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Okay we are proving step 2, okay step 2 the statement  I have written down once again,

essentially what we have is this representation we have this representation for f T y, y has y is

an arbitrary vector, f is this polynomial so f T y must belong to W k minus 1 I am looking at a

general representation of f T y then when whenever I have a representation like this it always



holds this is what we must show it always holds that this f divides each of this polynomials g

1, g 2, etc g k minus 1 and this y not has this property that it can be written as f T Z not for Z

not in W not. I mentioned that this is T admissibility T admissibility of W not W not is a T

admissible subspace of V, okay.

The proof is by induction on k and k equal to 1 is just T admissibility of W for k equal to 1

there are no terms here for k equal to 1 f T y is y not then y not it f T Z not okay that is that

comes so for k equal to 1 I need to only verify this part because there are no polynomials here

the polynomials g i's are not present. So k equal to 1 is just T admissibility of a subspace W

not.

We will assume that the result is true for k minus 1 assume that the result is true for k minus

1, we will prove it for k we will prove it for k so consider k greater than 1. I look at these

polynomials g and I look at the polynomials g i and f apply division algorithm, I will just say

that there exist polynomials h i and r i such that such that I can write f as say f T is I am sorry

I am looking at g g i of t is f of t h i of t plus r i of t for every i where r i's are polynomials that

satisfy where either r i is equal to 0 or degree r i strictly less than degree f this is by the

division algorithm.

The claim is that r i equals 0 for all i claim is r i is remainder is 0 for all i, if let us say we

have proved this claim it would then follow that f divides g i that is what we want to show the

second part follows from admissibility, okay. You want to show that f divides g i so we will

show that r i is 0, proof will be by contradiction. Suppose some r i is not 0 we will get a

contradiction contradiction to the hypotheses that it is true whenever the index is k minus 1,

okay.

So we want to show r i is 0 for all i, let us now define remember that I have been given a

vector y so I will use this vector y and define a vector Z as y minus summation i equals 1 o k

minus 1 h i of T y i, I know the polynomials h 1, etc h k minus 1 coming from the previous

term these polynomials  are  known I define a  vector  Z in  this  manner, okay W not  is  T

admissible each W i is also T admissible each W i is T invariant each W i is T invariant, W k

is this each of this cyclic subspaces is invariant under T, W not is invariant under T so at

every step you are adding a subspace which is invariant under T so W k is invariant under T

so this look at y i they are taken from i equal to 1 to k minus 1.



Can you see that this belongs to this whole thing belongs to (W j) W k minus 1 because W k

has this property that W k minus 1, W k minus 2, etc they are all contained in W k it is a kind

of a nested sequence of subspaces, okay W 1 contained in W 2 contained in W 3, etc. So each

of each of these terms will belong to W k minus 1 the last one and so if you look at the

difference Z minus y that belongs to W k minus 1 the difference Z minus y belongs to W k

minus 1.

Now if this happens then we should quickly make this observation then look at s Z of W k

minus 1 I am claiming that it is a same as s y W k minus 1 s y W k minus 1 I have already

denoted that by f so all I need to do is to show that these two polynomials are the same. In

other words I want to show that if x y belongs to a subspace W then little s y; comma W is

equal to little s x; comma W this is what I want to show. The difference Z minus y belongs to

the subspace W k minus 1 but that comes from the definition, okay the fact that these two are

the same comes from the definition of the of those sets S T.
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So maybe I will just quickly highlight that let us say I have x, comma u in a subspace W such

that x minus u belongs to W then I want to show that this s T x; W I want to show that this is

in fact the same as S T u; comma W okay if these two subspace are the same then their

generators will also be the same these are the generators, okay. Let us S T x; W let us say that

g belongs to S T x; W then by definition g T x belongs to W that is g T x equals W. Now look

at look at g T of (y) u g T u can be written as okay I consider g T x minus u u minus x

consider g T u minus x this is g T u minus g T x what I know is that this belongs to W this

belongs to W, okay because u minus x belongs to W so this belongs to W.

So this is g T u minus g T x g T u minus W that belongs to W g T u minus W that belongs to

W, W is in W capital W is a subspace so g T u is also in W the whole process can be reversed.

So what I have shown is that okay this means g belongs to S T u; W this is really straight

forward and I am just explaining it quickly g belongs to S T x; W implies g belongs to S T u;

W the whole process can be reversed, okay.

So please check the details and then verify that since those ideals are the same the monic

generators will also be the same so I get this the notation for this polynomial is f that is what

we have here we have assumed this is the notation so I have this also look at f T Z f T Z is f T

y minus summation i equals 1 to k minus 1 f T h i of T y i, I have applied f T to this vector f T

Z is f T y minus summation f T h i T y i that is this this is f T y there is an expression from the

theorem or from this representation f T y there is a expression.
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So I write this as y not plus summation i equals 1 to k minus 1 g i of T y i minus summation i

equals 1 to k minus 1 f T h i of T y i this is y not plus summation i equals 1 to k minus 1 g i

minus f h i y i g i minus f h i g i minus f h i is r i so this expression is so let me write I am

looking at f T f T Z expression for f T Z is y not plus summation i equals 1 to k minus 1 r i of

T y i r i is the remainder, okay.

I want to show that each r i is 0 suppose some r i is not 0 suppose r i is not 0 for some i

among all those non-zero r i's I will take the one with a largest subscript. Let j be the largest i

such that r i is not 0 let j be the largest subscript such that r i is not 0 then r j is 0 sorry r j is

not 0 and I also know coming from the condition for each r i the degree r j is strictly less than

the degree of the polynomial f and I go back to this representation for f T Z rewrite it by

making use of this j.

I can write f T Z as y not plus summation i equal 1 to j this time only upto j that is a largest

after those the other r i's are 0 so the summation is only upto j, i equal to 1 to j r i of T y i let

me now use a short notation for this polynomial Z W j minus 1 I have defined Z here I look at

all  those polynomials say some g g T Z such that g T Z belongs to W j minus 1 that is

generated by is unique polynomial little s I am calling that as p, p is the monic generator of

that ideal the set of all polynomials g such that g T Z belongs to W j minus 1, okay.
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With this notation observe before that W j minus 1 is contained in W k minus 1 see j is this

fixed index such that j is the largest index such that r i is not 0. So W j minus 1 contained in

W k minus 1 from this can you see that this is always true from this can we see that tell me if

this is correct f is already defined as s y; W k minus 1 then this conductor divides p, p is the

polynomial that I defined just now, W j minus 1 contained in W k minus 1 which only means

that if you take a polynomial g if you take a polynomial g if it has the property that g T if it

has the property that g T Z belongs to W j minus 1 it will be such that g T Z belongs to W k

minus  1,  okay any  polynomial  that  is  present  in  W any  polynomial  that  is  present  any

polynomial g which has the property that g T of Z that belongs to W j minus 1 will also be

present in this, okay from this it follows that this conductor divides p.

The degree of the polynomial coming from this will divide the degree of polynomial coming

from this the polynomial the degree of this will be less than the degree of this the degree of

the  conductor  corresponding  to  this  will  be  less  than  the  degree  of  the  conductor

corresponding to this in fact the polynomial f will divide p, okay this can be verified quickly

once you have this you have the following.

If f divides p then I can write f divides p then I can write p as f times g for some polynomial

g. I look at p T Z p T Z by definition is f T g T Z this is g T f T Z these two commute and g T

f T Z I will write it is g T y not plus summation i equals 1 to j g T r i of T y i see I am using

the expression for f T Z here these two polynomials commute so it is g of f of Z so I have p T

Z to be this.

Now what is p? p is p is defined here p is defined here p of capital T of Z must be in W j

minus 1 that is the definition p of capital  T Z that must belongs to W j minus 1 so this

polynomial let me write once again this this vector belongs to W j minus 1, okay look at what

we have on the right on the right I will rewrite it as g T y not plus summation i equals 1 to j

minus 1 and then j, g T r i of T y i plus g T r j of T y j that is the last term, I am just splitting

this term upto j minus 1 and then the last term we have observed that left hand side this

vector belongs to W j minus 1.

Look at this vector that belongs to W j minus 1 because this is a sum that happening the first

term comes from y 1 the first term has y 1, second term has y 2, etc we have just now

observed that all these are contained in the last one that is W j minus 1. So this belongs to W j

minus 1, this belongs to W not but W not is also contained in W j minus 1, W not is contained

in each W k so these two terms belongs to W j minus 1, this belongs to W j minus 1, so this



must also belong to W j minus 1 that is g of T r j of T y j this must belong to W j minus 1.

Which means I will now compare I will now compare the polynomial I will now compare the

polynomial g r j with with s y j W j minus 1, I compare this polynomial g r j with this

polynomial this is a unique monic generator of that ideal of all polynomials let us say some L

L of T L of capital T y j belongs to W j minus 1 this is another polynomial that is a one with a

least degree.

So degree g r j for one thing must be greater than or equal to degree s y j W j minus 1,

agreed? g r j is a polynomial that belongs to that ideal g r j is a polynomial that belongs to the

ideal of all polynomials L of T such that L of capital T y j belongs to W j minus 1 but that that

ideal has this little s as the generator so that is the polynomial with the least degree with that

property.

So I have this now s y j W j minus 1 come back to this that is p j so this is the same as degree

p j the polynomials are the same for each j p j is y j s y j W j minus 1 but p j has this

maximum property that among all the polynomials among all the polynomials tell me if you

agree with this among all those see p j has the property that among all those polynomials let

us say again L with a property that L T Z belongs to W j minus 1 p j is the one with the

maximum degree.

So this is one such polynomial see this means little s of capital T of Z belongs to W j minus 1

but p j is the one with the maximum degree among all those polynomials. So I have this but

this is equal to degree p by our notation p is s Z W j minus 1 this is the most crucial step in

this proof, step 2 is the most crucial most crucial is these inequalities degree p we are at the

last step the sequence of inequalities.

But what is p? p is fg so this is degree fg let me just write down the final inequality that we

want ya by the way you cannot  do not assume that you can understand the proof of the

theorem right here in the class and then it is done with you have to you have to work with

many of these steps here some of the steps I am not giving details, some of the steps I am

giving details here but you cannot be able to understand here, okay but you got to go back

home work it out and then verify that these are all correct statements.
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Finally as I said I want only this inequality degree g r j is greater than or equal to degree fg

that is degree gf product of polynomials this means degree of g sorry g I will cancel degree r j

is greater than or equal to degree f a contradiction because the remainders have been chosen

in such a way that the degrees must be less than degree f, I have that here but remember that

this contradicts contradicting the choice of r i in particular r j degree of r j cannot exceed the

degree of f contradiction is because of the fact that we have assumed r i is not 0, okay so each

r i must be 0, okay.

So each r i is 0 that is f divides g i for all i we have taken k polynomials this time we have

taken  k  polynomials  this  time  it  will  also  ponder  over  where  we  have  used  induction

hypotheses I have not mentioned this could not have come without the induction hypotheses

that the result is true for k minus 1 upto k minus 1 we are proving it for k, okay ponder over

that but I am saying that the second step is over here f divides g i this is what we wanted to

show we want to show that f divides each g i and there exists Z not’s with this property but

then as I told you this y not is a vector that comes from W not, W not is T admissible so that

part is easy, okay.

Since W not is T admissible there exist Z not in W not such that (f T) sorry y not is f T Z so

second part is there (())(23:58) that is the proof of step 2.

Let me write down step 3, I will write step 3 here and prove it quickly, okay what what is left

really what is left in the cyclic decomposition theorem the cyclic decomposition theorem you

have got to show that V is a direct sum of these subspaces and that the T annihilators of x k



that is those p k’s have the property that p k divides p k minus 1 for k equal to 2 to r. So what

is left is the sum is direct sum we have already got the sum step 2 gives me the sum I want to

show this is a direct sum it is not enough with these y 1, etc y r I will define new vectors

which will give rise to a direct sum.

So I need to prove really independence of these subspaces I need to prove independence of

these subspaces and then the fact that p k divides p k minus 1 then the proof is over except

the last part where there is some uniqueness uniqueness I will not proof, okay.
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What is step 3? There exists non-zero vectors this time x 1, x 2, etc x r and the corresponding

T-annihilators we call them p 1, p 2, etc p k such that V is the direct sum W not direct sum Z



this time x 1 not y 1 y 2 etc p k divides p k minus 1 this is what I need to prove that step 3. So

I will just look at the construction how look at how to construct these vectors x 1, etc.

Proof of step 3 start with vectors y 1, y 2, etc y r these are coming from step 1 step 1 gives me

these vectors. Apply step 2 apply step 2 to this vector y equal to y k and so f is p k, okay that

is the reason why I have retained step 2 here. Step 2 I told you essentially is some inference

about this representation if I have this representation then each of these polynomials g i must

be divisible by f and this y not has a property.

Now I am going to apply this representation for y equals y k, y equals y k you go back to this

y is equal to y k then this s y; k W k minus 1 is p k that is a notation I used earlier this is the

notation I used earlier ya that is here in front of me in fact if y is equal to y k then s y k W k

minus 1 is p k so all that I will do is apply this with y equals y k and f equal to p k so I have

the following.

In other words I am just rewriting this representation I am just rewriting this representation

for y equals y k f equals p k. So f T f is p k so p k of T y k that is what I have on the left y not

plus summation i  equals  1 to k minus 1 g i  T y i,  okay this  g i  also I  should change I

remember that g is g i's are divisible by f so I will rewrite this g i is just f h i this is f h i but f

is p k so p k T h i of T y i this is g i this whole thing is g i of T g i is divisible by f that is g i is

divisible by p k and we have written down g i as f h i f is p k so I have this.

Let me now define vectors x k I will do that here itself define x k by x k equals y k minus Z

not minus summation i equals 1 to k minus 1 h i of T y i this step is rather similar to step 2 I

am defining a new vector x k, I define the vector Z there y k minus Z not minus this I will

again look at I defined Z as y minus something look at x k minus y k x k minus y k is Z not

plus this. Now this vector belongs to W k minus 1, this is in W not, it is also in W k minus 1.
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So x k minus y k belongs to W k minus 1 and the argument as before if I have two vectors x

and u such that x minus u belongs to W then those monic generators will be the same that is

look at little s x k; (y) sorry W k minus 1 that will be the same as little s y k W k minus 1 but

this is what I am calling as p k s y k W k minus 1 is p k, what happens to p k x k also p k T x

k without writing the details let us see this quickly p k T x k is p k T y k minus p k T Z not

minus p k h i minus p k h i plus p k h i will get cancel, p k T Z not is y not so p k T x k is 0, p

k T x k is 0 please check this.

So x k the new vectors that we have defined have this property this is true for all k this is true

for all k now can you see that this means W k minus 1 intersection Z x k T must be single

term 0 this is the crucial step for independence that is see at each step look at the first step W

not we start with W not then we are adding Z x 1 T, I want independence so I would like to

know if W not intersection Z x 1 T is single term 0.

In a general step I have W k, W k is W k minus 1 plus Z x k T, I would like to know whether

this Z x k T that I am adding is independent with all with the subspace W k minus 1 this this

so this question is important, is the subspace Z x k T independent with W k minus 1? I am

claiming that the vectors x k defined here in this manner have that property. Now why is this

true? This is because see you got to go back and use this condition p k T x k is 0 means that

this is single term 0, how let us do this quickly.

What is Z x k T? Z x k T is the set of all g T x k just the set of all g T x k such that g belongs

to f T this is Z x k T, okay. What is what is p k? p k is is this in particular p k is this s x k W k



minus 1 so this is the one with a least degree which means this g is a multiple of p k, is that

clear? I collect all those polynomials the that satisfy the property that g T x k belongs to I

have taken this from this I want to see whether I want to see what happens when g T x k

belongs to W k minus 1.

If g T x k belongs to W k minus 1 then I have the following this g T must be a multiple of p k

because p k is a unique monic generator anything is a multiple so this g T is a multiple of p k

but p k T x k is 0 so g T x k must be 0. So if g T x k is belongs to this then g T x k is 0 please

verify this not not immediately if this belongs to W k minus 1 then this must be a g must be a

multiple of p k but if it is a multiple of p k then because p k T x k is 0 it follows that g T x k is

also 0 and so this is independent.

(Refer Slide Time: 34:36) 



So  let  me  remove  this  portion  this  guarantees  independence  this  condition  guarantees

independence that is the first part, okay that is the first part which means what instead of y 1,

etc y k I will use x 1, etc x k I get a direct sum decomposition. The last part is p k divides p k

minus 1 that is the last part p k divides p k minus 1, how does this follow? What we have

proved just now is that use the fact that p k x k is 0 for all k p k T x k is 0 for all k.

Now I will go back to this representation in particular I will  go to this  (())(35:31) I will

remain here I will go back to this representation and then remember that whenever I write f T

y in this manner then f must divide each of these terms instead of f I have p k instead of f I

have p k that is what I have here.

So I also observe p k x k is 0 so I have p k T x k equals 0 plus p 1 T x 1 plus p 2 T x 2 plus etc

plus p k minus 1 T x k minus 1 all that I have done is to write 0 as a sum of zeros. I can write

this as 0 plus if you want summation i equal to 1 to k minus 1 p i of T x i just to get this

similar to that representation, okay what is that that we have done? We have done p k T x k I

know that  belongs  to  W k  minus  1  and this  is  the  representation  whenever  I  have  this

representation I know from step 2 that this p k must divide each of these polynomials and

through step 2 consequence.

So I will just write by step 2 p k divides p i for all i running from 1 to k minus 1 the complete

proof of the cyclic decomposition theorem of course the last part I have not done the part that

these the positive integer r and the polynomials uniquely determine the positive integer r and

the vectors non-zero vectors satisfying the conditions of the theorem uniquely determine the

annihilating polynomials p 1, etc p k that I am going to skip.
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Let me look at some quick consequences of the cyclic decomposition theorem one of the

results that I have been mentioning let me emphasize it once again. Suppose I have the okay

let me give you this corollary first before stating this result. Remember we started with this

question given subspace W which is invariant under T can I find a complementary subspace

W prime which is also invariant under T the answer is the following.

Let W be invariant I want T admissibility let W be T-admissible then there exist W prime

such that T of W prime is contained in W prime and the vector space V is the direct sum of

these two subspaces. So if you take a general subspace just an invariant subspace in general it

will not work I have given an example yesterday if you take a T admissible subspace then it

works proof cyclic decomposition theorem.

Is a corollary of that start with W not whole single term is 0, W is T admissible okay can I say

this  if  W is  the  whole  of  V then there  is  nothing  to  prove.  If  W is  not  V apply  cyclic

decomposition theorem I will not give the details here apply cyclic decomposition theorem

that you each time you add a cyclic subspace remember that each cyclic subspace is invariant

under T.

So all you are trying to do is looking at W direct sum the other ones Z x 1; T etc Z x (k) T x r

T. Let us call this as W prime then I know that this W prime is the invariant subspace and V is

the direct  sum, okay. So answer for this  question is  if  it  is  not  just  invariant  but also T

admissible then we get an invariant subspace, W prime may not be T admissible we do not

know that but W prime is invariant under T this is one consequence.
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What  is  the matrix form? Matrix analog of the cyclic decomposition theorem is that any

matrix B is similar to A, where the A is block A 1, A 2, etc A r all other entry is 0 where each

A i is the companion matrix of the polynomial p i, how does the proof go? We know that the

restriction operator of the operator T to a subspace W when I write down the matrix of the

restriction operator with respect to the cyclic basis W is a cyclic subspace that is W equals Z

x 1, T when I write down the matrix of the operator T relative to this cyclic subspace I know

that the matrix is the companion matrix of the annihilating polynomial T annihilator of x T,

annihilator of x 1, x i T annihilator of x i this is a basis collect all such basis put them in this

block form then this is the matrix of the operator T, okay so this is the matrix form matrix

analog of the cyclic decomposition theorem this is called the rational form.

The above form is called the rational form of B that is for you start with any matrix B then it

can be reduced to the rational form the construction is by means of cyclic subspaces. See

there is also a Jordan form but I do not have the time for that so all that I will do is I will give

an example a numerical example of the rational form of a matrix, okay.
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This matrix B is 5 minus 6 minus 6 minus 1 4 2 3 minus 6 minus 4 this matrix has the

characteristic polynomial as t minus 1 into t minus 2 whole square the minimal polynomial is

t minus 1 into t minus 2 the minimal polynomial is the product of distinct linear factors so the

matrix is diagonalizable B is actually diagonalizable there is a basis of r 3 having the property

that each of the basis vectors is an eigenvector, okay.

But I am I am interested in the rational form of this matrix it can be shown that this matrix B

is  similar  to  the  matrix  A that  is  you  can  construct  a  cyclic  basis  and  the  basis  which

corresponds to an eigenvalue I will not give the details here this A is 0 minus 2 0 1 3 0 0 0 2

see this matrix actually can be diagonalized I am just looking at another form I can show that

this B is similar to A that is there is a matrix p which is invertible such that p inverse B p is

equal to this matrix A, what is the structure here? The structure here comes from this first

block  this  first  block  is  a  companion  matrix  corresponding  to  the  T  annihilator  of  the

eigenvector corresponding to the eigenvalue 2.

Calculate the eigenvector corresponding to 2 call it x 1, look at x 1 T x 1 that will form a

subspace the cyclic subspace compute the annihilator compute the companion matrix of this

annihilator this block corresponds to that no I am sorry this does not corresponds to that t

minus 2 whole square, okay in any case please verify this corresponds to a cyclic subspace

companion matrix corresponding to a cyclic subspace, this corresponds to just an eigenvalue

this is a rational form of the matrix V, okay. I think I will stop here.


