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We have seen yesterday that if V is finite dimensional vector space and T from V to W is an

isomorphism,  then  W is  also  finite  dimensional  in  fact  we  have  dimensions  of  W equals

dimensions of V this result we have seen yesterday okay. Let us look at the converse of this

result that is if we have 2 finite dimensional vector spaces whose dimensions are the same, are

the isomorphic okay, the answer is yes that is what I will do today the proof of this result and

also  some  consequences  of  the  rank  nullity  dimension  theorem,  there  is  a  little  unfinished

business. Okay so this is what we will 1st proof today, I have V and W finite dimensional vector

spaces with the same dimensions then V is isomorphic to W then V is isomorphic to W that is

what we will prove now.

You will see that this is the proof is natural, let us take 2 bases so proof of this theorem let us

take u 1, u 2, et cetera u n to be bases, this is bases of V. I know that dimension of W is also n so

I will enumerate the bases for the space W, they are bases of W the numbers are the same the

number  of  elements  in  these  2  bases  this  number  is  the  same just  because  dimension  V is



dimension W. Now what we know is that there is a linear transformation uhh that maps each u i

to the corresponding W i and this linear transformation is unique okay. The only thing that we

need to do is to verify that this linear transformation is invertible Injective and surjective. See we

want to show V is isomorphic to W so we must show that this T is invertible okay.

So let us define define the mapping T from V into W by T of u I equals W I, we know that there

is one such linear transformation we also know that this transformation is unique, we must show

that this transformation is invertible from the rank nullity dimensions theorem it is enough if we

show it is Injective, the dimensions are the same so it must be surjective also so let sure that it is

Injective.
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To show that it is Injective we will show that null space of T is single term 0, we have seen that

this is an equivalent condition so let us look at an arbitrary element in the null space of T then T

x = 0 and this x belongs to V, and V has u 1, u 2, et cetera u n as a bases so this is T of some

linear combination Alpha 1 u 1 + Alpha 2 u 2 et cetera Alpha n u n. T is linear, Alpha 1 T of u1

etc + Alpha n T of u n but T of u 1 is W 1, etc T of u n is W n so this is Alpha 1 W 1 etc Alpha n

W n so I have this linear combination Alpha 1 W1 et cetera Alpha n W n equal to 0, I also know

that vectors W n they form a bases for W so in particular they are independent. So it means

Alpha 1 equals Alpha 2 equals Alpha n equals 0 but what is x? x is Alpha 1 u 1 etc Alpha n u n so

x is the 0 vector, the definition of x is given here this is x and so T x is equal to 0 in place x equal



to  0,  T is  a  linear  transformation  so T is  Injective  the  rank nullity  dimension theorem T is

surjective so T is invertible so T is an isomorphism okay.
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So T is an isomorphism hence V is isomorphic to W okay, so the dimensions coincide then they

must be isomorphic vector spaces. There is an easy corollary to this result, let V be real vector

space of dimension n, let V be real vector space of dimension n then V is isomorphic to R n, V be

a real vector space of dimension n then V is isomorphic to R n. We can similarly show that V is a

complex  vector  space  of  dimension  n  then  V  is  isomorphic  to  C  n  okay.  Remember  the

dimensions of R n over R is n that is what I mean here, real vector space R n is the vector space

over R. Look at the vector space C n, C n over C also has dimension n but C n over R that is also

a vector space that has dimension to n because any complex number is an (())(8:22) pair of real

numbers okay. To represent a complex number you need 2 real numbers so if it is a complex

vector space of dimension n then it is isomorphic to C n alright, if you want to write it as R n

then it is R 2 n that you need to write okay.

Okay so this is to summarise about isomorphism between vector spaces, as I said I want to go

back to this rank nullity dimensions theorem look at some consequences. Okay uhh please recall

this result that you must have learned till now when you studied functions. Suppose x is a finite

set then we know that a function F from x to itself we know that a function from x to itself is...

This function is Injective this 1 channel is Injective 1 1 if and only if F is surjective if and only if



F is by Injective okay I hope you have seen this result over finite set. Over infinite set this is not

true, over finite sets their function is Injective if and only if it is surjective if and only if it is by

Injective so again over finite sets it is enough if you verify that it is either surjective or Injective

then it will follow that it is by Injective it is invertible.

A  similar  result  holds  and  consequences  of  rank  nullity  dimensions  theorem  for  a  linear

transformation over finite dimensional vector spaces, so this is really a particular case of the rank

nullity dimensions clear which means I will not prove difficult but I want you to compare the

following  results  with  the  result  that  I  have  written  down just  now okay  this  result  is  the

consequences of rank nullity dimension theorem and the proof is left is an exercise. Let T from V

to V be linear and V be the finite dimension; T is linear, V is finite dimensions, T is operator on

V, T is linear transformation from v to itself that is an operator then the following are equivalent.

Then the following statements on T are equivalent; 1st statement is T is Injective, 2nd statement is

T is surjective, 3rd statement for instance I could include null space of T equals single term 0, I

could include one more statement range of T is whole of V but these are equivalent statements.

Easy consequences of rank nullity dimensions theorem for instance look at a implies b or a if and

only if b, T is Injective if and only if null space of T is single term 0 which from the rank nullity

dimensions theorem tells us that rank of T is n but rank of T is the dimension of the range space

of T it is a subspace of V, V has dimension n, this subspace has dimension n so this subspace

must be equal to the entire V and so range of T equals V so T is surjective et cetera okay. So

there is nothing new in this result, it is only a particular case of rank nullity dimensions theorem

where instead of W I have taken Vand is also allows us to compare with the result that I have

stated here. For a function over finite set injectivity is equivalent to subjectivity equivalent to

bijectivity.

But what happens in the infinite dimensions case, in the infinite dimension case this result is not

true okay that is the reason why there is this restriction so let us look at an example. I want to

give  an  example  of  linear  operator  say  which  is  surjective  but  not  Injective  so  look  at  the

following.
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Consider  V as the vector  space  the real  vector  space of  all  polynomials  vector  space of  all

polynomials whose coefficients are real numbers defined over the variable E, E is a real variable.

Now this is an infinite dimension vector space for instance this is a subspace of C 01 the space of

continuous function which we have shown is infinite dimensions of course being a subspace of

an infinite dimensions space does not mean this must also be infinite dimensions but then we

know that 1 t, t square, et cetera, they are linearly independent so this is for infinite dimensions,

V is infinite dimensional the same idea that we used to prove C 01 is infinite dimensional applies

here. Let us define the differentiation operator, define D from V to V, any polynomial is infinitely

many times differentiable so define D from V to V by D f of t to be... What is the form of F

depending on that D f of t will be defined.

So let me say D f of t where f of t now f is in V so f is a polynomial, f of t is let us say Alpha 0 +

Alpha 1 t et cetera + Alpha n. Then D of t is defined as Alpha 1 + the next term is Alpha 2 t

square that is 2 Alpha 2 t + etc + n Alpha n t to the n - 1, this is the definition of D this is called

differentiation operator. Takes a polynomial, compute its derivative that is the operator D then

since differentiation operator is linear transformation this D is linear okay you can apply it to

each term this D is linear let me also define... By the way uhh is D Injective? What is the null

space of D?

Student: Set of all constants.
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Null space of D is set of all constants... Constant polynomials okay so D is not Injective okay so

let us now define another operator, uhh this is so-called indefinite integral operator I will do that.

I am going to define another operator I will call that T from V to V is defined by let us take T g

of t, what is the form of g? If g of t is let us say beta 0 + beta 1 t etc beta L t to the L then I will

do this so-called indefinite integration that is integral of this, which is beta 0 t + Beta 1 T square

by 2 etc + beta L T to the n + 1 by L + 1 so this is what I will define for operator T, this is so-

called indefinite integral okay this is like integral 0 to t g of t D t. This is again linear, this T is

linear okay what about range of T okay what about null space of T?

T is Injective okay T is Injective, let us look at the relationship between D and T, what about T D

what do you expect T D to be? It is differentiate and integrate okay, let us start with D T what is

D T? D T is identity okay please check this D T is identity, what about T D? T D for example for

constants if you apply you will see that it is 0 so T D cannot be identity T D cannot be identity, so

what is the moral of the story? moral of the story is... See this D is not Injective but it has right

inverse, D is not Injective the operator D that we have defined is not Injective, D has a right

inverse, from this it can be shown that D is surjective, I am going to leave this as an exercise

from this it can be shown that D is surjective okay.

What about T, T is Injective but you can verify that T is not surjective because of this okay that is

also an exercise for you T is not surjective, T is Injective. Let me say this right away implies T is



not surjective okay so I have given an example of an operator over an infinite dimensional space,

one operator which is Injective but not surjective the other operator which is surjective but not

Injective  okay,  differentiation  operator  surjective  but  not  Injective,  the  indefinite  integral

operator is Injective but not surjective okay. So please check these calculations and so this result

is not for infinite dimensional spaces.
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There are other consequences in particular  let  me give this  little  exercise,  using rank nullity

dimension theorem one could solve this problem. Let T from V to V be linear with V finite

dimensional,  suppose  that  suppose  that  null  space  of  T  =  range  space  of  T,  V  is  finite

dimensional, what is the conclusion that you could draw on the dimension of V?

Student: (())(22:47) dimensions

It is even... Then dimension of V is even it is an even positive integer, okay not that is an easy

consequence of rank nullity dimensions but what I want you to do is to give an example of such

a linear transformation. Given example of one such transformation T okay now in order to sort

out the 2nd problem I will give one hint; T is an operator that satisfies the condition null space of

T is a range of T okay then 1st try to show that T square equal to 0. Null space of T equals range

of T so that this implies T square is 0, T square is a 0 operator. Construct an operator that satisfy

this  condition,  to  construct  an  operator  that  satisfies  this  condition  to  construct  2  by  2  for



example, let us construct T over R 2, T from R 2 to R 2 remember these spaces must be the same

otherwise null space of T and range of T, null space of T is a subspace of V, range of T is a

subspace of W.

So when we talk about equality I can to that only when that domain is equal to the core domain.

Take T from R2 to R2, you want to construct T such that T square is 0, start with the matrix a that

satisfies  the  condition  a  square  equal  to  0,  use  that  matrix  a  and  then  construct  the  linear

transformation, T x = A x so that I am going to leave you uhh leave with you as an exercise but

what you can try is, is the converse true that is the related question. If T square is equal to 0 then

does it follow that range of T is equal to null space of T that is another question so construct an

example T that satisfies this, verify if the converse is true okay. One final application of the rank

nullity dimensions is to show that the row rank of a matrix is the column rank of that matrix, this

statement  was  made  long  time  ago  when  we  discussed  elementary  row  operations  row

equivalence, et cetera so we would like to prove the following theorem.
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We would like to show that the row rank of A equal to column rank of A okay, before that what is

a row rank what is a column rank? So before I prove so let us let us recall these definitions, the

row rank of a matrix is defined to be the dimension of the row space of A the row rank is the

dimension of the row space of A, the column rank is a dimension of the column space of A okay.

As we have observed the row rank the row space rather is a space of R n, the column space is a



subspace of R m is that clear? Each row has n coordinates, each column has m coordinates so the

column space is a subspace of R m and the row space is a subspace of R n okay. So it is an

interesting and important result that these spaces may lie in different these subspaces may lie in

different places but their ranks are the same their dimensions are the same.
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There are other consequences of rank nullity dimension theorem but we need a little work before

settling this identity, so let us recall what we did for row (())(28:01) let me 1st prove this result. R

start with 2 matrices is of the same order, which are related by the equation 2 matrices A and B

related by this equation B = P times A where P is square matrix of order m so this is n cross m, m

cross n, the product is m cross n, B is n cross n. What I want to do is to conclude that if B is

equal to P A then the row space of B is contained in the row space of A, I want to conclude that

row space of B is contained within the row space of A. To prove this I will involve what we had

seen earlier that anything... So I am going towards the proof of this.

Look at A x for any x, A is in m cross n, look at A x for any x this is in the column space of A this

we have seen before, in particular I wrote this A x as okay I want to conclude that A x in the

column space of A, why is that so? you can see that if I write A as a 1, a 2, et cetera a n these are

the n columns of A with a1, a 2 etc a n being the columns of A. If A is equal to this then we can

verify that A x is x1 a1 + x2 a2 etc + x n a n where I have used, x is the column vector; x1, x2, et

cetera x n okay now this we have observed before. See what you have on the right is a linear



combination of the columns of A what I am saying is that this is precisely A x where A is a

matrix that we started with and x is this column vector okay that is to reinforce A x in the column

space of A.

Okay and letters go back to this equation B equal to P times A; now B equals P times A after

taking transposes using the fact that transpose satisfies the reverse order law, this gives me B

transpose as A transpose P transpose, B transpose is A transpose P transpose, let me call this as A

transpose Q so Q is P transpose let me write Q, see P is m cross m so Q is also m cross m, Q has

m columns m rows so let me write Q as q1, q2, etc q n again these are the columns of Q just as

how I wrote down the columns a 1, etc a n for A, these are the columns of Q. Let me write down

the columns of B transpose; I will call that b1, b 2, etc. B transpose is b1, b2, etc , B is of order m

cross n so there are m columns, B transpose will have m columns so b1, b2, et cetera, b n, B is m

by n so B transpose is n by m in particular number of columns of B transpose is m, the columns

of B transpose I am denoting them by b1, b2, etc b n okay, please be clear about the notation

here. I am using a 1 etc a n for A, q1, etc, q n for Q but b1, etc, b n for B transpose okay for

simplicity.
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Okay now look at this equation once again; B transpose is A transpose Q. B transpose equals A

transpose Q gives  me b1,  b2,  etc  b  n equals  A transpose q1,  q2,  et  cetera  q m and this  is

something  we  have  seen  before  you  can  push  the  matrix  inside,  this  is  A transpose  q1,  A



transpose q2, etc, A transpose q n okay that is A into q1, q2, etc, q n A transpose into q1, q2 then

this  matrix  can be  pushed inside.  This  can  be verified  by matrix  multiplication  I  remember

having told you this before. In particular look at b1; b1 is the 1st column of B transpose, b1 is in

the column space of B transpose then b1 transpose is in the rows okay then b1 is in the row space

of b, column space of B transpose row space of B. See in fact you will observe that b1 is a the 1 st

column of B transpose so b1 is the 1st row of B in particular it is in the row space of B okay.

Look at what we have on the other side; A transpose B but b1 is A transpose q1 okay look at A

transpose q1 in its own right, a matrix times a vector that is column vector of A transpose. Is it

clear that A transpose q1 is let me say in the let me say it is the first column of let me rewrite...

say I want to make use of this fact that A x is in the column space of A. A transpose q1 is in the

column space of A transpose, A transpose q1 is in the column space of A transpose so it is in the

row space of A. A transpose q1 is in the row space of A, it is in the column space of A transpose

so it is in the row space of A, it is a linear combination of columns of A transpose, which is the

linear combination of the rows of A, so what have we proved?
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On the one hand it is b1 is in the row space of B on the other hand it is in the row space of A, so

if B is equal to PA we have shown that that the rows of B are linear combinations of the rows of

A that is the first statement okay let me write I want to prove this statement, what we 1 st observed

is that if B equals P A then the row space of A sorry the row space of B is contained in the row



space of A, if B is equal to PA then the row space of B is contained in the row space of A that is

what we have proved just now. Suppose P is invertible then I can P multiply by P inverse. If P is

invertible... By pre-multiplying by P inverse I get I write A as P inverse B okay so what I have

done is, you can call this S times B, I have written A as S times B.

Apply the same idea, if A is S times B then the row space of A is contained in the row space of B,

the argument we have given just now can be applied here in this case so this implies row space of

B sorry row space of A is contained in row space of B okay if this matrix P is invertible then I get

this result, which means if B equals P A with Be invertible then the row spaces of A and B are the

same. In particular in particular row equivalent matrices have the same row space because of A

and B are row equivalent then A can be written as P times B where P is the product of elementary

matrices. So row equivalent matrices have the same row space if A is row equivalent to B then

the row space of A equals the row space of B that is because A can be written as P times B for

some invertible matrix P.

Look at the row okay now I want to determine a bases for the row space of A look at the row

reduce take alone form R of the matrix A, R is a row reduced take alone matrix row equivalent to

A as before, R is a row reduced take alone matrix row equivalent to A then the first let us take R

to be the number of non-zero rows of R, small R equals the number of non-zero rows of capital R

okay, okay what is the dimension of the row space of A? Can we say it is R for the following

reason? What is the row space of R? Row space of R is the subspace consisting of the linear

combination of the rows of A.

Now R first R rows are non-zero the rest n – R are 0 so the n – R 0 rows do not contribute

anything to the row spce, it is only the contribution that comes from the first R nonzero rows of

R so the row space of capital  R is spanned by these R vectors, are these R vectors linearly

independent? We need to verify that but that is easy, and argument similar to the standard bases

can be given okay. Instead of just mentioning it let me write down in the form of R and it will be

clear from the 1st R nonzero rows that is nonzero rows are linearly independent in fact.
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Remember this is how we used to write, we have certain 0 then there is a 1 and some entries here

then some Zeros here, 1 appears to the right of this some other entries et cetera, finally I have

lots of zeros here this and then I have the 0 rows that is I have this corresponds to the n – R 0

rows. I am writing down R, this is my matrix R these are then R nonzero rows and it is clear that

this behaves somewhat like the standard bases vectors so you take a linear combination Alpha 1

times this vector + Alpha 2 times this vector, et cetera, Alpha R times this vector equate that to 0

then right away the 1st equation gives you Alpha 1 0, 2nd equation gives you Alpha 2 0 they do

not lie along the same column they are in different columns that is if this is in C1, this is in C2 et

cetera this is in C R then we C1 less than C2 less than C3 et cetera less than C R.

So it is clear that these R nonzero rows the 1st R nonzero rows of R are independent and that they

span the row space of R and so that dimension of row space of A is equal to R, dimensions of

row space of A equals R where R is the number of nonzero rows of the row reduced echelon

form of A that is row rank of A that is equal to R, row rank of A is equal to R. We need to show

that the column rank of A is also R okay, for the column rank we need to do a little more so let

me see how much I can cover.
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Now for the column rank I want to start all over again; consider A in R m cross n that I started

with earlier, look at the system A x = 0, collect all the solutions call that as S, S is the solution set

of the homogeneous system of equation A x equal to 0 okay. Remember that the kernel of A

whole thing is we have defined kernel of a linear transformation what is the kernel of a matrix,

through this matrix you can define a linear transformation and then the kernel of that linear

transformation is a kernel of this matrix okay. But in any case what I want to say is this s is a

subspace, this is a subspace of R n set of all x in R n so it is a sub space of R n okay, I would like

to calculate the dimension of the subspace it cannot exceed n I know, I want to calculate the

dimension of the subspace I want to conclude that dimensions of subspace is m – R.

Then it will follow that the column rank is R, which is the same as the row rank of A okay, so I

want to conclude that dimensions of subspace is m – R. To calculate dimensions I also observe

that R is row reduced echelon form of A then the solution set of R x equal to 0 and A x equal to 0

or the same. I will use this to calculate the dimensions of S, I will use the row reduced echelon

form R to calculate dimensions of S. Let us go back and write down these equations and analyze

this once again, let me in this case use this notation, J in the subset of all integers 1, 2, 3, etc, n,

which do not have a C1, C2, et cetera, difference C1, C2, et cetera, C r. C1 is the parliament

which the leading nonzero entry of the 1st row appears, C2 is the column in which the leading

nonzero entry of the 2nd row appears, et cetera okay.



I remove these integers from the integer 1, 2, 3, et cetera , n then I can write down the eye can

expand this, we have done this before but I will do it using this notation you will see it is the

same. As before xc 1, x c2, etc, x cr corresponds to those variables out of x1, x2, et cetera, x n

that corresponds to these columns okay then x c1 + we write submission J equals m - R but this

time city submission J over J. Let me say I have C1 no C1 I cannot use let us say Alpha 1 J x J

equals 0 et cetera x cr + submission J element of J Alpha R J x J equal to 0, probably I will stop

here and then continue next time. Okay remember I want to show that the dimension of this

space is m - R that would show that the column space of A is R dimensional which means that

column rank of A is R same as row rank of A okay.


