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Diagonalization of Linear Operators. A Characterization

See we are discussing diagonalizability. In today’s lecture we will derive one necessary un

sufficient for diagonalizability of a linear operator.
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So let us go back and look at this problem diagonalizability of a linear operator T this means

that I can write down the matrix of T relative to some basis as a diagonal matrix, okay. I am

writing  down  this  diagonal  matrix  let  me  assume  that  by  the  way  is  it  clear  that  the

eigenvalues  of  this  diagonal  matrix  must  be the  eigenvalues  of  T the eigenvalues  of  the

diagonal matrix.

So what is the meaning of saying that T is diagonal? This means T u i I am just writing down

the equation that I gave yesterday instead of alpha let me write lambda i u i, okay these are

the numbers that will figure here these lambda i's are the numbers that will figure here, okay.

Now some of we have seen example the second example where the eigenvalue repeats some

of these could repeat.



So what I will do is write down the distinct eigenvalues and take care of multiplicity when I

write down the diagonal matrix. In other words let me say lambda 1, lambda 2, etc lambda k

be  the  distinct  eigenvalues  be  the  distinct  eigenvalues  of  T  with  multiplicities  with

multiplicities I will use this notation different from what I used yesterday in the last lecture

with multiplicities let me say d 1, d 2, etc d k that means lambda 1 comes as an eigenvalue of

the  operator  T  d  1  times  in  other  words  the  characteristic  equation  that  characteristic

polynomial is determinant of (A min) determinant of T minus lambda i is 0, characteristic

polynomial is determinant of T minus lambda i, characteristic equation is determinant of T

minus lambda i equal to 0 this is the polynomial of degree n.

When I write down this what I mean is that lambda 1 appears d 1 times as a root of that

characteristic equation, lambda 2 appears d 2 times, etc lambda k appears d k times, okay. So

what is clear is that d 1 plus d 2 etc plus d k is equal to n the degree of the polynomial, okay.

If this is the case then this can be rewritten then I can write this matrix diagonal matrix as

lambda 1 now appears d 1 times so the first block will have lambda 1 appearing d 1 times is it

clear that I can write it as lambda 1 I 1, lambda 2 I 2, etc lambda k I k all other entries are of

course 0 with the convention that I 1 is the identity matrix of order d 1 cross d 1, I 2 is

identity matrix of order d 2 cross d 2, etc I k is identity matrix of order d k, okay.
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So let me confirm where I i is the identity matrix of order d i so I can first this is the first

observation  the diagonal  matrix  d can be written  in  this  manner  after  listing  the distinct

eigenvalues. So let us observe that the statement that I made just now d 1 plus d 2 plus etc d k

must be the dimension of the space that I started with I will always assume the dimension to

be n in the rest of the discussion, okay.

If this is the case what is the characteristic polynomial of T? The explicit formula for the

matrix of T has been written down we knows the characteristic polynomial does not change

when I change the basis, okay because it is basically the determinant of some matrix which

does not change under change of basis, okay. So the characteristic polynomial so I am using p

for the characteristic polynomial I will use p here after for the characteristic polynomial.

So the characteristic polynomial of this operator T can be written as it will be lambda will be

a variable lambda 1, lambda 2, etc are the 0’s so I have lambda minus lambda 1 to the d 1 into

lambda minus lambda 2 d 2, etc lambda minus lambda k to the d k is it clear that this is the

characteristic polynomial of T, okay. See in general this cannot be done I am assuming if T, I

am assuming the T is diagonalizable in that case I can do this.

For example look at  the operator  first  operator  that  we considered yesterday the rotation

matrix when the angle is 90, the characteristic polynomial there is lambda square plus 1, okay

and lambda square plus 1 cannot be factorized as lambda minus lambda 1 into lambda minus

lambda 2 for lambda 1, lambda 2 real because this  is an irreducible  polynomial over the

polynomial ring F x, R x, okay irreducible polynomial over R lambda square plus 1 is one



example  we  cannot  factorize  there  that  is  an  example  of  a  operator  which  is  not

diagonalizable.

So this cannot be done always if it is diagonalizable then this can be done, if the operator is

diagonalizable then the characteristic polynomial can be factorized into products of powers of

linear factors let me mention this is the product of powers of linear factors, okay okay. So this

is one information that the characteristic polynomial is a product of powers of linear factors is

one information.  I  also have the other  information look at  look at  the eigens look at  the

dimension of the subspace null space of T minus lambda i I, I want to calculate the dimension

of the subspace null space of T minus lambda i I, I want to calculate the nullity of T minus

lambda i, okay can you tell me what it is?

What is what is this subspace first? See I want T minus lambda i I, I have T here I can treat

like matrix for being specific let us take lambda i to be lambda 1 i is 1 lambda 1 T minus

lambda 1 I this first block is 0, all the other entries will remain why because they are distinct

this will be lambda 2 minus lambda 1 times I 2, this will be lambda k minus lambda 1 times I

k. I am doing T minus lambda 1 I so these entries will not be 0 distinct eigenvalues so lambda

1 will not be equal to lambda 2 etc lambda k.

But this block is 0, I want the set of all solutions of the matrix equation let us say some some

A x equal to 0 where A is a matrix whose first block is 0 all other diagonal entries are not 0 so

what is the dimension of the solution space is it clear it is d i the rank of T minus lambda 1 I

will be the rank coming out of these nonzero entries so nullity corresponds to just this so

nullity of T minus lambda I is d i please check this, so what is that clear first? The null space

has this dimension.

By the way what is the null space of T minus lambda 1 I? Can you see that it is the it is

eigenspace corresponding to the eigenvalue lambda I this  I  did not mentioned in the last

lecture. This is the set of actually the space the set of all eigenvectors of T corresponding to

the eigenvalue lambda i this is the set of all eigenvectors of T corresponding to the eigenvalue

lambda i first observation this is a subspace I did not make this point yesterday the set of all

eigenvectors corresponding to an eigenvalue forms a subspace because it is a null space of a

certain linear transformation null space of T minus lambda i.

So this subspace has dimension d i remember there are there are two objects coming here one

object is a polynomial the other one is the dimension of some subspace, if T is diagonalizable



these two numbers are the same this is an important observation because we will see that you

can go back to example 2, example 3, example 2 we discussed only two examples we can go

back to example 2.

Look at the dimension of the subspace corresponding to the eigenvalue 1 the dimension is 1

there whereas the multiplicity of 1 as an eigenvalue was 2 in general these are different, okay.

For diagonalizability it is crucial that these two numbers are the same, okay this is the second

important point first point is that the characteristic polynomial is can be written as a product

of powers of linear factors, second fact is that the dimension the number of times lambda i

appears as an eigenvalue of A that is d i that number is the same as the dimension of the

eigenspace corresponding to eigenvalue lambda i, okay okay.
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Let  us  proceed  and  we  will  this  is  important  as  you  will  see  this  is  important  for

diagonalizability, okay. As I told you I want to look at a characterization let me give you one

or two results before I proof that result. First I want to demonstrate the following suppose T is

an operator on a finite dimensional vector space V and f of lambda okay f of t I use small t

okay let me just say f be a polynomial be a polynomial over F, V is vector space over F, f is a

polynomial over F by which I mean that this polynomial has its coefficients coming from F,

okay so if F is R this is a real polynomial.

If Tx equals lambda x for lambda the underlying field, then f T of x is f lambda x you will

need this little result when f T of x is f lambda x what this means is that if lambda is an

eigenvalue for the operator T and if x is eigenvector then look at f of T f of T is also a linear

operator see little f is a polynomial f of T is another linear operator for this linear operator we

want  to  show  that  f  of  lambda  is  an  eigenvalue  with  a  same  eigenvector  x  the  same

eigenvector x, okay.

Proof straight forward you just write down f of t let say it is a not plus a a 1 t plus a 2 t

square, etc let us say a s t to the s where the coefficients come from the underlying field, then

what is f of capital T wherever little t comes I must replace it by capital T the first term it is T

power 0 that is identity operator, okay so my f of T is this polynomial a not I plus a 1 capital

T plus a 2 capital T square etc a s T to the s you remember T is an operator on V it is a linear

transformation from V to itself.

So it is T square T cube etc make sense composition this is f of T, what do I want to verify

verify this. So let me write f T x this will be a not Ix plus a 1 Tx plus a 2 T square x plus etc I

need to calculate each term, okay but it is easy to see that T is okay let us calculate T square x

for example T square x is T of T of x T of x is lambda x, so this is T of lambda x this is

lambda T of x again T of x equals lambda x. So this is lambda square x, so T square x is

lambda square x by induction T power R x is equal to lambda power R x so this can be

rewritten so it is a simple result.

So if you look at f T x it is a not x plus a 1 lambda x plus a 2 lambda square x plus etc plus a s

lambda to the s x, x is the vector take that outside all the others are numbers coefficients a not

plus a 1 lambda plus etc plus a s lambda to the s into x this is a this is a number coming from

the field but this is precisely f of lambda instead of t I have lambda. So this is f of lambda x,

okay so remember that  f T is a polynomial  in T if  lambdas and eigenvalue and x is the



corresponding eigenvector then we have found out an eigenvalue for f of T that is f lambda

for the same eigenvector x, okay okay that is a simple computation.
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I want one more result before I proof the main theorem so the framework is the same as

before lambda 1, lambda 2, etc lambda k are the distinct eigenvalues of a linear operator T on

a  finite  dimensional  vector  space  V. Let  me  say  that  W i  let  W  i  be  the  eigenspace

corresponding to to the eigenvalue lambda i so I have these k eigenspaces corresponding to

eigenvalue lambda 1, etc lambda k these eigenspaces are subspaces I can talk about the sum

of these subspaces.

Let W equal to W 1 plus W 2 etc plus W k, I take the sum of these k eigenspaces. Now

remember that dimension of W 1 plus W 2 is general is not equal to dimension W 1 plus

dimension W 2 you need to remove the dimension of W 1 intersection W, okay but in this

case  the  dimensions  add  up  in  this  case  the  dimension  will  add  up  that  happens  if  the

subspaces are eigenspaces that is what we are trying to do here.

So what is the conclusion then dimension W is dimension W 1 plus dimension W 2 etc. In

particular what this means is that eigenvectors correspond to distinct eigenvalues are linearly

independent,  okay this  is  this  statement  is  encoded in this  eigenvectors  corresponding to

distinct eigenvalues are linearly independent, okay okay.

So let us proof this then we will use this in characterizing diagonalizability. All that I will do

is take a basis for W 1, take a basis for W 2, etc basis for W k show that the union is a basis

for the sum W, is that okay? We will take a basis for W 1, basis for W 2, etc W k take the



union I will show that that is the basis for W then it  follows that dimension of W is the

number of elements in B 1 plus the number of elements in B 2 etc number of elements in B k

that is precisely this, okay.

So let us write down now basis explicitly let B 1 equal for the subspace W 1 corresponding to

lambda 1.  So B 1 I  will  call  it  u  11,  u 12,  etc  u  1l 1  the first  subscript  denotes  that  it

corresponds to that eigenvalue first subscript denotes it corresponds to eigenvalue lambda 1,

okay so this  is  corresponds  to  eigenvalue  lambda  1,  B 2 is  u  21,  u  22,  etc  u  2l  2  this

corresponds to lambda 2 etc B k u k1, u k2, etc u kl k this corresponds to the corresponds to

eigenvalue lambda k.
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Let these be basis ordered basis for W 1, W 2, etc W k. I must show that I must show that this

is a basis for W, okay. Spanning set we will (())(22:12) of quickly linear independence is what

is a little difficult in this problem little more involved than the other one spanning set. I want

to show that this union this is the spanning set for W okay take anything in W little w that is

that is W 1 plus W 2 etc W k each W 1 in term can be written in terms of these so it is clear

that this is a spanning set.

Clearly this is this spans W linear independence is see if you show that this is the basis for W,

I am assure that it is a spanning set and it is a linearly independent set. The fact that this is a

spanning set  is  straight  forward for the following reason take any little  w in W then by

definition that W is sum W 1 plus W 2 etc W k but look at W 1 the first term that is the linear

combination of these etc so this W is a linear  combination of these vectors that is  those

vectors in script B and so this spans W linear independence.

Consider so we need to solve linear independence so we need to consider a combination. So

consider  alpha  11  u  11  plus  alpha  12  u  12  I  choose  the  scalars  also  according  to  the

superscripts etc alpha 1l 1 u 1l 1 plus alpha 21 u 21 alpha 22 u 22 plus etc plus alpha 2l 2 u 2l

2 plus etc last term alpha k1 u k1 alpha k2 u k2 etc alpha k what is that last l k u kl k suppose

this is 0.

I must show that each of the scalars is 0, okay consider this combination I must show that

each scalar is 0 it would then follow that these vectors u 11 u 12 etc u 1l 1 u 21 u 22 etc u 2l 2

u k1 u k2 etc u kl k they are linearly independent, okay. Let us this is this vector is 0 vector f

of t is take any polynomial for any polynomial f of t I will consider f of capital T f of capital

T is also linear I will apply f of capital T on this of this whole thing, okay.

Alpha 11 u 11 plus alpha 12 u 12 etc alpha 1l 1 u 1l 1 this time I will just write down okay

does not matter alpha 21 u 21 etc alpha 2l 2 u 2l 2 plus etc the last one last one is alpha k1 u

k1 plus etc plus alpha kl k u kl k, f of T is also a linear operator so any linear operator has a

property that its action on the 0 vector this is 0 vector so 0 is this, f of T is linear because T is

linear I will apply this to each term, okay.
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So can you see that the first term will be alpha 11 f T u 11 use the previous lemma it is f of

remember u 11 is an eigenvector corresponding to eigenvalue lambda 1 all these u 11 u 12 etc

u 1l 1 they comes from they come from the eigenspace  corresponding to the eigenvalue

lambda 1 so each of this is an eigenvector corresponding to eigenvalue lambda 1 apply the

previous lemma f T of x equals f of lambda x if lambda is the eigenvalue.

So the first set of terms is it clear? That it is alpha 11 f lambda 1 u 11 plus f lambda 1 u 12 etc

u 1l 1 first terms will go with f lambda 1 plus the second ones will go with the f lambda 2 the

last one will go with f lambda k do you agree with this? I forgot the constants here, here also,

okay is it clear the first set of terms coming from this bracket the first one here the first set of

terms here they will go with f lambda 1 because each of those vectors u 11 u 12 etc u 1l 1

each of those vectors is an eigenvector corresponding to the eigenvalue lambda 1 and I am

appealing to the previous lemma, okay.

This is true for any polynomial f this is true for any polynomial f. I will make now particular

choices of f and then show that this is 0, another choice I will  show this is 0, etc okay.

Suppose I have one choice for which the second set of terms, third set of terms etc the last set

of terms vanish this only remains does it follow that those scalars those scalars will be 0,

okay I will show such polynomial in such a way that this is not 0.

So it will follow that alpha 11 alpha 12 etc alpha 1l 1 is 0 apply the next polynomial I will

choose it in such a way that f lambda 2 is not 0 it will follow that these coefficients are 0, etc



I will go back and substitute into this equation I am sorry I want to conclude each scalar is 0

so it will follow that these are independent, okay.

Now what is that polynomial? For the first one I will do it for the first one the rest is similar.

For the first one I will choose f of t to be see I want these to be 0 I want a polynomial I want

the polynomial to have lambda 2 etc lambda k to be 0 give me one choice t minus lambda 2, t

minus lambda 3, etc if you choose this then f of lambda 1 f of lambda 1 is lambda 1 minus

lambda 2 lambda 1 minus lambda 3 etc product lambda minus lambda k these are distinct so

that is not 0, okay.

So f of lambda 1 is not 0 f of lambda 1 is not 0 but f of lambda i equal to 0 for all i greater

than or equal to 2. So I will take this polynomial apply it to this equation then I get okay I

take this polynomial apply this polynomial to this equation then I get the second set of terms

are 0, etc I have only these terms remaining, I can write it as f lambda 1 outside into the rest

of them alpha 11 u 11 etc alpha 1(k) l 1 u 1l 1 only the first set of terms will remain f lambda

1 is not 0 so this can be cancelled, look at the rest that is 0 but these are linear independent,

right they form a basis for W 1 these are linear independent from this it follows that the first

set of coefficients alpha 11 alpha 12 etc alpha 1l 1 first set of coefficients must all be 0.

So you apply the second polynomial which is T minus lambda 1 into T minus lambda 3, T

minus lambda 4, etc T minus lambda k then you can show the second set of coefficient 0 etc.

So it follows that each of these scalars started with this equation follows that each of the

scalars is 0 and so these vectors are linearly independent so this is the basis for space W,

okay.
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As I mentioned earlier in particular this means that eigenvectors corresponding to distinct

eigenvalues are linearly independent we have proofed something more, okay let me proof this

theorem then theorem that characterizes diagonalizability the framework is as before T is the

linear operator in a finite dimensional vector space with dimension n over f V is defined over

f  I  have  lambda  1,  lambda  2,  etc  lambda  k  as  the  distinct  eigenvalues  let  W i  be  the

eigenspace  corresponding  to  the  eigenvalue  lambda  i  then  the  following  statements  are

equivalent.

I will give two conditions that are necessary and sufficient for T to be diagonalizable first

statement is T is diagonalizable. Second is the condition involved in the representation of the

characteristic  polynomial  characteristic  polynomial  I  am denoting  by p I  will  write  p  of

lambda it is lambda minus lambda 1 to the d 1 lambda minus lambda 2 to the d 2 etc lambda

minus lambda k to the d k.

Where d 1 plus d 2 plus etc plus d k equals n I am assuming that n is a dimension of the space

V. The last condition is in terms of sums of the eigenspaces, if you look at the sums of the

eigenspaces  call  it  W then this  W the  subspace is  the  whole  of  space  V this  is  the last

condition we have already observed that a implies b, T is diagonalizable then we have seen

that the characteristic polynomial has this form from b implies c, okay.
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Proof a implies b, already observed b implies c follows because okay you can set W to be the

sum of  these  subspaces  then  by  the  previous  lemma  it  follows  that  dimension  of  W is

summation i equals 1 to n dimension W i this comes from the previous lemma because these

are eigenspaces corresponding to distinct eigenvalues but what is the condition on look at

condition V the condition on these numbers d 1, d 2, etc d k is that their sum is n.

So dimension W is summation i equals 1 to n d i that is n. So I have a 1 to k there are k

subspaces ya so this sum is n so but we know that the sum of two subspace is again subspace,

W is a subspace of V having the same dimension so W must be the whole of V that statement

c the sum is equals to W, W is equal to V we have shown so b implies c also holds c implies a

c implies a follows from the definition of what we mean by diagonalizability is that clear.

I want to show T is diagonalizable that is I want to show that there is a basis script b of V

such  that  each  vector  from b  is  an  eigenvector  of  T that  is  diagonalizability  I  saw this

yesterday T is diagonalizable if and only if there is a basis b for b for V each of whose vector

is an eigenvector for T. I know that V is the direct sum of is a sum of these subspaces look at

the construction that we did earlier take a basis b 1 for W 1, b 2 for W 2, etc b k for W k each

of the basis has the property that each of this basis for the subspaces b 1, b 2, etc b k have the

property that their elements their vectors in b 1 for instance is an eigenvector corresponding

to lambda 1, the vectors in b 2 are eigenvectors corresponding to the eigenvalue lambda 2,

etc.



The combination is a basis for V the union of these basis for the subspaces is a basis for V

and  so  each  vector  of  this  basis  is  an  eigenvector  of  V is  an  eigenvector  of  T so  T is

diagonalizable. So can I just say c implies a follows from really the definition which we saw

yesterday really  the  definition  that  there  is  a  basis  b  for  V each of  whose vectors  is  an

eigenvector for T, okay.

So this is one characterization that is necessary sufficient condition for T to be diagonalizable

one is  that the characteristic  polynomial  can be written as a product  of powers of linear

factors, second is that the whole space V can be written as the sum of these subspaces the

subspaces  being  the  eigenspaces,  okay  this  is  one  characterization,  we will  also  look  at

another characterization involving the so called minimal polynomials, okay that I will do in

the next one or two lectures.

But before I conclude I want to atleast mention what is the minimal polynomial we want to

know when precisely a linear transformation is diagonalizable, okay one answer has been

given here two answers really look at the eigenspaces, take the sum, verify if that is the whole

space V, the other thing is look at the characteristic polynomial verify if it is a product of

powers of linear factors then you know that T is diagonalizable.
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There is another answer as I told you which comes in terms of the minimal polynomial, okay

so let  me  atleast  give  the  definition  of  the  minimal  polynomial.  Remember  that  we are

looking at an operator a single linear operator T and we are analysing the operator T. In this



study what is important is to identify classes of polynomials which have the property identify

classes of polynomials let us say f of t such that f of capital T is 0.

What are all polynomials f of t such that f of capital T is 0? Now why why is this statement

true  that  will  be  clear  only  a  little  later  you  will  get  the  connection  between  minimal

polynomial  and  the  characteristic  polynomial  then  it  will  be  clear  as  to  why  these

polynomials  are  important,  okay  but  let  me  atleast  give  the  concept  of  the  minimal

polynomial coming from this, okay remember f is a polynomial its coefficients come from

the underlying field, okay.

Now if you look at if you look at F t call that script A look at F t call that script A then so

what is this F t F t is the set of all it is it has an algebra structure, it is a set of all polynomials

in a single variable t in a single real variable t, I should actually write F but for the sake of

convenience I am writing it R single real variable t so I should actually write R of t, okay may

be let me go back and change this to F.

So it is either for our discussion let us say it is a set of all real polynomials over a single

variable t single real variable t, the coefficients are real, the variable t is also real I am using

script A for that it is what is called as an algebra you know that it is a euclidean domain set of

all polynomials is a euclidean domain it is a commutative of ring where you can do euclidean

algorithm it is a commutative ring where euclidean algorithm can be applied.

It is it is an euclidean domain which has a property that you know the concept of an ideal

concept of an ideal in subring, okay does not matter if you do not know you will learn it now

this semester sometime. What can be shown is that an ideal is a subring of see this is what is

called as an algebra an algebra is an algebraic structure where you can do multiplication of

vectors, okay.

So an algebra is something more than a vector space where there is also a possibility  of

multiplying vectors. Now multiplication here is multiplication of polynomials multiplication

of polynomials you know term by term multiplication of polynomials is term by terms. So

one could do multiplication of polynomials it also has one or two little (())(43:55) but let us

not worry about that this  is  an algebra this  is a euclidean domain where I can do where

product of vectors make sense, in such a euclidean domain the notion of an ideal comes, an

ideal is a sub bring an ideal is a sub bring which has a property that if I take an element from



the ideal and an element from outside the ideal that is f of T then the product will belong to

the ideal, okay the product will belong to the ideal.

Ideals in a euclidean domain have the property that they are generated by a single unique

polynomial ideals in a euclidean domain are characterized with the property that they are

generated by a single unique element which means anything in the ideal is a multiple of a

specific polynomial anything in an ideal given an ideal anything in that ideal is a multiple of

a unique element coming from that ideal, okay.

I need this property one can also do without this property for the minimal polynomial.  I

wanted  to  find  the  minimal  polynomial  first  of  all  the  question  is  given  a  linear

transformation T, does there exist a polynomial f such that f of T is 0, okay. I will give two

answers one for a specific example linear transformation matrices they are equal actually so I

will take this matrix 1 1 1 1 I want you to consider this polynomial f of t equals t square

minus 2t, f of t is t square minus 2t how do I get this?

At the end of the next two lectures you will also be able to write down such polynomials, t

square minus 2t then you can verify that f of A is a 0 matrix A square is equal to 2A, A square

is equal to 2A for this matrix that is the reason why I choose t square minus 2t then f of A

equal to 0. So given a linear transformation this make sense the question does there exist a

polynomial f such that f t equal to 0 make sense I have given one example.

I will actually prove it I will actually prove that given a linear transformation on a finite

dimensional vector space there is a polynomial which has the property that f of capital  T

equal to 0 tomorrow and then may be define the minimal polynomial and how it is related to

the notion of diagonalizability, okay let me stop here.


