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So, welcome to this fifth lecture on Riemann Surfaces and Algebraic Curves. So, let me 

briefly recall what we did in the last lecture: it was trying to give a Riemann surface 

structure on the cylinder.
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So, the way we did it was essentially we took the complex plane, and we went modulo

the group of automorphisms of the complex plane,  which isomorphic to the integers

under addition, and for the generator of the group we took a translation by a fixed vector.

So, what we did was we took we fix a complex a number z naught, and then we take the

group then we denote by T sub z naught translation by z naught.

So, if you take translations by z naught and then you take 2 such translations, then you

get translation by 2 z naught. So, in this way what you get is the set of all possible

integer combinations of integer multiples of this translation, namely n times T z naught

where n is an integer, this gives you a certain group and this each element of this group is

a translation. In fact, you know that translation n times T sub z naught is a same as T sub

n z naught because T z naught is actually the map z going to z plus z naught.

So, this group G is isomorphic to the integers and of course, under. So, when I say group

here the question is under what operation, it is under the operation of composition of

mappings.  So, here we have composition of mappings and here it  is under the usual

addition. So, there is an isomorphism and this isomorphism is gotten by sending simply

sending n times T z sub z naught to the integer n. So, this is just a group of translations



by integer multiples of fixed complex number, and you go modulo of this group and you

get the cylinder ok.

So, this is a cylinder at least topologically and then I told you that once you do this you

can  transform the  cylinder  into  Riemann  surface  by  giving  a  system of  charts.  So,

diagrammatically the situation was that. So, if I recall that that is. So, here is my cylinder

it is an infinite cylinder. So, I will put this is dotted lines to say that it extends in both

directions. So, it us a it is basically s one which is a circle cross r, the r being thought of s

z axis and the s 1 corresponding to the unit circle on the x y plane all right and what we

did was, we cut across this cylinder and we obtained and an infinite strip like this we

obtain  infinite  strip.  And  then  basically  since  we wanted  to  have  charts  from small

neighborhoods around a given point on the cylinder to the complex plane, we had to

somehow think of this strip we had to somehow find the connection between the strip

and the complex plane. So, essentially what we did was we just spread we just repeated

this strip on the complex plane, then we realize that you repeating this trip do you see the

complex plane.

So, basically you have the complex plane C and then if they are vectors if they are vector

corresponding to the complex numbers z naught is this then we think of this strip as this

strip. So, let me draw the cylinder carefully. So, its. So, this is this is ninety degrees if

you want and. So, this is the strip here, and then you have various copies of this strip that

that give rise to that essentially the union actually gives you the complex plane and the

way to come back is essentially to identify 2 points on the complex plane, if they are

translates  by and it  is  a  multiple  of z  naught and that is  the same as actually  going

modulo  the  group G all  right  and that  is  how we got  this  complex structure  on the

cylinder making it into a Riemann surface.

Now the next point that we can ask is a well in fact, the complex structure. So, what did

we do I mean if you choose a point lets use a point say x on the cylinder and what is the

coordinate chart. So, remember a coordinate chart was required at the point x. So, that

you can identify it with an open subset of the complex plane, and then you can transport

the notions of holomorphicity from the complex plane to this point to the neighborhood

of this point. So, what we did was given a point here we chose another point here in the

complex plane let me call it z, and this map is precisely the if I may say the quotient map

which I call as pi and this is the.
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So, this is my cylinder here, I will denote it by script C and this map is just the map from

C to C mod G which is  the which is  cylinder  and which sends every point  to  it  is

equivalence class under G. Equals class under G means it is essentially the orbit of the

point under G, which is a and what is a equivalence class it is simply the collection of all

translates of that point ok.

So, you send a point to the collection of all of it is translates, which forms an equivalence

class  here and all  these  equivalence  classes  together  as  a  set  give you precisely  the

cylinder C script C. So, this is my map and given a point x on the cylinder, I choose a

premade z and then here is my map pi. So, pi of z is x. So, given a point here I chose a

point there and. So, let me write that down pi of z is equal to x, and then what we do is

that you choose a sufficiently small disc surrounding this point, let me call that is D and

of course, you choose the disc to be sufficiently small. So, that it is far smaller than this

then the width of the strip which is smart z naught of course, I am not assuming z naught

to be 0, I am really taking a nonzero vector here which a which is implied, but anyway

let me say it.

So, that is a small disc here small enough disc, and if you take pi of that disc that is you

take the image of this disc under pi, then you will get an open neighborhood of x. And

the reason this is true is because pi is actually an open map pi is an open map it takes

open set to open set. So, if I take a disc like this in fact, you take any open set to an open



set, but I am taking a small enough disc because I want this map to be injective, because

if the radius the disc is large then there would be many points which go to the same point

here ok.

So, pi of D will be this open set surrounding x which is which looks like a disc and why

does it look like a disc? Because if I take pi from D to pi of D that will actually be a

homeomorphism because I can I it is an open map and it is injective and the inverse is

also continuous. So, what I can do is that I can take my inverse, I can take the map from

the I can take the inverse map pi inverse, which goes from pi of D to d and that will give

me a homeomorphism of pi of D with an open subset of the complex plane namely D all

right and this is going to this pair is going to give me a coordinate chart.

And then I explained that you can get charts like this at various points and so we have a

covering of the cylinder by charts now of course, that is not completely enough to give

you  a  Riemann  surface  structure,  what  we  required  is  that  D  starts  are  compatible

whenever they overlap and that is also a condition that we checked last time, we found

out that the transition functions are precisely translations by a certain integer multiple of

z naught and these are of course, by holomorphic maps. These are certainly injective

holomorphic max the maps there they certainly holomorphic isomorphism.

So, since the transition functions holomorphic, you have compatibility of the charts. So,

this is an atlas and once this atlas is prescribed the cylinder becomes a Riemann surface.

And you can also see that the natural map from C to C mod G which is the cylinder this

pi  is  a holomorphic  map.  So, these also something that  you can see that  is  obvious

because for a map to be holomorphic basically holomorphicity is a local property. So, I

will have to check that this map is only locally holomorphic, but locally from a point on

C to a point on the cylinder, I actually get the maps corresponding to the inverse of these

pi inverse namely pi restricted to D and these are certainly holomorphic maps ok.

So, the moral of the story is that this is a holomorphic map and now you can again ask

same question as we asked in the earlier cases, if you go back and look at the earlier

lectures when we were trying to give Riemann surface structures on the complex plane,

then I told you that there are only 2 possibilities; namely the complex plane and the unit

disc. And the in the case of the Riemann sphere, if you ask the question is the question

that how many Riemann surface structures you can give on the Riemann sphere. Then



again the answer then the answer is that you can you only one up to isomorphic. There is

only one on the on the real 2 sphere there is only one Riemann surface texture that you

can give which is given by the Riemann sphere to be accurate ok.

So, no matter what atlases you use whatever Riemann surface structure that you impose

on  the  real  2  sphere,  it  is  going  to  be  only  isomorphic  to  the  Riemann  sphere  the

Riemann surface structure on the Riemann sphere. So, that is the case of the sphere and

you can ask the same question for the cylinder. You can ask how many Riemann surface

structures I can give can I that one that it is possible to give on the cylinder so that this

map is holomorphic. And the answer to that is it there is only one up to isomorphism. So,

of course, these are all facts that require further techniques for their proof, but I am just

telling them because you get a flavor of what happens ok.

So,  let  me  state  this  theorem,  the  set  of  holomorphic  isomorphism classes  Riemann

surface  structures  on  cylinder  C  is  a  singleton  and  it  is  represented  by  the  natural

Riemann surface structure on punctured plane C star, which is C minus large ok.

So, let me again explain the statement of the theorem. So, even before I do that let me

again say what is that we are trying to think of; we have a surface real surface that we

can imagine in three dimensions to begin with, and then we find various ways of turning

it into a Riemann surface. And then the question is how many different Riemann surface

structures is it  that we can get. And the answer to that is in the case of cylinder the

answer to that is there is only one. And what is that one? That one is there is a very

special representative for that and that is a C star which is C minus large. So, roughly the

if you want heuristically understand why this could be true, the reason is that I have

already told you that this G is isomorphic to G. So, it is essentially C mod G the cylinder

is exactly C mod G alright and if you know if you remember a little bit of complex

frescoes in complex analysis, you know C mod G is actually C star.

Do you know how it is in the in the following exact sequence. So, you have 0 let me

write this Z, C, C star 1. So, I will explain this notation. So, you see here is a complex

plane and here is an map z going to e power let me say i z take the z going to e power i z

then of course, you know that this map is surjective because every non-zero complex

number has a logarithm. So, this map is surjective and in mathematical notation that is

what it means to say that this whole sequence is exact at this point ok.



So, sequence of groups and group homomorphisms, you said to be exact at a certain

point if the kernel of the outgoing map is equal to the image of the incoming map. So, if I

want exactness at this point, then I the condition is that the kernel of the outgoing map

should be the image of the incoming map. The kernel is outgoing map is everything mind

you I have put one here is one here represents the multiplicative the trivial multiplicative

group under multiplication, which has only the identity element for multiplication the

trivial group, but with operation is multiplication and mind you this map the C star is

also a group under multiplication.

And this map the constant map C start to this singleton group is; obviously, going to have

kernel C star because everything is going to one. So, the kernel of this map is the whole

of C star and the condition for exactness is that the kernel of this is the image of this, and

that is the same as saying that the image of this is going to it has to be everything, which

is true. That is what exactness means here and of course, this is convene the C here and

the  Z here  are  being  considered  as  groups under  addition,  and of  course,  when you

exponentiate the addition gets transformed into multiplication.

So,  on this  side  the first  three groups are  all  groups under  addition  and what  about

exactness at this point? The exactness at this point means that the kernel of this map has

to be the image of this map. So, is C star identity element is 1, the only way e power i z

is z should be a multiple of 2 and pi all right, but then let me normalize this by dividing 2

pi. So, instead of sending it z to e power i z, I let me send it to z to e power i z 2 pi. So,

there is a small adjustment I have to make sure that I get integers here. So, let me put it

as 2 pi i z ok.

So, what is the kernel of this map? The kernel, this map is by definition all the elements

here which go to the identity element here, the identity element here is one. So, I want all

these z as a e power 2 pi z is 1, and this will happen only if z is an integer. So, this is one

if and only if z is an integer and; that means, that Z has to come from here. So, I am just

saying the kernel of this is equal to image of this and that is the exactness at this point.

So, let me write that down. So, we say that this is a short exact sequence of groups and.

So, it is exactly at this point.

So, the kernel of this is the image of this and it is also exactly at this point, because the

kernel  of this  is  0 which is  the image of the 0 group here.  So,  this  is  a short  exact



sequence right and what this tells you is that C mod. So, there is a map the image C star

kernel Z. So, what it tells you that C mod z is actually C star if you go by this map, if you

go by this is the sequence C mod Z is just C star as groups, and that is exactly this is

happening at the level of groups, but this exactly was also what happens in the level of

Riemann surfaces. So, that is the point the point is that you take C modulo this group of

translations which corresponds to a copy of Z. So, essentially you are looking at C mod

Z and C mod Z C star and therefore, the cylinder the actually C star as a Riemann surface

and by that I mean the cylinder is holomorphically isomorphic to C star right.

So, let me write a few more words. So, exactness here is let me call this is exp this map

has exponential map his exponential is surjective and exactness here, here is due to the

fact that e power 2 pi iz is 1 if and only if z is an integer and well exactness at this point

is just infectivity of this map ok.
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So, I just I am just understand to elute to the fact that C mod z is C star and of course,

mind you this map this map is also a holomorphic map C to C star is an exponential map

and it certainly holomorphic map. So, we are in this situation you have a map from C to

the cylinder Riemann surface structure on the cylinder which is holomorphic map, but

immediately  the  cylinder  does  not  look like  C star  if  you want  to  begin  with.  The

cylinder that does not really look like C star, but you can see is homeomorphic to C star



because cylinder is just s 1 cross r and that r you know the real line r is homeomorphic.

In fact, diffeomorphic to any interval and you choose that interval to be 0 comma 1.

So, if you think of it is s one cross 0 comma 1; I mean it is C star can be thought of as D

given by polar coordinates, namely one coordinate theta which comes from s 1 the other

coordinate given by the distance to the origin which is essentially a real number. So, you

can actually seeing think of C star as s 1 cross the interval 0 comma infinity, but that is a

same as s 1 cross R because the interval 0 comma infinity is diffeomorphic to r you can

always use the time function you know to and it is inverse, to map any open interval on

to any other open interval or to the whole real line. So, they are all they are all the same

ok.

Fine; so let us go on to look at this. So, let us go on to look at the case of a torus. So, this

is what I do. So, here is a. So, I sort to the torus.
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Sort the torus and somehow given a point on that on that torus let me call that as x, I

want to get hold of a coordinate neighborhood around this which looks like an open

subset of the complex plane that is how I get a chart.

So, how do I connect this to the complex plane? So, that the idea is very simple is very

similar it is very simple and it is very similar to what we did here. So, what you do is you

take this torus and you first cut it along vertically like this you make a cut, and what you



will get up get is essentially the cylinder you will you will get a you will get the cylinder

here, but of course, mind you that this is not the infinite cylinder. So, I will have to these

one end of it which is with the boundary circle is here, and there is another end of it

which  is  kind  of  without  the  boundary  and  I  am  supposes  if  I  identify  this  circle

essentially  with  this  I  paste  it,  then  this  is  your  torus.  So,  let  me  also  include  this

boundary circle and say that you know these 2 circles need to be identified ok.

Then I get the torus, but this is still not the plane. So, what you do is you make just like

the cases cylinder you make one more cut and you open it up what you get is rectangle.

So, this circle has become this edge of the rectangle this circle has become this edge of

the rectangle and this line here has split into 2 edges that corresponds to these 2 edges.

So, all I am saying is that you can go back by simply identifying these 2 edges will give

me the cylinder, and then in that process this is transformed into the circle and then

identify the circles you get back torus ok.

Now, but the point is I want the plane. So, the natural way is to do exactly as we did

there, just like we propagated the strip here to that is we repeated the strip to get the

whole plane, it is obvious that you know you just have to repeat this rectangle to get the

whole plane. And then if you go back to this philosophy of trying to get the cylinder as a

quotient of the complex plane, in this case also you can get the torus as a quotient of the

complex plane. The only thing is now that your group is not controlled by one vector it is

controlled by 2 vectors, namely you get a copy of z direct some z or z cross z ok.

So, let me write that out.
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So, what we do is we take you fix 2 complex numbers, we fix 2 complex numbers let me

call them as z naught z 1. Of course, I should mention there that z naught is non zero. So,

you know let me put C minus 0 be very strict. So, that I do not end up taking z naught to

be 0 which will then give mean nothing, because I will have translation by 0 which is

just the identity map and I do not want that. So, in the same way I fixed 2 complex

numbers here which is non-zero just to be sure that there are no such hiccups and what

we do is again look at translations by these 2 complex numbers. So, you look at the

group G which is given by translations by integer multiples of these 2 complex numbers.

So, it is a group G is given by n T times T sub z naught plus m T sub z 1 where n and m

are integers ok.

So, this essentially means translate by n times z naught then translate by m times z 1, and

the order in which I do it is immaterial because they commute and I get a group and the

group G again in this case isomorphic to Z cross Z and again what is the group operation

on the left  side  and the left  side  it  is  composition  of  mappings.  So,  composition  of

translations is again a translation and on the right side it is addition it is the product

group under addition and you get an isomorphism by simply sending any such element n

times T z naught plus m times T z 1 to the ordered pair n comma n which is an ordered

pair of integers ok.
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So, now what we do is that you can now you have the whole complex plane. So, let me

draw it again and. So, we have. So, here is my is z naught and here is my is z 1 and you

know I get this whole plane divided into you know grid formed by rectangles, whose

edges are given by you know z naught and z 1 and their translates. So, of course, you

know I really want a rectangle and to be more strict I must make sure that z 1 and these 2

vectors are not the same direction that is also important because if 2 if both the vectors

are in the same direction then I am not going to get any I am not going to get rectangle.

So, I had to put that condition there as well. So, let me put that with let me write z 1 by z

naught not a real number, basically  I want 2 linearly independent  vectors 2 complex

numbers which are linearly independent over r, these 2 vectors should not be multiples of

one another I do not want that in that case I would not get a rectangle basically I want to

get a rectangle and. In fact, the point is it may not even be a rectangle in general it could

be just a parallelogram this angle need not be 90 degrees. So, you could have even a

parallelogram, but anyway it does not matter. So, you see the point is that the whole

complex plane is divided into a grid like this of various translates of this parallelogram

and this parallelogram is called the fundamental parallelogram and the whole complex

plane is just translates of this so in fact, I will have. So, I should also draw this line and it

will go on like this ok.



So, here is my here is the whole plane divided into rectangles, and again if I now take the

whole complex plane and go modulo this group.
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C mod G what  I  will  get  is  a  torus  because I  am just  identifying  points,  which are

translates of each other by an integer multiple of z naught and a integer multiple of z 1.

So, C mod G will give me will be the torus, let me call this torus as. So, this is let me call

it is T. So, this will be the torus T and I am thinking of T as a real surface. So, it is 2

dimensional real surface. So, let me put T 2, but it is not a bit confused with T cross T or

something like that ok.

So, this is my torus. So, when I write T 2, I mean real 2 torus they considered as a subset

of the real three space and when I say C mod G will be the torus T 2, what is going to

happen is what I mean by that is that there is a natural map from C to C mod G which

again I call as pi all right and which will send any complex number z to the equivalence

class of that complex number right and then the set of equivalence classes is going to

give me essentially at least topologically the torus. So, again I can again you will see that

it is very easy to give a coordinate chart at a point, namely we do exactly as we did there.

So, what we do is you give me a point x on the cylinder choose your point z, if you want

any point z in the complex plane such that said goes to x under this map pi, and choose

sufficiently small disc surrounding this point. Now make sure that this disc is smaller

than the rectangle in which it lies of course, if the if this point is going to lie in one of the



edges the rectangle it does not matter, but make sure that the size of this the radius of the

disc is very small sufficiently small, then you can check that again pi will be an open

map and therefore, pi of this disc will give you an open disc like neighborhood here pi D

and then you have a coordinate chart.

So, you get for x in the torus fix z in C with pi f z is equal to x choose D an open disc

sufficiently small centered, I said then pi f D is disc like open neighborhood of x and

gives the chart. So, let me continue here and gives the chart let me see let me write here

itself, the chart pi of D comma pi residue to D inverse. So, by from D to of pi of D is

going to be any homeomorphism, that is because you have chosen D sufficiently small;

and since it is a homeomorphism it is inverse is also homeomorphism and this is this

homeomorphism is what is going to give me and identification of pi of D with D and that

is a chart.

And again you can check that this collection of charts are going to give you an atlas that

is because you can check that wherever they intersect the transition functions will now

be just translations by a multiple of n T z multiple of z naught and some integer multiple

of z 1 and this of course, these are certainly going to be by holomorphic maps I mean

holomorphic isomorphisms. Therefore, the compatibility of these charts is going to give

you an atlas and with this atlas you are going to end up making C mod G that is the torus

into a Riemann surface ok.

So, this is T 2 and of course, it is a Riemann surface structure that depends on your

choice of z not an z 1. So, the situation is the situation is similar to that of a cylinder in

trying to get hold of the Riemann’s surface structure, but the question is again there we

can ask the same question how many such Riemann’s surface structures, that you is it

that you can put on the on the torus, which are all you know non isomorphic that is

distinct Riemann surface structures. How many distinct Riemann surface structures are

there on the torus that you can actually put? So, there is an answer to that. So, let me

write that down. So, let me write a couple of statements here.
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So, I just put on a side here and right easy to check that the transition functions are

elements of G and hence we get an atlas ok.

So, I just I just record that the both. So, now, let me go back and give you this theorem,

how many Riemann surface structures distinct Riemann surface structures, which you

can put on a torus. So, again this theorem also involves the proof of this theorem again

inverse some more further techniques more advanced techniques that we will develop,

but it is important that you should know what you get; what you would get eventually let

me write that down. 
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So, here is the theorem, the set of holomorphic isomorphism classes; classes of Riemann

surface structures on a real torus T 2 actually based it to the complex plane, you will see

the complex plane. Which means that you know you can give as many distinct Riemann

surface structures on the torus as there are complex numbers and this more to this story.

In fact, what happens is in the set of iso holomorphic isomorphism classes of Riemann

surface structures are a real torus that is it itself becomes a Riemann surface ok.

The amazing thing is that the set of isomorphism classes of Riemann surface structures

that  itself  becomes  a  Riemann  surface,  and  if  you  consider  that  Riemann  surface

structure then this bijective map from that Riemann surface to see is an isomorphism of

Riemann surfaces. So, much more happens. So, let me write that. In fact, let me call this

set  as  something,  let  me call  them call  it  as  M1.  In fact,  M1 acquires  naturally  the

structure of Riemann surface of a Riemann surface, and with this structure the above

bijection with C becomes a holomorphic isomorphism. So, that is the amazing thing. So,

let me end by just giving you of few words about the notion of modulo.

So,  this  was this  go the term modulo goes  back to  Riemann and he was looking at

Riemann surface structures on a torus. So, this is the one torus, but you know I can also

have G torus namely something that looks like this a torus with so many holes, say with

G holes. So, you know I can I can look at things like this. So, this is a G torus. So, it is



just G of these toruses just stuck to each other and the way you stick it is by removing a

disc like neighborhood from both and just sticking it sticking the boundaries together.

So, this is a G torus and Riemann was trying to look at the various Riemann surface

structures  that  you  can  the  complex  structure  that  can  put  on  this.  And  the  set  of

isomorphism classes of these complex structures gave rise to a certain set let us call it as

Mg, which is m one when you put G equal to 1 and Riemann found that you see that this

space itself had a nice structure. He found that this space had just had a structure by

which you can speak of holomorphic functions on the space only thing was that this

space was no longer a Riemann surface namely it was not one dimensional it was higher

dimensional. So, you need a higher dimensional analog of Riemann surface and that is

called a complex manifold ok.

So, Riemann found that the this set of holomorphic isomorphism classes of Riemann

surface structures on this namely this one naturally became a complex manifold and that

was very amazing and so, it has been and in fact, he also found that the dimension he

found a fall for the dimension of the space and he called it a modulo space ok.

So, the reach area of modulus theory actually investigates such questions namely you

take an underlying real surface or a or a more generally even a real object which could be

higher dimensional manifold, and try to put various complex structures on it and then ask

this question that whether the set of isomorphism classes under that complex structure of

the various complex structure that you get, whether that is it has a natural structure and it

is amazing that it has always been soon I mean it is it is god given and it is amazing, that

trying to look at the parameter the set of isomorphism classes. That set automatically has

some geometric structure, and that is the kind of motivation to study modulo theory.

So, I also keep making several remarks during the course of these lectures, to give you

also some idea about modulo theory of Riemann surfaces. 

So, we will stop here.
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