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Linear Transformations 

See one of the central  notions in linear algebra is that of a linear transformation this is also

central not only in linear algebra but the entire mathematics. Today I will discuss the notion of

linear transformation give several examples, now these examples will justify the statement that I

made just now you will see that linear transformations arise in differential equations in integral

calculus in matrices for transformations between vector spaces etcetera. So let us first look at the

notion of linear transformation look at several examples and probably towards the end of the

class we will look at some properties some simple properties some not so simple properties and

then we will be able to compare how a linear transformation behaves with the general function

between vector spaces, okay.
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So let us begin with the notion of a linear transformation between two vector spaces, if I have

two vector spaces let us call T as a linear transformation, what this means is that V and W are

vector spaces T is a function to begin with so I am just emphasizing it is function that satisfies



the following two conditions T of u plus v equals T of u plus T of v for all u, v in V and T of

alpha  u  equals  alpha  T of  u  this  is  true  for  all  alpha  in  the  underlying  field  which  we are

assuming is the real field and for all u in V, okay.

So a linear transformation is a function linear transformation between two vector spaces is the

function between those two vectors spaces that must satisfy these two conditions, let us observe

that the right hand side vector is in W, okay. What is inside? u plus v that is in v T of that is in W

and the formula for T of u plus v s given by this the formula for T of alpha u is given by this right

hand side, okay. Sometimes we write Tu instead of T of u just a notational convenience.
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So let us now look at examples let us dispose off the trivial examples, first one you look at the

map which I will denote by 0, 0 from V to W defined by 0 of u is 0 for all u in V, see the left

hand side 0 or (())(4:01) is a 0 transformation the right hand side 0 is a 0 vector in W, okay

trivially this is a linear transformation because it satisfies these two conditions this is called the 0

transformation,  example  2  I  will  call  it  I  I  from V to  v, you  know what  it  is  the  identity

transformation defined by I of u equals u for all u in V. Now you see that the right hand side u is

the same as the left hand side u that you started with so you need W to be equal to V for identity

transformation W is equal to V.

So these two are trivial examples of linear transformations, let us know look at one non-trivial

example and then probably two examples from geometry motivated by notions from geometry.



So let me first look at a non-trivial linear transformation let us say T from R2 to R3 T from R2 to

R3 is defined by T of something, okay so T of x1, x2 a typical element in R2 is x1, x2 T of that

element let us say the right hand side is x1, x2 x1 minus x2 and I need to remember that x comes

from R2 T of x1, x2 is the first component of the x1 second component x2 third component x1

minus x2.

So what you observe is that this x1, x2 belongs to R2 this belongs to R3 this is linear let me first

take  this  as  the  first  example  and  then  verify  these  two  conditions  that  this  is  a  linear

transformation we need to verify first condition so let us take x, y in R2 and the notation that I

will use is x equals x1, x2 y equals y1, y2 I must verify that T of x plus y equals T x plus T y

first, okay. 
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Look at T of x plus y this is T of the vector x plus y I know is coordinate wise x1 plus y1 x2 plus

y2 I will call this as T of z1 comma z2 where z1 is x1 plus y1 z2 is x2 plus y2. So I have T of

two coordinates I have the formula there so this is z1, z2, z1 minus z2 that is a definition T of x1,

x2 is x1, x2 then x1 minus x2 so T of z2 z1, z2 z1 minus z2 z1 is x1 plus y1 z2 is x2 plus y2 z1

minus z2 is I will write it as x1 minus x2 plus y1 minus y2, I can write this as x1, x2 x1 minus x2

plus y1, y2 y1 minus y2 this is addition in R3 this is operation plus in R3 the first term now is T

x the second term is T y, okay so T x plus y is T x plus T y we can also verify T of alpha x equal

to alpha T x let us do that quickly T of alpha x is T of alpha into x1, x2 that is T of alpha x1



comma alpha x2 which by definition is alpha x1 minus sorry alpha x1, alpha x2 alpha x1 minus

alpha x2 which let me write as alpha times x1, x2, x1 minus x2 which is alpha T x, okay.

So this is a simple verification that T is a linear transformation, okay the T that defined that is

defined here is a linear transformation. 
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Let us look at other examples let me now look at two examples coming from geometry look at

the transformation that sends a vector in R2 on the plain I have a transformation which sends a

vector X to a vector obtained by reflecting with respect to the horizontal axis, that is example 4

you tell me if this is what I am talking about T of x1, x2 is x1 minus x2 this is the transformation

which takes the vector x1, x2 to x1 minus x2 so it is reflection with respect to the horizontal axis,

okay if you think of R2 as a horizontal and a vertical then this is what it does, say x1, x2 then if

x1, x2 is here let us say x, y and I will call this a general point x1, x2 then it must go to this point

which is a reflection of this this is x1 minus x2 I could have written x1 minus x2 here x1, x2 here

but does not matter reflection this is an example of a linear transformation I am not going to

verify that it satisfies those two defining equations this T is linear this comes from geometry

reflection.

Example 5 rotation, okay let me call it T is a reflection a reflection with respect to some axis I

have taken the horizontal axis, 5 is rotation rotation let us first derive the formula and then get

the transformation from that formula rotation means the following I am again in R2 I have a



vector here at a distance R from the origin and I will call that x1, x2 this makes an angle so this

is R for me this makes an angle let us say alpha with the horizontal axis positive x axis I am

rotating this when you rotate this length does not change the distance from the origin does not

change by rotation.

So let us say I have something like this here this is my y and I write y as y1 comma y2 the

rotation is by an angle theta the vector x has been transformed to the vector y by an angle theta,

can I write down a formula for a transformation that sends x to the vector y, okay now you know

this horizontal vertical components if you want you can use Pythagoras theorem a, okay.
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What I have is x1 is the horizontal component that is cos alpha x2 is sin alpha, yes there is an R

coming otherwise we can write a similar formula for y, y1 is r cos alpha plus theta and y2 has a

similar formula let me write down this, it is okay let me write y2 similar y2 is r sin alpha plus

theta so this is r cos a cos b r cos alpha cos theta minus r sin alpha sin theta, y2 for me is r sin

alpha sin theta sin a cos b plus cos alpha sin theta, okay. So this is r cos alpha go back to this this

is x1 cos theta minus x2 sin theta that is my y2, y1 rather y2 is on the other hand r sin alpha that

is x2 so let me write this first r cos alpha x1 sin theta plus x2 cos theta x2 is r sin alpha into cos

theta so I have these two expressions for y1 and y2 again horizontal vertical components. 

Then let me write y as a column vector this time let me write y as a column vector then this y I

know is y1 is x1 cos alpha minus x2 x1 cos theta minus x2 sin theta so let me write just the



coefficients cos theta minus sin theta this into x1 comma x2 I will write that also as a column

vector, so I am now writing a matrix equation something like Ax equal to b, b equal to y equal to

Ax y2 is what I need to write next x1 sin theta this is cos theta so I have written y equals A theta

x this matrix the entry is depend on theta so that is A theta x I have written y as A theta x so this

is the transformation formula if you give me x I substitute into this I get y of course I must know

theta as, okay I must know the angle of rotation.

Now look at A theta let me now use this A theta to define T from R2 to R2 by the formula T of x

equals A theta x I am defining T of x that is a transformation is A theta x rotation rotates x to y,

then use matrix multiplication to conclude that this is a linear transformation, okay this t is linear

T is linear and it is the rotation map T is the rotation map or the rotation transformation, okay. So

these two examples come from geometry, let us also look at some other examples coming really

from geometry but this time we may have to look at higher dimensions that is fifth example. 
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Let me look at T from Rm to Rn let me take the case when m is greater than or equal to n I will

define T x1, x2, etcetera, xm m is greater than or equal to n that is n is less than or equal to m so

the number of coordinates on the this on this right hand side I have a vector which has less than

m coordinates there is a natural definition x1, x2, etcetera, xn, okay x is in Rn.

See what I have dropped is what I have done is to drop the coordinates from n plus 1 to m, okay

this is called a natural projection T is called a natural projection on Rm, now you can verify that



this T is linear these are some of the simplest examples of linear transformations this T is linear.

Let us look at the usual projections, projections that we encounter in engineering drawing for

instance T from R3 to R3 defined by T of x1, x2, x3 is let me say it is x1, x2, 0 these will be

called projection operators T is called a projection operator on R3 we will reserve the word

operator when the vector space is V and V are the V and W are the same if V is equal to W then

linear transformation will be in particular called a linear operator.

So this is an operator it is called the projection operator you see that any point on the plain rather

any point in three space is dropped on to the horizontal plain the plain let us say x, y plain any

point in the x, y, z plain the z coordinate is 0 so we are looking at the projection of any point in

three space on the so called x, y plain that is the projection operator, this is just one of those

examples I have another several other examples for instance T of x1, x2, x3 could be x1, 0, x3 or

x1, 0, 0 on the x axis etcetera all these are called projection operators.

(Refer Slide Time: 20:29) 



Let us look at other example let us take this time T from Rm to Rn with m less than n it can be

equal also the definition is as follows this will be x1, x2, etcetera, xm if it is strictly less than n

the other coordinates are taken to be 0. So these are n minus m components m is less than or

equal to n so this may not be there then it will reduce to the natural projections but otherwise

there are certain coordinates which are 0.

Now this is not an operator this is what is called as natural inclusion, again T is linear it is called

a natural inclusion in particular this allows us to think of Rm as sitting inside Rn if n is greater

than m you can thin k of Rm as sitting inside Rm, so this is natural inclusion this is another

example of a linear transformation. Let us look at other examples let us take one from the space

of matrices let us say T from R m cross n the set of all the vector space real vector space of m by

n matrices to the real vector space of n by m matrices defined by T of A equals A transpose this A

transpose has been defined earlier if A is equal to Aij then A transpose is Aji and so if A is m

cross n then A transpose is n cross m this is linear that is because we need to verify T of x plus y

equals Tx plus Ty. 

Let us look at T of A plus B, T of A plus B by definition is the transpose of A plus B but the

transpose can be verified to satisfy this formula A transpose plus B transpose, okay this is easy

consequence of addition A transpose plus B transpose A transpose is T of A B transpose is T of B

so this is additive T of A plus B is T of A plus T of B T of alpha times A is T of its alpha A



transpose alpha A is multiplying alpha to each component of each term of the matrix A, so that

can be taken outside it is alpha A transpose.

Remember its real case if it is a complex case you must take alpha bar outside alpha A transpose

that is alpha T of A, so T is linear we have verified. So this one comes from transformation

between vector spaces of matrices. 
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Let us look at example from differential calculus let us take T from C prime 0, 1 I usually say

this is a complex valued space of complex valued continuous functions on the interval 0, 1, C 0,

1 C prime 0, 1 space of complex valued continuous functions on 0, 1 with the property that the

first derivative is continuous, I will consider this as a real space T from C 1, 0, 1 to C 0, 1 again

real space the mapping is T of a function f it is f prime its derivative derivative function T of f is

f prime the derivative function T of sin theta is cos theta f comes from C1 0, 1 first of all this is

well defined because T of f is f prime f if f is C1 0, 1 does f prime belong to C 0, 1 that is the

case because of the definition of C1 0, 1 f prime is the first derivative that must be continuous.

So this f prime belongs to this so this is well defined there is a function to verify that this is linear

comes from differential calculus d by dt of f plus g is df by dt plus dg by dt, d by dt of alpha

times f is alpha df by dt. So this t is linear this is called the differential operator this T is called

the differential operator, okay see it is not just a superficial connection to differential calculus

what we will see is that later when maybe in the next lecture we will discuss the notion of the



rain space of a linear transformation, null space of a linear transformation there you will see that

the null space of a linear transformation when T is a differential operator especially coming from

constant coefficient that is it is a differential operator with constant coefficients then the null

space  is  precisely  the  set  span  by  the  solutions  which  are  called  so  called  complementary

functions of the differential equation, okay. 

So this connection is not just superficial, okay this will be made clear later. So this is called the

differential operator coming from differential calculus, one from integral calculus and probably I

will stop this list the last example is 10 let us say I have T from C 0, 1 again for the sake of

simplicity I will take this to be a real space of continuous functions on 0, 1 to R this time the

domain vector space is 1 dimensional it is just R T defined by T of f is integral 0 to 1 f of t dt T

of f is integral 0 to 1 ft dt the Riemann integration.

We know that this  is  well  defined again because from integral  calculus we know that  every

continuous function is Riemann integrable. So the right hand side is well defined and you can

verify easily that this is linear transformation that is for two functions f and g that are continuous

integral 0 to 1 f of f plus f of T plus g of T dt is equal to integral 0 to 1 ft dt plus integral 0 to 1 gt

dt T of that is T of f plus g equals Tf plus Tg T of alpha f is alpha times 0 to 1 ft dt so that is

alpha f alpha t of f rather.

So  this  is  linear  this  is  called  an  integral  operator  I  will  simply  say  integration  integral

transformation this is again a linear transformation, okay. 
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Probably one final example which sort of summarizes several of the previous examples not all of

them, I will state that as example 11 let me say T is from Rn to Rm is defined by, so I have T of x

equals Ax where I am given an m cross n real matrix A I am given an m cross n real matrix A

through this matrix I am defining a transformation this transformation is between Rn and Rm it is

from Rn to Rm defined by this equation Tx equal to Ax.

This is matrix multiplication you see that if A is m cross n then Ax is 1 cross m cross n m cross 1,

okay that is a vector is Rm so this is well defined most of the examples that we have discussed

previously  0  transformation,  identity  transformation,  the  second  example,  the  third  example

reflection, the fourth example rotation, natural projection, natural inclusion, projection operator

all these are particular cases of this for different choices of A this T is linear which follows by

matrix multiplication this is linear, okay this sort of summarizes all those examples, now what is

also true which is the most interesting part of linear algebra is that a certain converse is true that

is if I have a linear transformation between finite dimensional vector spaces then there is a matrix

which has a property that the transformation T satisfies this equation for that matrix, okay if I

have a linear transformation between finite dimensional vector spaces then there is a matrix A we

can construct a matrix A such that this holds for the linear transformation T that we started with,

okay.



So let me just say that a certain converse is true and this is this holds for finite dimensional

vector spaces, okay. So this list should probably convince you that linear transformations are

indeed important objects before I proceed to the certain simple properties let me also consider

this notion of what is linear sometimes is not really the linearity that we would like to have as

illustrated here that is I want to give example 12 which is not really an example let us look at T

from R to R defined by T of x equals x plus 1, okay T of x is x plus 1 the translation.

Now we can plot this on R2 that is you can call this as y, then I have y equals x plus 1, now this

is a straight line not passing through the origin, okay you can verify that this T is not linear you

can verify that this T is not linear in spite of the fact that intuitively in R2 y equals x plus 1 is a

line,  okay.  So  if  you  have  a  formula  representing  a  line  in  R2  this  does  not  necessarily

correspond to a linear transformation this is just a simple point I wanted to illustrate, okay. In any

transformation that transforms a line to a line is not necessarily a linear transformation is what I

wanted  to  emphasize,  okay so  this  is  not  a  linear  transformation  you can  verify  by  simple

examples that this T is not linear, so anything that looks like linear is not necessarily linear, on

the  other  hand  if  it  is  a  straight  line  passing  through  a  origin  then  this  will  be  a  linear

transformation, okay.
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Let us now look at some simple properties, okay first property is the following so let me write

down this theorem T from V to W T from V to W is linear then I have the following properties,



property 1 0 must be map to 0 this is the first property, for instance you could use this property in

that last example T of x equal to x plus 1 T of 0 is not 0 so that is not linear T of equal T0 equals

0 property 2, we know that T of u plus v is Tu plus Tv this holds for u minus v also T of u minus

v is T of u minus T of v and property 3 T of u plus v equals Tu plus Tv this can be extended to a

finite sum T of alpha 1 u1 plus alpha 2 u2 etcetera let us say alpha k uk this is equal to alpha 1 T

of u1 plus alpha 2 T of u2 plus etcetera alpha k Tuk this additivity property that is condition 1

that a linear transformation must satisfy can be extended to finitely many terms in fact linear

combinations, that is here these coefficients alpha k are in R u1, u2, etcetera, uk they come from

V, let us quickly verify that these properties hold.
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So our discuss the proof very quickly look at the first part I will u as T of 0 then u is T of 0 plus 0

T is linear so T of 0 plus 0 is T0 plus T0 I am calling this as u so I have u equals u plus u then

from the first simple property of vector spaces it follows that u is 0 that is T of 0 is 0 that is the

first property. Property 2, T of u minus V by definition this is T of u plus minus 1 times V minus

V is minus 1 into V T is linear so T of x plus y so that is T of u plus the constant is outside T of

V, minus 1 T of V that is happening in W, so this is Tu minus Tv that is property 2.
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Property 3, T of alpha 1 u1 plus alpha 2 u2 etcetera plus alpha k uk, I will keep this as a vector

maybe I will call it w then this is T of alpha 1 u1 plus w I know that this is alpha 1 T of u1 plus T

of w then keep this as it is alpha 1 T of u1 plus T of w formula for w T of alpha 2 u2 plus etcetera

plus alpha k uk I again have I will keep this as it is the rest of them I will call it w1 and proceed,

alpha 1 T of u1 plus alpha 2 T of u2 plus T of w1 where w1 is alpha 3 u3 plus etcetera plus alpha

k uk proceed by induction etcetera this is alpha 1 Tu 1 etcetera plus alpha k Tuk, okay so really

simple property just making use of linearity definition of linearity, okay.

A little more non-trivial properties of a linear transformation we will discuss next, to motivate

this property maybe I will give an example start with an example, let us look at the function sin x

and cos x these are functions from R to R real valued functions of the real variable x these

functions have the property that sin x equal to cos x at infinitely many points all those points

starting from pi by 4 if you want and then you add 2 pi. 

So there are many infinitely many points x for which sin x equal to cos x, okay for a linear

transformation this kind of a think will not be true. For a linear transformation if you have two so

I have two really two functions sin x and cos x which coincide at infinitely many points but if

you have transformations T1 and T2 that coincide at all those basis elements then they must be

the same linear  transformation,  okay this  is  one important  property which separates a linear

transformation from a general function let me make this clear.
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Let  V  be  a  finite  dimensional  vector  space,  and  T1  comma  T2  from  V  to  W  be  linear

transformations sometimes I will also call them maps, these are functions. So I have T1 and T2

linear maps from V into W no word about W V is finite dimensional, suppose that I have a basis

b let us say u1, u2, etcetera, un let this be a basis for V. So V is finite dimensional there is a basis

consisting of finite elements finitely many elements I am listing that basis, suppose T1 and T2

satisfy the following equation if T1 of ui equals T2 of ui for all i 1 less than or equal to i less than

or  equal  to  n  that  is  the  transformations  T1  and  T2  coincide  for  the  basis  vectors  the

transformation T1 and T2 coincide for the basis vectors then we can show that T1 is equal to T2

then T1 is equal to T2.

So now contrast this statement with the statement that I made to motivate this theorem sin x and

cos x they are equal at infinitely many points but as functions they are not equal, okay remember

that T1 is equal to T2 means as functions these two are equal that is T1 of x equals T2 of x for all

x  in  V as  functions  these  two are equal  they  are one  and the same one can  also make the

following  informal  statement  from  this  theorem,  a  linear  transformation  is  completely

determined by its  action  on any basis  where I  am assuming that  the domain space is  finite

dimensional a linear transformation is completely determined by its action on any of its any of

the basis of the domain space, okay let us prove this quickly I want to say that T1 is equal to T2

so I am prove that T1 of x equals T of x for all x.
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Let x belong to V, okay then I have a basis explicitly given script b so I can write x as alpha 1 u1

plus alpha 2 u2 plus etcetera alpha n un, okay let me know look at T1 of x, T1 of x is T1 of this

representation alpha 1 u1 plus alpha 2 u2 etcetera plus alpha n un T1 is linear so this is alpha 1

T1 u1 plus alpha 2 T1 u2 plus etcetera alpha n T1 un. Now I will make use of the fact that T1 u1

is equal to T2 u1 T1 u2 is equal to T2 u2 etcetera that is what is given T1 and T2 coincide for the

basis vectors, so this is alpha 1 T2 u1 plus alpha 2 T2 u2 plus etcetera plus alpha n T2 un again

use the fact T2 is linear to rewrite this as T2 of alpha 1 u1 plus alpha 2 u2 plus etcetera plus

alpha n un but this is the x that we started with, so this is T2 of x so what we have shown is that

T1 of x is equal to T2 of x for all x in V and so T1 is equal to T2, okay.
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Let me look at a numerical example to illustrate this result I want to give an example let T from

R3 to R2 be such that T of the first basis vector is this, T of the second basis vector I am in R3 to

R2 let us say minus 1, 0, 0, 1, 0 let us say this is 1, 1 and T of 0, 0, 1 these three equation define

T uniquely these three formulas define T uniquely. What is the general formula for T of x I can

write down because any x can be written as a linear combination of these, okay so let us do that

quickly let us take x in R3 then x is I am following this notation consistently x1, x2, x3 I can

write this as x1 into, okay see in our notation this is e1, this is e2, this is e3 standard basis vector

so this is x1 e1 plus x2 e2 plus x3 e3 any x is a linear combination of these the coefficient x1, x2,

x3 are given by the components of x I want T of x that is the question what is the general formula

for T of x given x. 

So T of x by definition is x1 T of e1, x2 T of e2 plus x3 T of e3 just plugin these values you get

the formula for T of x. So T of e1 is minus 1, 0 x1 into minus 1, 0 plus x2 into 1, 1 plus x3 into 0,

1 so you get a formula in terms of x this is minus x1 plus x2 second coordinate x2 plus x3 so this

is T of x minus x1 plus x2, x2 plus x3, okay this is a general formula if you know x you just

plugin here you get T of x, so the action of a linear transformation on a basis that is enough to

determine the linear transformation completely, okay.
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Let us also ask this question the answer will be given in the next, this is the question I have let us

say a basis V u1, u2, etcetera, un as before this is a basis of V I am given a set of vectors not

necessarily a basis of W let us call them w1, w2, etcetera, wn this is just a subset not necessarily

a basis be a subset of w I have a basis for V and just a subset of W the question is does there exist

a linear transformation a linear map T from V to W that takes the corresponding elements to the

corresponding ui to the corresponding wi that is map such that T of ui is equals wi ui goes to wi,

does there exist a linear map T from V to W such that this condition satisfied, okay.

For this to be satisfied do we need conditions on w1, etcetera, wn, okay if there exist a linear

transformation is the transformation unique, we will answer these questions in the next lecture, I

will stop. 


