
Linear Algebra
Professor K.C Sivakumar

Department of Mathematics
Indian Institute of Technology, Madras

Module 8 Invariant Subspaces And Triangulability
Lecture 31

Triangulability, Diagonalization in Terms of the Minimal Polynomial

Okay, we will discuss how to characterize triangulability and then diagonalizability today, okay

okay.
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In particular we have the following T is a linear operator on a finite dimensional vector space V,

let me say I have lambda 1, lambda 2, etc lambda k be the distinct eigenvalues of T, then T is

triangulable if and only if the minimal polynomial m of t can be written as a product of linear

factors, t minus lambda 1 to the r 1 t minus lambda 2 to the r 2 etc t minus lambda k to the r k,

okay one part is easy.

See this  is  an if  and only if  statement  necessary and sufficient  if  T is  triangulable  then the

minimal polynomial has this representation if the minimal polynomial has representation then T

is  triangulable  that  is  a  second  part,  if  T  is  triangulable  then  the  minimal  polynomial  has

representation is easy so let us look at that quickly by definition T is triangulable if there is a

basis B of V such as the matrix of t relative to that basis is an upper triangular matrix.



So I am doing the first part there exists I am doing the first part that is if T is triangulable, I want

to show that the minimal polynomial has this form, okay there exists a basis of V such that the

matrix of T relative to this basis is of this form a 11 a 21 a 31 etc a n1 0 a 22 a 32 etc a n2 00 etc

all these entries are 0 the last one is a nn upper triangular matrix, the matrix of T relative to B is

an upper triangular matrix. This is the these are the entries along the principal diagonal (below

this entry) below this principal diagonal all entries are 0, that is an upper triangular matrix.

So if T is triangulable than T the matrix of T relative to B is of this form, we need to show that

the minimal polynomial of T is this but that is forward because because it is an upper triangular

matrix  the  eigenvalues  are  precisely  the  diagonal  elements,  okay  and  so  the  characteristic

polynomial of this matrix will be (lambda) T minus a 11 into T minus a 22, etc T minus a nn it is

of this form, some of these diagonal entries could repeat so the minimal polynomial, this is the

expression I  gave  for  the  characteristic  polynomial  the  minimal  polynomial  must  divide the

characteristic polynomial and it also has the same roots as the characteristic polynomial so the

minimal polynomial is of this form okay.
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So write this quickly then p of t is t minus a 11 t minus a 22 etc t minus a nn and so m t has a

required form there is nothing in this part, okay so first part is easy. Second part will make use of

the previous result,  the previous Lemma states that if the minimal polynomial factors in this

manner then and if w is an (invariant subs) proper invariant subspace then there exist an x such



that the x does not belong to W but t minus lambda j x belongs to W, okay we will use that

Lemma repeatedly.

So for the converse, conversely suppose that the minimal polynomial has that required form. I

will  start  with  W not  as  the  subspace,  the  subspace  (())(5:29)  just  single  term 0  this  is  an

invariant  subspace  for  any  operator,  okay  so  I  will  use  a  previous  Lemma  the  minimal

polynomial has this form, I will use a previous Lemma for this subspace there exists, I will call it

okay I will start with W 1, there exists x 1 which does not belong to W which means x 1 is not 0

there exists x 1 which does not belong to W but T minus such that T minus lambda j I of x 1 that

belongs to W 1 by the previous Lemma you must verify that the conditions of the previous

Lemma are satisfied, the conditions of the previous Lemma are m can be written as a product of

linear factors W must be an (invariant subspace) proper invariant subspace the case here and then

this happens for any operator T, is that okay?

x 1 does not belong to W 1 so such that T minus lambda j, lambda j is some Eigenvalue that is

also  important,  lambda  j  is  some Eigenvalue  that  is  why  I  have  written  like  this  lambda  j

represents one of these I am just emphasizing lambda j is some Eigenvalue just to emphasize.

What I do next is take the subspace span by x 1 this is not 0.

So I will go to the next step that is span of x 1 this is an Eigenvector x 1 is an Eigenvector, W 1 is

single term 0 so x 1 is an Eigenvector so W 2 is an invariant subspace, T of W 2 is contained in

W 2, W 2 is an invariant subspace. I apply the previous Lemma to the subspace W 2 to get x 2

which does not belong to W 2, now x 2 does not belong to W 2 what is the conclusion?

If it is not in W 2 then it is not a multiple of x 1 so x 1 and x 2 are linearly independent, x 1 x 2

linearly independent that is what it means W 2 is multiple of x 1, if x 2 is not in W 2 then x 1 x 2

are linearly independent then with this I get such that T minus let us say some lambda I identity x

2 this belongs to W 2 again lambda I is some Eigenvalue but I need to interpret this now I need

to interpret this so that I can proceed by induction, what is the meaning of T minus lambda I of x

2 being in W 2?
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This means that T x 2 is some lambda i x 2 plus this belongs to W 2, W 2 is span of x 1 so let us

say some alpha 11 x 1, I will rewrite this as alpha 11 x 1 plus some lambda I times x 2 that is my

T x 2 that is my T x 2, do you agree? T minus lambda x 2 belongs to W 2, W 2 is span x 1 so it is

some multiple of x 1, T x 2 minus lambda x 2 is that alpha 11 x 1 so I get this, I have just

rewritten  it  like  this  because  remember  you should always remember  what  we are trying to

prove.

We want to construct a basis B such that the matrix of T relative to that basis is upper triangular,

given the minimal polynomial is of this form you want to show that T is triangulable okay, can

you see the first step of how to construct that basis, I have x 1 here x 1 x 2 here this is going to be

our basis, I want to write down the matrix of T relative to this basis, so what is the first column,

let us pre-empt what is the first column of the matrix of T relative to this basis suppose to have

been constructed that is x 1 x 2 etc x n is what I am going to construct that is my basis, what is T

x 1 in terms of x 1 x 2 etc x n.

First step T x 1 equals lambda j x 1 there are no other terms so the first column, first entry is

lambda j all other entries are 0, I want to look at T x 2, T x 2 I have already written, I want to

write T x 2 in terms of x 1 x 2 etc x n but I see that it is a linear combination of only x 1 and x 2

coefficient of x 1 alpha 11, coefficient of x 2 is some number it is an Eigenvalue but does not



matter the second column is first non-0 entry, second non 0 entry all other entries 0, that is how I

get the upper triangular matrix, okay. So these are the first step of constructing that basis so this

is my T x 2.

I  proceed  by  induction  to  get  the  following  W n  minus  1  for  me,  I  am assuming  that  the

dimension of the space V is n, I have written now the sum r 1 plus r 2 etc r k, I am sorry not for

the minimal polynomial the dimension of the spaces assume to be n always, I look at W n minus

1, W n minus 1 by definition is span of the first n minus 1 vectors, I have constructed x 1, x 2, etc

x n minus 1, having constructed x 1, x 2, etc x n minus 1, I will construct x n last step. There is 1

less right so okay. W 1 single term 0, W 2 was this which means I must go to W n, I go to W n

and then construct x n plus 1 okay (Wn is) is it okay? Right, W 2 is span of x 1 that is invariant

under T, W 3 will be span of x 1 x 2 is that invariant under T, for x 1 there is no problem, for x 2

what happens? Just now I have written on the expression for T x 2, T x 2 is a linear combination

of x 1 and x 2, so I go back so W 2 sorry W 3 is invariant under T, do you agree? So I proceed by

induction is that clear? 

See after this step I construct W 3 right that is span of x 1 x 2 is this invariant under T? It is

enough, is it invariant under T so I will look at the action of T on each of the vectors. T x 1 no

problem it is just it is an Eigenvalue lambda j is an Eigenvalue x 1 is an Eigenvector, x 2 is not

an  Eigenvector,  let  us  remember  that  x  2  is  not  an  Eigenvector,  okay  x  2  if  x  2  were  an

Eigenvector  this  term would not  be there,  x 2 is  not  an Eigenvector  in  fact  this  is  called a

generalized Eigenvector okay x 2 is not an Eigenvector but is independent with x 1 and x 2 has

the property that T x 2 has its representation okay, so what if you look at T x 1 of course it is a

multiple of x 1, if you look at T x 2 it is a linear combination of x 1 and x 2, which means T of W

3 is contained in W 3. 

See every step you need to verify that the subspace you have got is invariant under T, (T of W 3

is invariant under T) W 3 is invariant under T proceed by induction this can be shown to be

invariant under T, now I can apply the previous Lemma for one last time, there exists x n which

does not belong to this subspace W n but which has a property that T minus I will call it lambda

S I x n this belongs to W n, again expand as before that is T x n equals lambda s x n plus some

vector in the subspace I will call it u, u belongs to W n.



Now u is in W n, W n spanned by these, these are linearly independent by induction so W n has

this as a basis in fact so this is a linear combination of this let me write that is alpha n 1x 1 plus

alpha n 2 x 2 etc alpha n minus 1, I am sorry alpha n n minus 1, there are n minus 1 vectors here

alpha n n minus 1 x n minus 1, now I will write this term lambda s x n as a last term because I

want to write down the last column of the matrix of T relative to this basis, this is a basis which

is a basis x 1 x 2 etc x n is a basis, why is that a basis by the way?

First few steps we have seen x 1 x 2 etc x n but why are they independent? Because none is a

linear combination of this, a set of vectors is linearly dependent if and only if at least one of them

is  a  linear  combination  the preceding vectors  now that  does  not  happen at  all,  so these  are

independent okay, so do not think this result we prove long ago is useless it comes here, okay.

Finally what have we done we have written T x n as a linear combination of x 1 etc x n which

means the last column of T relative to this basis B so I will now write down B as x 1 x 2 etc x n

constructed in this manner then it is clear that the matrix of T relative to this basis is (a diagonal)

a upper triangular form. I can actually write down right, the first entry is at lambda j, all the other

entries are 0, for the second column alpha 11 lambda i all other entries are 0, etc these entries

will be non-0 the last entry here is lambda s. So it is an upper triangular matrix, so is the prove

clear now?

So if the minimal polynomial factors into a linear factors (then the matrix) then the operator is

diagonalizable rather triangulable, is it clear?

Let us do a problem, let us look at example of an operator which is not diagonalizable but which

is triangulable by the way there is a corollary to this result which I stated even in the last lecture

which is that if you know that all the Eigenvalues of an operator lie in the underlying field that

you started with then it is triangulable, in particular if the underlying field is an algebraically

closed field then any operator T is triangulable.

What is an algebraically closed field? A field is said to be algebraically closed if the irreducible

polynomials are linear polynomials, if the only irreducible polynomials of the field are linear

polynomials, r is not algebraically closed, the polynomial T square plus 1 is irreducible it is not



linear,  c  is  algebraically  closed  for  example,  okay so over  an algebraically  closed  field  any

operator is triangulable okay.
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So  rotation  operator  in  some  sense  is  irredeemable  because  the  Eigenvalues  are  complex

numbers but let us look at the second example, this the operator T on r 3 whose matrix with

respect to the standard basis given here is not diagonalizable, that operator is not diagonalizable.

The characteristic polynomial of this matrix is t minus 1 into t minus 2 the whole square, this is

not diagonalizable.

What I know is (that if x 1 is) okay let me put it the other way now, I will okay I will start with x

1 what I know is that if x 1 is 1 1 2 then this is an Eigenvector corresponding to the Eigenvalue

2, this is the only independent Eigenvector corresponding to the Eigenvalue 2 because the rank

of  a  minus  lambda  2  i  is  2  and  so  the  null  space  has  dimension  1  that  is  the  eigenspace

corresponding to the Eigenvalue 2.

So  this  is  the  only  Eigenvector  non-0  Eigenvector  for  lambda  2  equals  2,  independent

Eigenvector for (lambda equals) lambda 1 equals 1 so I am one shot for the Eigenvalue 2, let me

also write down x 3, I will construct x 2 using the procedure that we describe just now, x 3 I will

write  this  as  the  Eigenvector  corresponding  to  Eigenvalue  1,  I  know  there  is  only  one

independent vector, if I remember write it as 1 0 2 this is an Eigenvector corresponding to the



Eigenvalue 1, I want to show that this is triangulable this is not diagonalizable I want to show

this is triangulable okay.

So I must get a basis, I must get one independent vector, I know that this independent vector

cannot be an eigenvector x 1 x 3 are independent obviously they correspond to Eigenvectors

which are distinct even by inspection, one is not the multiple of the other these are independent

for a basis  I want one more independent  vector okay, now this  vector  I know cannot  be an

Eigenvector because Eigenvectors have been exhausted, it has to be a generalized Eigenvector

constructed like the previous procedure.

So let us do that there are several ways of doing it, I will do one I will apply one method, what I

will do is to look at the span of x 3, I am sorry I want to look at x 1 I want to look at x 1, x3 will

not work, you please experiment, okay span of x 1 corresponding to 2, I will take W to be this by

the  previous  by  the  way  this  is  an  Eigenvalue  so  this  W is  invariant  under  T,  x  1  is  an

Eigenvector corresponding to the Eigenvalue so (this is) this subspace invariant under T so by

the previous Lemma by the way the minimal polynomial factors as a product of linear factors,

okay I can apply the Lemma there exists x 3 which does not belong to W but T minus lambda i x

3 belongs to W, for some Eigenvalue lambda, I want x 2 yes I want to determine x 2 such that x 2

does not belong to W so x 2 and x 1 are linearly independent but T minus lambda x 2 belongs to

W, for some Eigenvalue lambda you will see that it will correspond to the Eigenvalue 2 but this

is not an Eigenvector, let us remember that again, so T minus lambda so T x 2 equals lambda x 2

I want to actually solve this right, I want to find x 2.
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So let me write like, I want to solve for x 2 so I will look at T minus lambda i x 2 it belongs to W,

W span x 1, I will take x 1 itself 1 1 2 again experiment this lambda cannot be 1 it will have to be

2, I will not answer why, I am doing for A so I am looking at A minus lambda I, lambda equals to

so I delete 2, 1 1 minus 1 2 0 minus 1, 2 2 minus 2, x 2 is what I am sorry x 1 is one I am looking

at 1 1 2, this is the same as this right multiple so I can delete this and what follows is that I can

write away solve this, I have these equations, for the moment I will call this x, okay.

So my objective is to solve for x from this equation solve for x from this equation, the solution I

will call it as x 2, it is 1 right so okay two equations three unknowns I need to fix one I will take

x 3, x 3 equal to 0 will work because this is invertible. So x3 equal to 0, x 1 plus x 2 equals 1, 2 x

1 equals 1, x 1 is 1 by 2, x 2 is 1 by 2, can you check if this is correct the computations here 1 by

2 plus 1 by 2 that is 1 and this x 3 is 0, okay this last row is same as the first row multiplied by 2

so this is one solution but I need to be careful to see that this is independent of the other one, are

they independent?

You are going to tell me this, can someone make a quick calculation of the determinate and tell

me that this is independent are they independent? Yes you are sure okay, have you verified, you

need to verify that this 3 by 3 determinate is not 0 okay, let us assume the computations are

correct then what is a matrix of T relative to this basis that is I know that A is similar to an upper



triangular matrix in terms of matrices that is what it means A is similar to an upper triangular

matrix that is triangulability, P inverse AP equal to C where C is an upper triangular matrix, what

are  the  entries?  x  1  is  an  (Eigenvalue)  Eigenvector  so  that  is  2,  these  entries  are  0,  x  2

corresponds to a generalized Eigenvector so that will go with what are the entries here T x 2

equals x 1 plus lambda 0 0 0 1, okay please check this how did I get the first column, first

column corresponds to, see this is the order in which I write x 1 x 2 x 3 for the x 1 corresponds

Eigenvalue 2, x 2 is a generalized Eigenvector for the Eigenvalue 2, x 3 corresponds to the

Eigenvalue 1.

So T x 3 is one times x 3 that is this T x 1 is two times x 1 that is this, I need to only verify T x 2

but T x 2, here x 2 is a solution of this system so T x 2 is x 1 plus two times x 2 this is the upper

triangular form which is similar to the matrix A what is P?
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Just pad up those Eigenvectors this is P, this P is invertible because it consists of x 1, x 2, x3

which form a basis for r 3 so this P is invertible, okay. So this is an example, we know that

diagonalizability does not work for this example but since we know that the Eigenvalues all the

Eigenvalues lie in the underlying field we know that this can be triangulated we have done that

we have triangulated this matrix, is that clear? Okay.



Then finally  diagonalizability, characterization  of  diagonalizability  okay that  is  an important

result let us prove that result, do you have any questions before I proceed to the next important

theorem  okay  I  want  to  characterize  diagonalizability  T  is  a  linear  operator  on  a  finite

dimensional  vector space this is diagonalizable if and only if the minimal  polynomial of the

operator T is a product of distinct linear factors, T is diagonalizable if and only if T is a product

of I am sorry if and only if the minimal polynomial is a product of distinct linear factors of which

one part we have seen earlier if T is diagonalizable then the minimal polynomial is a product of

distinct linear factors we have seen that first part was proved earlier.

If you do not remember it we can recall it quickly if T is diagonalizable then m is the minimal

polynomial  is  a  product  of  distinct  linear  factors  comes  because  for  one  thing  the  minimal

polynomial cannot be of a degree less than this polynomial because the minimal polynomial has

to  have  each  Eigenvalue  as  a  0,  you  cannot  go  less  than  this,  now is  this  an  annihilating

polynomial?

If you show that this is a annihilating polynomial you are through because the coefficient of T to

the k is 1 so it is Monic, least degree just show it is an annihilating polynomial to show that it is

an annihilating polynomial you show that m of capital T is 0, m of T let us call it S you want to

show S is a 0 operator, you show that T is diagonalizable. 

So there is a basis for the vector space V each of whose vector is an Eigenvector for T, you want

to show S is 0 show that S of x equal to 0 for all Eigenvectors x okay but S of x you know that

the products can be rewritten T minus lambda 1 into T minus lambda 2 is T minus lambda 2 into

T minus lambda1 this is what we used to show that since this x is an Eigenvector you have to go

to that place where the Eigenvalue figures and then push it to the right corner you will get m of T

to be 0 that is a prove for the first part. If T is diagonalizable then this is a minimal polynomial

has been proved earlier it is a converse part that is important.

So suppose m has this form we will prove that T is diagonalizable okay, suppose that m is a

product m is the product of distinct linear polynomials we want to show that T is diagonalizable.
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I want to show that T is diagonalizable, okay what I do is I will set W to be the space generated

by all the Eigenvectors of T, suppose W is a subspace generated by all the Eigenvectors of T if W

equals V then I am through, if W equals V then I can extract the basis for this space this basis is a

subset of W so each vector is an Eigenvector that is the definition of diagonalizability, so if W is

equal to V there is nothing to prove, if W is not equal to V we will arrive at a contradiction we

will  arrive  a  contradiction,  okay  W is  the  space  generated  by  all  the  Eigenvectors  so  it  is

invariant under T, W is invariant under T, okay.

I  will  appeal  to  that  Lemma see how that  Lemma is  so crucial,  the Lemma can be applied

because the minimal  polynomial  is  a product of linear  factors there exists  x which does not

belong to W but T minus lambda x belongs to W for some Eigenvalue lambda, let me call this as

y and this y belongs to W.

Now y is in W, W is a subspace generated by all the Eigenvectors, let us say x 1, x 2 etc okay for

(Eigen vec) for lambda 1 there are several Eigenvectors those Eigenvectors span the Eigenspace

corresponding  to  lambda  1,  for  lambda  2  there  are  several  Eigenvectors  those  independent

Eigenvectors span the Eigenspace for lambda 2, etc in any case I can look at any vector in W I

can look at it as y 1 plus y 2 etc plus y k where y1 (is a linear combina) y1 belongs to Eigenspace

corresponding to lambda 1, y2 belongs to Eigenspace corresponding to lambda 2, etc.



So I am really writing y as y 1 plus y 2 etc plus y k where remember W, see y belongs to W, W is

the Eigenspace corresponding to all the Eigenvectors, so it can be partitioned as y 1 plus y 2 etc

W 1 plus W 2 etc W k, so this y 1 comes from W 1, y 2 comes from W 2 etc, y k comes from W

k, W 1 W 2 W 3 etc W k are the Eigenspaces.

So I can say this much where y 1 is an Eigenvector corresponding to the Eigenvalue lambda1 so

I have T y 1 equals lambda 1 y 1 etc T y k equals lambda k y k, I will write T y i equals lambda i

y i for all i, is it clear? W corresponds to the subspace generated by all the Eigenvectors so I can

do this T y i equals lambda i y i, now what is for any polynomial, okay tell me if this statement is

correct we have seen this before we have seen this before.
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So let us recall the following suppose Tx equals lambda x then g T x is g lambda x, I want to

make use of this if x is an Eigenvector corresponding to the Eigenvalue lambda then for any

polynomial g I have this, for any polynomial h of t I have h of t y equals h of t y 1 plus h of t y 2

plus h of t y k take any polynomial h and then look at h of capital T that is a linear operator apply

that to this equation.

Now I will appeal to the previous one for T y 1 is an Eigenvector so that corresponds to the

Eigenvalue lambda 1, I have these equations here I have these equations here so this can be

written as h of lambda 1 y 1 plus h at lambda 2 y 2 etc h at lambda k y k for any polynomial h I



have this.  Now I  look at  the  minimal  polynomial,  I  started  with  that  x  right  so I  have  the

following m of T m is a minimal polynomial so it is 0 operator, so m T x is 0 for the x that we

started with, let us not lose track of this x, x is the one which has this property it does not belong

to W but T minus lambda x belongs to W, so 0 equal to m T x.

I want to look at the polynomial m T what I know is that m of lambda I should give this some

name now, okay see this is for some Eigenvalue lambda I will call this lambda j, okay I have y

equals T minus lambda j I of x, I am calling lambda by lambda j that is one of the Eigenvalues

lambda is one of the Eigenvalues in particular I am using this for that for lambda I am using

lambda j, okay.

Now I can write m T as T minus lambda j into q of t, m of lambda j is 0 and I have removed one

factor T minus lambda j into q of t degree of q of t is less than degree of m of t so q of capital T

cannot be 0 in particular q of lambda j is not 0.
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Do you agree that q of lambda j cannot be 0 because if q of lambda j is 0 it means m has lambda j

appearing twice as a root but m is a product of distinct linear factors. If q of lambda j is 0 this

will have T minus lambda j as one factor so m will have T minus lambda j power 2 which is not

the case so q of lambda j is not 0, I wanted to consider this polynomial, consider h of t okay as q

of t minus q of lambda j, consider this polynomial h of t q t minus q lambda j.



Then h of lambda j is 0, q lambda j minus q lambda j, h lambda j is 0, lambda j is a 0 of h, so T

minus  lambda  j  is  a  factor  of  h.  So h  of  t  can  be  written  as  T minus  lambda  j  into  some

polynomial, I will use f f of t I will go back to this equation and write q of t minus q of lambda j

this is equal to h of t, h of t has been written in this manner so that is T minus lambda j into f of t

f is some polynomial.

Now look at q of capital T x minus q lambda j x q of capital T x minus q lambda j x that is I am

now applying the operator T instead of little t I take the operator T so on the left the operator q of

t minus q lambda, q lambda j is a number operator q of t minus q j equals operator T minus

lambda j into the operator f of capital T, two operators are equal then their actions on each vector

must be equal.

So q T x minus q lambda j x equals, I will write this as f of capital T T minus lambda j I x okay T

minus lambda j I x I am calling that as y so this is f of T y the vector y comes from W so f T must

belong to W, so this is in W, do you agree? Look at the definition of y, y is T minus lambda I x

belongs to W. 

So since W is an invariant subspace under T f T y must belong to W so the right hand side vector

belongs to W, this belongs to W so this difference belongs to W this difference belongs to W, can

q T x belong to W from this what is your answer, okay.
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This is what I have q capital  T x minus q lambda j x this belongs to W finally after all the

struggle, can q T x belong to W if q T x belong to W it means I can cancel q T x it will mean q

lambda j x belongs to W but x does not belong to W, a constant times x belongs to W means that

constant has to be 0, a constant is not 0 q lambda j is not 0, do you agree with this? If q T x is 0

this means this vector must be this is a multiple of x that belongs to W but x does not belong to

W so this has to be 0, but q lambda j is not 0 so Z is not 0, the vector Z equals q T x is not 0,

okay but what is it that this q T satisfies?

So I have finally I go back to m T x this is T minus lambda j I q T of x, see I am going back to

the equation using m of T, m is an annihilating polynomial, okay 0 equals m T x m T has this

representation m T has this representation T minus lambda j q T so T minus lambda j I q T x this

is T minus lambda j I of Z, I am calling q T x as Z, what have we proved that is T Z equals

lambda j Z with Z not equal to 0, we have proved that T Z equals lambda Z lambda j Z with Z

not equal to 0, that is Z is an Eigenvector corresponding to the Eigenvalue lambda j that means Z

belongs to W. If Z belongs to W q lambda j is 0 contradiction, is it clear?

That is Z belongs to W why because since Z is an Eigenvector, see this is as I told this is a corner

stone and proof is slightly involved but see the beauty of the proof, Z is an Eigenvector so Z

must belong to W but Z is precisely q T x, q T x belongs to W again the same story if q T x

belongs to W then q lambda j x must belong to W but if that happens and q lambda j is 0 again

but this is a contradiction this is a contradiction to what (this is a con) you will see that each of

these steps is consistent with the previous step each of these steps is consistent with the previous

step.

So the problem is in the beginning I have removed it W not equal to V W not equal to V is not

consistent  with  the  hypothesis  of  the  theorem,  if  W is  the  subspace  generated  by  all  the

Eigenvectors of T and if W is not equal to V then I have a contradiction and so W must be equal

to V this is what we wanted to proof, the space V is generated by all the Eigenvectors of T that is

there is basis B for V such that the matrix of T relative to that basis is diagonal, okay let me stop

here.


