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Okay, so I will state and proof the cyclic decomposition theorem okay I have mentioned this

before what the statement is I will make the precise statement a little later but I need to tell u

what is the problem, the question is can we write a finite dimensional vector space V as

follows Z x 1; T direct sum Z x 2; T etc Z x k; T that is can I decompose a finite dimensional

vector space V such that into a sum of into a direct sum of subspaces such that each subspace

is cyclic cyclic with respect to the operator T. So can I find vectors x 1, x 2, etc x k such that

this decomposition is possible, okay.

The answer  is  yes  it  is  related  to  the  following problem this  is  related  to  the  following

problem. See this is the reason why one must look for such a decomposition is that dealing

with dealing with operators over cyclic subspaces is easier than dealing with operators over

the general space. So one would like to look at the restriction operators the restriction of the

operator T on the cyclic subspace then we have already derived some consequences.

For  example  if  u  look  at  the  matrix  of  the  restriction  of  T over  the  subspace  that  is  a

companion matrix,  etc,  okay. I  have not  mentioned that  is  a restriction  operator  but it  is



essentially that so there are some simplifications possible when you study an operator T by

restricting  the  operator  to  certain  subspaces  in  this  instance  the  cyclic  subspaces.  This

problem is related to another problem which is the following.

Given a finite dimensional vector space V there are subspaces W and W prime such that V is

the direct sum of these two subspaces for a finite dimensional vector space this is true even

though we will not prove it in this course this is true now what is possible is that given a

subspace  W of  V which  is  not  the  whole  of  V in  the  finite  dimensional  case  there  are

infinitely many choices for W prime given a subspace W there are examples where given a

subspace W there are infinitely many choices of W prime, okay.

I  can give a simple example motivated by the geometry geometry of R 2 this  is  gives a

decomposition  the  horizontal  axis,  the  vertical  axis  this  gives  a  decomposition  take  the

horizontal axis and look at the subspace generated subspace of all points lying on this line

passing through the origin horizontal space and this slanted space this this subspace has the

property that the sum is a direct sum decomposition of R 2 you can verify this easily, unit

vector is 1 0 you can take this is the line y equals x so unit vector is 1 by root 2 comma 1 by

root 2 then any these two vectors are independent so these two vectors form a direct sum

decomposition of R 2.

So in fact any line so take the horizontal and take any slanted line set of all points lying on

that  line  that  will  be  a  subspace  these  two  together  will  give  rise  to  a  direct  sum

decomposition of R 2 this can be done in R n also. So given given a subspace it is possible

that there are infinitely many subspaces W prime that satisfy this condition we call W prime

as a subspace complementary to W, W prime is called a complementary subspace is called a

complementary subspace complementary to W complement to W is called a complementary

subspace complement to W.

The question is if you have an operator T can I also look for T invariant subspaces? Can we

extend this to a problem where suppose I have suppose the T of W is contained in W that is

W is invariant under T can I get a W prime such that W prime is also invariant under T, does

there exist W prime a subspace such that W prime is also invariant under T, okay this is rather

too much to expect the answer is in general no, okay but we will give a condition onto which

this holds, we will we can impose okay the general answer to this question is no, general

answer to this question is yes given a subspace W in a finite dimensional vector space given a

subspace W can I find a complementary subspace W prime this is always possible.



Given a subspace W such that given a subspace W that is invariant under T, can I find a

subspace W prime which is also invariant under T, answer is no. I will give an example so

that you will be convinced to get an affirmative answer you need to impose something more

on W that is what I will discuss next but I will give an example to show that the answer in

general is no.
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Look at look at the following operator T the matrix of T I will write okay I will write T

straight away. Let us look at this diagonal matrix 1 2 0 0 0 3 you look at the space which is

null 2 to 3 are the eigenvalues look at null space of 2 minus T I call that W, I am not going to

show but I am going to leave this as an exercise show that this see this W is an eigenspace so

T W is contained in W this is invariant under T, that is not a problem, okay but there exist no

W prime  such that  W plus  W prime is  R 3 together  with  the  condition  the  T W prime

contained in W prime, okay.

So if you are seeking an invariant subspace if you are given an invariant subspace W for

seeking an invariant subspace W prime the answer in general is no, you need some more

conditions on W so that this will be satisfied, what is that condition? That condition is called

T-admissibility  that  condition  is  called  T-admissibility.  So  let  me  give  this  definition

condition on a subspace being T admissible, so this is a framework V is a finite dimensional

vector space, T is an operator on V, W is a subspace this subspace W is called T admissible if

the following two conditions are satisfied.



First condition is that it must be invariant under T, the second condition is that if f T of y

belongs to W where f is any polynomial if f T y belongs to W then there exist Z in W such

that f T y equals f T z for any polynomial f this is T-admissibility, okay where does this come

from? For one thing that the question is how it is related to the notion that we discussed just

now? How is this related to seeking a subspace W prime which is also invariant under T

given that there is a subspace W which is invariant under T with the assumption that W plus

W prime is the whole space W, comma W prime gives a direct sum decomposition where

does it come from?
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If I have a subspace W given a invariant subspace W so let me make this statement this is

easy to see little lemma may be let V be W direct sum W prime with the following T W is

contained in W, T W prime is contained in W prime then W is T admissible then W is T

admissible this is very easy to see the converse is not at all easy the converse is non-trivial the

converse is non-trivial consequence of the cyclic decomposition theorem.

What is the what is the converse is the question that I asked you to begin with, okay how does

this follow this is very easy let me proof this quickly I want to show that this condition is

satisfied by W, okay see this this I want to show that W is T admissible, okay this condition

do not involve W prime, okay I want to show W is T admissible. So let me start with f T y in

okay let I will start like this this is a take an arbitrary vector in the vector space then I can

write this as y 1 plus y 2, y 1 is in W, y 2 is in W prime in a unique way because of the direct

sum decomposition, V is a direct sum decomposition so this representation is unique.



For any polynomial f I look at f T y, f T is linear so f T is f T y 1 plus f T y 2 both these

subspaces are T invariant so this belongs to W, this belongs to W prime because both these

are  invariant  subspaces.  If  this  belongs  to  W  if  this  belongs  to  W  then  what  is  the

consequence? This has to be 0, so f T y belongs to W this statement will imply that f T y 2 is

0 this is in W, f T y 2 is 0, if f T y 2 is 0 it means f T is f T y 1 that is f T y equals f T y 1 with

the  extra  provision  for  us  that  y  1  belongs  to  W this  is  the  condition  2  this  is  second

condition.

If f T y belongs to W then there must be existence Z such that f T y equals f T Z in this case Z

is y 1, okay so this is simple consequence of the fact that both W and W prime forming a

direct sum decomposition of V are invariant under T, okay the converse is not that easy it is a

consequence of the cyclic decomposition theorem. So this is a notion that is relevant to the

statement of the decomposition theorem T-admissibility of a subspace.
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So let me write down the statement T is a linear operator on a finite dimensional vector space

V. Let W be a T admissible, proper subspace of V, W is a T admissible, proper subspace of V

so W is not the whole of V but W could be single term 0, T admissible proper subspace of V.

Then what we want to show is that there exist non-zero vectors I will call them x 1, x 2, etc x

r non-zero vectors in V such that the following conditions hold.

Condition 1 is that V is the direct sum of I will start with W not, W 0 is the invariant subspace

T admissible subspace that I start with then V can be shown to be the direct sum of W not and

the subspaces Z x 1; T, x 2; T, etc (x) Z x r ; T. I also have another condition there exist T-



annihilators there exist T-annihilators I will call them p k 1 less than or equal to k less than or

equal to r T-annihilators of what of the x case.

T-annihilators p k corresponding to the vector x k that is p k is the T-annihilator of x k, etc for

1 upto r, k running from 1 upto r such that I have this condition p k divides p k minus 1 for all

k, k running from 2 to r this time this is p k divides p k minus 1, okay may be I will just write

p k divides p k minus 1 for k equal to 2, 3, etc r. The last part says that the last part I will

write here itself.

Further the integer r that is what is the number of vectors x 1, etc x r that integer r and p k the

integer r and p k for which 1 and 2 hold for which 1 and 2 hold are unique, okay that is the

complete statement as I mentioned before this has four steps the last step is the uniqueness I

am going to skip the last step uniqueness is not very important so I will skip the last step I

will take the other three steps and proof this theorem, okay.

You could ask this question how does this answer how does this decomposition answer the

one that we started with Z x 1; T, etc Z x r; T, I mentioned that you could start with W not to

be single term 0 so this will not be there so V is a direct sum of this this is called the cyclic

decomposition of the vector space V. We also have extra things about the annihilators and

how they are related, okay okay.
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There are three steps here as I mentioned the proof has three steps, first step is to show the

following. Step 1 we show that there exist vectors y 1, y 2, etc y r in V there exist non-zero

vectors there exist non-zero vectors such that such that V is not the direct sum it is just the



sum W not plus Z y 1; T, etc Z y r; T, okay not that this is not the direct sum just the sum this

is the first condition.

Second condition if W k is is W not plus Z y 1; T etc Z y k; T, W k is the subspace I get by

adding these k subspaces to W not that is W k. If W k is this for 1 less than or equal to k less

than or equal to r then the conductor then the conductor p k, I will use s y k; W k minus 1,

this is the notation I have got explained this notation, okay I will do it a little later, p k is a

polynomial it is a conductor this conductor has following property has the maximum degree.

See I must tell you that the statement is complicated but the proof this is easy first step as a

maximum degree among among all T-annihilators into W k minus 1, what is the meaning of

this? See W k is this subspace I look at a particular polynomial this polynomial is denoted by

p k this p k has the property that among all the T-annihilators into W k minus 1 this one has a

maximum degree.

So let  me write down the formulation p k is  p k is maximum p k is maximum over all

maximum x element of V, s of x; comma W k minus 1 I have still not defined what this little s

is we will do this now and then proof this first step. Once I define s the second part should be

clear.
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So what is this s? You recall this subspace S T x; W for a subspace so this is really to recall

this notion this is the T conductor of x into W that is the set of all polynomials g such that g T

x belongs to W this is the T conductor of x into W this is S T. We know that this is an ideal

this is an ideal in the principle domain (f D) f T so this is generated by a unique monic

polynomial that monic polynomial I will denote it by little s okay to be specific this s for me

will be x; comma W k minus 1 this is the this is generated by the polynomial s that unique

monic generator s to denote that it depends on x and the subspace W sorry and the subspace

W I will denote it like this s x; W so little s always denotes the unique monic generator of a

particular ideal of polynomials in this instance it is x; W S T x; W so it is determined by x and

W, okay. So now go back and check this go back and see what this definition is.

Look at all see look at s x; W k minus 1 I told you what this is you look at that ideal S T x;

comma W k minus 1 fix an x and then your little  s x;  W k minus 1 is  a unique monic

generator of that ideal you vary x in V and take the maximum of the degree of all those, okay.

Then just mention degree p k degree p k if p k see this is this is an infinite set okay x belongs

to V, I look at the maximum of that degrees of you must also write maximum degree here.

So  please  make  this  correction  also  maximum of  that  degrees  of  these  polynomials  the

polynomial is s I look at the degrees of those and I will maximize that degree. What I am

saying is that maximum degree will be equal to degree of p k where what is p k p k is this

particular polynomial p k is this particular T annihilator that is you look at the unique monic

generator of the ideal capital S y k; W k minus 1 that is this little s if that is denoted by p k

then p k has this maximum property, okay.



So I look at this ideal take the unique monic generator I am calling that as p k, what is the

property that p k has with W k minus 1? What is the property that p k has with W k minus 1?

In relation to W k minus 1 this is that property among all those vectors x which which are

taken for that for that ideal I compute those unique monic polynomials take the maximum of

those degrees that degree that number will be equal to degree of this polynomial, okay only

those numbers coincide.
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So proof of step 1. Let see I want to start with the invariant subspace W not I want to start

with the invariant subspace W not and then construct this V, I would rather start with an

invariant subspace W and then apply W not for that. Let W be an invariant subspace of V that

is T of W is W contained in W, I take an arbitrary vector y in V. If W is a proper invariant

subspace of V then we have the following inequalities two inequalities I look at maximum s

x; comma W x in V, if W is not V there exist y in V such that y is not in W.

So I want to show what I want to say is if W is not equal to V then I have the following look

at if W is not equal to V then maximum of s x; comma W x in V can can this be 0? Can see

this is the degree of a polynomial see this s x; W is the unique monic generator of S T x; W

can this be 0? If the maximum is 0, can you see that W has to be the whole of V? So this

cannot  be  0  for  one  thing  it  is  strictly  positive  and  for  the  other  it  cannot  exceed  the

dimension of V, no it can be equal to V dimension can be equal to V the degree can be equal

to the dimension of V that is possible because this maximum could happen could happen for

the characteristic polynomial this maximum could happen for the characteristic polynomial in

which case it could be equal to dimension of V but it is strictly greater than 0 it is strictly



greater than 0 otherwise this W will be the whole of V, I will take a particular vector y which

attends this maximum.

Let y be a vector in V for which this maximum is attained in principle this y can be found out

there is a y there is a there is a y that attains this maximum. All that I will do is consider a

new subspace W plus Z y of T by the way this y cannot be in W, I have not mentioned that

this y cannot be in W. Note if y is in W then that degree is 0 y is in W that degree is 0. See I

am looking at maximum of all this is y; W, y cannot be in W the degree will otherwise be 0

but strictly positive.

So consider this subspace now since y does not belong to W remember that we could write

down a cyclic basis for this subspace Z y; T we could write down a cyclic basis for this

subspace so okay now that cyclic if if y belongs to W then this subspace will be contained in

W but y is not in W. So the dimension of this subspace the dimension of this subspace will be

strictly greater than the dimension of W dimension of this subspace W that we started with

there is at least this is at least one dimensional and that the vector in any basis the vector in

particular the cyclic basis is independent with sorry not W 1 just W the vector in Z y; T in that

cyclic basis will be independent with W because it does not belong to W. So this dimension is

strictly greater than dimension of the subspace W that we started with.
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So what I do now is this is true for any invariant subspace W in particular W not I am given

an invariant subspace so I will remove this statement we approving applying W not to W,

what we have is that there exist a vector instead of y I call it y not there exist y not which

does  not  belong to  W not  such that  such that  dimension  of  W 1 is  strictly  greater  than

dimension of W not where for me W 1 will be the subspace W not plus Z y not; comma T, I

call it y 1 so that in consistent with my notation.

If there are k subspaces here that will be W k there is only one subspace, okay what is ya W 1

is given here what I do now is look at W 1 W 1 for one thing W not is invariant under T, this

is invariant under T cyclic subspace this is invariant under T so the sum will also be invariant

under T so W 1 is invariant under T. If W 1 is the whole of the space we are done otherwise I

can apply this step to W 1.

If W 1 is not equal to V then we construct y 2 such that that is we apply the previous that little

result to W 1, y 2 such that W 2 equals W not plus Z y 1; T plus Z y 2; T where the dimension

of W 2 is strictly greater than the dimension of W 1 strictly greater than dimension of W not

every step the dimension increases by at least one, V is finite dimension so this procedure has

to terminate, okay this procedure terminates at some point because V is finite dimensional

and  every  time  we  are  increasing  the  dimension  by  at  least  one  this  procedure  has  to

terminate.

And so I will simply say since this process must terminate we have after at most dimension V

steps we have V equals W not plus there is no direct sum just the sum W not plus to begin

with in step 1 W not plus Z y 1; T Z y 2; T etc Z y r; T, I am assure that these polynomials



satisfy those conditions, okay that is easy but this is the first part where we have used W k to

denote for any k 1 less than or equal to k less than or equal to r W k is the subspace W not Z y

1; T etc Z y k; T.

So we apply this we apply the procedure that we started with to this subspace W k to get this

formula V is just the sum of these subspaces, is it now clear that this these p k’s p k's have

been chosen like this is it clear that p k must divide okay that comes later I will do that later.

So is  it  clear that is it  clear  that  what is the condition that  we have imposed on y 1 for

instance, okay we will go back to go back to this step we have started with the invariant

subspace W what is the condition that we have imposed on y, y is that vector for which this

maximum is attained y is that vector in V for which this maximum is attained.
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So if you go to first step go to the first step y 1 is the vector for which that maximum is

attained, okay. So if you look at if you look at s I will write that here if you look at little s y 1;

W k minus 1 that is this time W not y 1 W not I am calling this p 1 right. So by definition this

is a maximum degree among all T-annihilators into W not is that not how I see I am applying

this for W not I am applying this for W not among all those among all those among all those

x so among all  those x in V I look at the subspace W not I look at  the polynomial  that

generates that S T and take the maximum.

I do that for y 1 I get p 1, p 2 similarly so this is really a consequence of how we have chosen

y 1, y 2 etc okay. So I will just write here that choice of y k’s ensure that p k satisfies the

maximum property so as I told you this is an easy consequence of the construction of the



vectors I just  illustrated for the first vector that this p k satisfies the property that it  has

maximum degree among all T-annihilators into W k minus 1 comes from the construction of

the vectors y 1, etc y k, okay that is step 1 really, is that fine?
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Let us move to step 2 I will proceed from step 1. Let y 1, y 2, etc y k be non-zero vectors the

fact  that  these  are  non-zero  I  have  not  mentioned  but  these  cannot  be  0  otherwise  the

dimension cannot increase so I skip that, none of these vectors can be 0 because if one of

them remember that the Z 0; comma T we know it is just single term 0, okay. So dimension

cannot increase if this is the crucial step right if y is 0 the dimension cannot increase. So in

none of these vectors can be 0, so I have not mentioned but that is easy to see.

Let y 1, etc y k be the non-zero vectors coming from step 2 non-zero vectors from step 1

satisfying just emphasizing the conditions 1 and 2 satisfying the conditions 1 and 2 for a fixed

k let me set f as I fixed k I fix the k and then I am looking at I am looking at that (sub) that

sub bring that ideal S T y k; comma W k minus 1 my little s is the unique monic generator of

that ideal.

For this step I am calling that polynomial as f for simplicity instead of writing this whole

thing I am denoting it by f, okay. Then what do I know about this f this f has the property that

this f has the property that if you look at f T y k that must belong to W k minus 1. See I have

not yet written down what is it that we are going to prove in step 2, okay I have not yet

written down what we are proving in step 2, I am just fixing a notation f is this polynomial



then by definition this is the polynomial coming from that S T so that is f T y k must belong

to W k minus 1.

Now it is in W k minus 1 and from the previous step I know what W k is I know what W k

minus 1 is.  So I  can write this  f  T y k in terms of these subspaces if  okay so I  have a

representation. If f T y k can be written as so first one is W not I will call it y not it is in W

not I am calling that y not plus f T y k belongs to W k minus 1 W k minus 1 has this plus k

minus 1 terms here k minus 1 subspaces.

So I will use this notation i equals 1 to k minus 1 now I do not know what these I do not

know what these vectors are but for one thing I know that these are cyclic subspaces so there

is one possibility of what is the basis for instance? We know that it is y 1, T y 1, T square y 1

etc it is a polynomial in y 1. So I will write each term as a polynomial in y 1 I will call that g i

I will call it g i T y i this is the most general expression for any vector in Z y k; comma T.

And remember that each of these cyclic subspaces is invariant under T so is it okay I have I

have written a I have given a representation for f T y k I know that it belongs to W k minus 1

I look at the formula for W k minus 1 the first term is in W not, the rest of the terms are in

those k minus 1 subspaces this is the most general formula that one could write down for

those terms then what happens what is that I want to state is mentioned in step 2.

If this happens then f divides each g i, okay that is (())(44:28) f divides each g i and there

exist Z not in W there exist Z not in W not such that there exist Z not in W not such that f T y

not equals f T Z not this should remained you of the T-admissibility property. So this is a

immediate consequence of T-admissibility of W not the rest we have to show that is quite

non-trivial step 2 is probably the most non-trivial part of this proof and even in step 2 the

second part is easy easy consequence of T-admissibility of W it is this part that f divides g i

that is the most non-trivial (let me see).
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So I want to proof step 2, proof of step 2 say I have the polynomials f and g i by euclidean

algorithm there exists polynomials h i such that h i,  comma r i such that I can write the

polynomial g i as f i into h i plus r i by euclidean algorithm where either r i is 0 or degree of r

i cannot exceed degree of f here i varies from 1, 2, etc k minus 1 k minus 1, okay I want to

show that r i is 0 I want to show that r i is 0 degree of I am sorry it is not f i just f this is f into

h i, f is the polynomial that I started with, g i's are the polynomials that come from the general

representation of f T y k.

I want to show that each r i is 0, okay we show that each r i equal to 0, if you show that each r

i is 0 then it means that f divides g i for all i, okay and second one as I mentioned is an easy

consequence of T-admissibility of W not, we need to show that each r i is 0 the proof is by

contradiction suppose r i is not 0 we will get a contradiction. The proof is by induction on k

for proving the induction I need a basis step basis step is k equals 1 basis step is k equals 1.

For k equals 1, what do I have? What is given? What do I need to proof? For k equals 1 what

I have is that f T y 1 belongs to W not the question is does f divide g 1 I am sorry just g 0 no

for k equal to 1 this is (())(48:30) for k equal to 1 I have just this f T y k is y not for k equal to

1 it must be in W k minus 1 that is W not, right for k equal to 1 this is W not f T y 1 is just y

not this simply does not figure f T y 1 is equal to y not.

So the only thing I need to demonstrate is whether this condition is satisfied please verify is

this condition is satisfied? This is satisfied because W not is T admissible, okay this condition

is satisfied because W not is T admissible. So k equal to 1 is really T-admissibility of W not I



think I have to stop here and continue tomorrow. Assume that it is true for k greater than 1

and prove it for prove it for k plus 1, okay I will stop here step 2.


