 1 I

observe just go back to the formula Wn plus 1 is a linear combination of Un plus 1 and the

other V1 etc but that is a linear combination of U1 etc which means Wn plus 1 is a linear

combination of U1 U2 etc U n Un plus 1 agree?

Yes, Vj Un plus 1 or j equals L because all terms are gone except j equals to L, minus, no real

number it is a complex number. See take the conjugate but then inner product x, y bar is y x

so this becomes V L Un plus 1 this is V L Un plus 1 so it gets cancelled ok, is this step clear?

Vn see this step is obvious I am sure because Vn plus 1 is a multiple of Wn plus 1 on the

other hand Wn plus 1 ok, you tell me if this is clear.
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What I am trying to explain is this is a linear combination of V1 V2 I am again writing V1 V2

etc Vn Un plus 1 do you agree?

That is because Wn plus 1 is with regard to you can write it in terms of V1 V2 etc Vn and

together with that you append Un plus 1 so this is fine. But V1 V2 etc Vn span of this vectors

is equal to span of U1 etc so this is again contained in span of U1 U2 etc U n Un plus 1, ok so

this is one inclusion I want to show that the span of this two sets are the same, this is one

inclusion the other inclusion is similar. You can simply retrace the steps, ok that completes

the proof.  We will  look at  some examples  next  time and also applications  of  the Gram-

Schmidt process in certain atomization problem ok, so let me stop here. 


