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All right. So, let me recall, we are trying to show that every complex torus is actually an

algebraic elliptical curve. So, let me continue with what I was doing in the previous lecture.

(Refer Slide Time: 00:49)

So, if you recall we started with tau in the upper half plane and the then of course, we had the

lattice L of tau and we also have the torus T sub tau, which is just the complex plane modulo

this lattice and associated with tau is the Weierstrass P function P tau of z and this P function

is defined in the complement of the lattice or the complex plane and it is a holomorphic



function and at the point of the lattice it has poles. These are double pole at each of these

points  of  order  it  is  pole  of  order  2  and  with  some of  residue  0.  And  phi  tau  satisfies

differential equation, first order differential equation; P prime tau of z whole squared is equal

to 4 times P tau of z cube minus 3 minus g 2 tau or P tau of z minus g 3 tau. In fact, what we

did was in the last lecture we notice that this can be treated as you can look at this as a

polynomial in 2 variables.

So, you look at the polynomial Y squared is equal to 4 X cube minus g 2 tau X minus g 3 tau

and then what you do is you look at the locus of zeros of the polynomial in xi 2. So, we look

at this locus xi 2 sub tau, this is a set of all lambda comma mu in xi 2, C cross C such that

lambda mu satisfy this equation, this polynomial equation when I plug in X lambda and Y

mu.

So, well, what I do is, I will just define F 2 tau X, Y to be this polynomial, namely 4 X cube

minus  g  2  tau,  X minus  g  3  tau  minus  Y squared  and then  if  lambda mu satisfies  this

polynomial with lambda substitute for X and mu substitute for Y if and only if lambda mu is

0 of this polynomial. So, i will just write this as F 2 tau of lambda comma mu is 0. So, this xi

2 tau is called the affine elliptic algebraic curve associated to tau. So, it lives inside the xi 2

which C cross C and what we did yesterday was we proved that you can define a map phi sub

2.

So, let me make that statement more precisely. So, on the complex plane minus the lattice

points from there to C 2 there is a you can define following map z going to P tau of z comma

P prime sub tau u of z and I call this map as P sub 2 and this map is of course, invariant under

L tau, because P tau and P prime tau are invariant under L tau. They are w periodic function,

elliptic functions and therefore, this map goes down to map of the torus minus the point x

naught. The point x naught being the image of the lattice, all the point of lattice go to single

point because they form a single orbit, they have single equivalence class and I call that point

as x naught. And this map is just restriction of the natural projection from the complex plane

to the torus and of course, this is an open set and this also an open set, here.

I have just deleted a point and so, what happens is that inside the C 2 we have xi 2 tau seating

inside this affine algebraic elliptic curve, is seating inside C 2 and by definition the map goes

into C 2 because the these 2 P and P prime satisfies this polynomial due to this differential

equation. Therefore, you get map which also by abusive notation I call it as phi sub 2 and



what we proved yesterday was that phi sub 2 is a bijective continuous map. So, let me write

that here is a bijective continuous map.

Now, what I am planning to do today is, I want to tell you more about this map. So, I want to

explain how there is a natural structure of Riemann surface on xi on this E 2 tau and I will

also explain how this  map becomes when E 2 tau is  given that natural  Riemann surface

structure. I will explain why this map becomes a bi holomorphic map. So, therefore, the aim

of the lecture will be to tell you that there is natural Riemann surface structure on this such

that this map phi 2 is actually a bi holomorphic map, holomorphic isomorphism.

So, indeed the, upshot of the whole story is that this differential equation, that first order

degree 3 differential  equation that  P satisfies  gives  rise  to  an algebraic  equation  a  cubic

equation and that cubic equation defines its 0 locus in C 2 defines an elliptic algebraic curve

and this elliptic algebraic curve is naturally a Riemann surface and this identification of the

torus minus this point, this open subset of the torus, with that fine elliptic curve is actually a

holomorphic isomerism. So, that is what I am going to do in this lecture and let me also tell

you what I want to do later on. Later on, I will explain how this affine elliptic curve can be

compactified by adding a single point at infinity, so called point at infinity as a discalled

algebraic geometry.

And then you can send x naught to that point and this can be done in such a way so that even

after adding that extra point that one point compactification that also becomes a naturally

Riemann surface and this map then the extended map then become isomorphism and then we

call the corresponding curve as the projective algebraic elliptic curve associated to the tau, to

that torus. The fact is that curve will actually live in projective 2 space so that, will require

me to explain to you what projective 2 spaces. So, anyway, let’s get along with what we need

to do in this  lecture namely to show that xi  2 sub tau E 2 sub tau is naturally Riemann

surface.
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So,  we  shall  show  E  2  sub  tau  is  naturally  Riemann  surface.  So,  that  phi  sub  2  is  bi

holomorphic. So, the point is that somehow more generally the question is that if you give me

algebraic equation like this in 2 variables then I can look at set of zeros of that equation. That

will be the set of zeros will be a sub set of C 2 and the question is under what circumstances

can I naturally make it into Riemann surface. So, this will be done using the implicit function

theorem for complex variables along with the fact that the graph of a holomorphic function is

automatically a Riemann surface. So, that is the starting point.

So,  what  we  will  do  is,  we  first  show  that  the  graph  of  a  holomorphic  function  of  a

holomorphic function is naturally a Riemann surface. The point is that once you prove that

the graph holomorphic function is naturally a Riemann surface then what you can do is that

you know given a polynomial equation in 2 variables like this given a 2 variable polynomial

you know using the implicit function theorem I can locally get in a explicit function of the

second variable in terms of the first variable and then the fact is that this and in fact the

implicit function theorem will tell you that locally this will look like a graph and locally since

every graph is already a Riemann surface, you will get on the 0 locus of polynomial like this

locally  a  Riemann  surface  structure  and  then  you  will  have  to  show  that  the  there  is

compatibility between the charts and once you do that you get a globally Riemann surface

structure on this. But, this will not happen for any polynomial. The polynomial has to satisfy



certain hypothesis of so called hypothesis of non singularity which are the hypothesis that I

needed for the implicit function theorem which I will make clear.

So, start with g from V to C where holomorphic that is complex analytic and V is an open

subset of the complex plane. So, you will look at the function g define on an open subset V of

the complex plane and taking complex values. What is the graph of g? The graph of g is,

well, it is the set of all points z comma g z where z belongs to V. This is the graph of this

function. The graph is a subset of V cross C. So, pictorially though you know it is hard to

visualize the graph of a complex value function complex variable because essentially it will

be 4 real dimensions, but nevertheless we do it in a very suggestive kind of way.

We map, we put V here or rather we put C here and we put C here and think of this is C 2 and

then we think of V, the open set, as patch here and the then you know we draw the graph. So,

this is just like you draw the graph of a real valued function in first quadrant, if it has positive

values. So, you know you end up drawing something like this and every point, given a point z

here then I get this point which is this point is z comma g z and this, so this project down to z

and that project down to g z.

So, this is a subset of you can see it is a subset of C cross C, all right. And the point is how do

you make this graph into naturally into holomorphic I mean how do you make it naturally

into Riemann surface. See, the fact is that you need homomorphism of this graph with an

open substitute of the complex plane and that is obviously, given by the first projection.
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So, what you do is, you this is what you do. You define you consider P 2 I mean rather P 1

from C cross C to C that will just send any lambda comma mu to lambda this is the first

projection and then what you do is you restrict this first projection to the graph. You restrict

the first projection to the graph of g that will go from the graph of g to V. So, now, what you

will have to notice is that you will have to notice that this is actually homeomorphism. In

fact, this is you can see obviously, that you know see you are just sending z comma g z back

to z and you know it’s obviously, surjective because given any z, I have the corresponding

point of the graph z comma g z and whose image will go back to z, so, it is surjective.

And, it is obviously, injective because if z 1 comma g z 1 and z 2 comma g z 2 go to the same

z 1 equal to z 2 then if z 1 equal to z 2 then g z 1 equal to g z 2, trivially. Therefore, this is a

bijective map and also this map has an inverse; namely, you just send has inverse from V to

graph of g, this is a natural map. You just send z to z comma g z. This is the inverse map. So,

let me call this inverse as phi sub g. So, if I take V comma phi sub g I should rather take yes.

So, I should take. So, if I take graph of g comma phi sub g is a chart; is a global chart for

graph g and in fact, since there is only one chart there is no compatibility to be checked.

Therefore, this makes the graph of g into a Riemann surface. You just identify graph of g with

V which is the domain of the function g all right.

So, this single chart will do converted into Riemann surface. And of course, you know there

are other little points for a Riemann surface first of all topological space needs to be if you



insist you want it to be connected then you had better assume that this V is connected subset

even if not then you will have to you will always will be able to break down V into connected

components and each component to be a will be converted into Riemann surface. Then the

other thing is you also want to be housed of second controversial which is obvious because

you see because of this homeomorphism graph g is homeomorphic to V and subset of the

complex plane is of course, housed of in second countable.

So, if you stick by the definition that Riemann surface structure is a complex artless that is a

system of  coordinate  chart  which  are  compatible  with  each  other  on  manifold  which  is

housed of second countable and connected then all this conditions are satisfied, of course,

connectedness you will have you assume for V. So, in any case this is the way in which you

can make the graph of function into a Riemann surface in. And then now, so, once we do this

for the graph of a holomorphic function then we can go down and do it for function of 2

variable. So, I will state the implicit function theorem. This is exactly the complex analog of

the implicit function theorem that you would have in real variables and the philosophy of the

proof is perhaps nearly the same.

So, let f of capital small f of X comma Y be a polynomial with complex coefficients and of

course, when I write X comma Y you must always beware X and Y are complex variable, is

not real variable. Probably it would have been better if I use z and w, but never mind. Please

remember that capital X and capital Y are complex variables. We are already in the complex

set up. So, our scalar is always complex numbers. Let Z of f comma Z of f of X comma Y be

the 0 locus of f of X comma Y in C 2.

Look at the 0 locus. So, coming back to think of it is good I didn’t use z and w because now I

want Z to denote the set of 0. So that is what it means. It means Z of f of X comma Y is the

set of all lambda comma mu in C 2 such that f of lambda comma mu is 0. This is the 0 locus

and the point is the implicit function theorem says that you can solve the equation f of X

comma Y equal to 0, can be solved locally as Y is equal to g of X locally; provided, there is

the condition on the derivative just as in the real implicit function theorem.



So, let me see this. Let lambda comma mu be a point in the 0 locus such that if I differentiate

partially  f  with  respect  to  Y, second  variable  and  evaluate  it  at  lambda  comma  mu  the

resulting value is non-zero. So, basically if you, what is the implicit function theorem it says

if  you have a if  we are trying to solve f of X comma Y equal to 0 which is an implicit

relationship between X and Y then you can solve for it as Y is equal to g X at a point where

the partial derivative of f with respect to Y does not vanish. This is the implicit function

theorem. So, that is a condition I have put here alright.

So, what it says is, let me write that. Then, there exists an open neighborhood, U lambda or

let me call it as V lambda of lambda in C and a holomorphic map g from V lambda to C such

that, following things happen the first thing is g solves f of X comma Y for all X in V lambda.

So, let me write that g Y is equal to g X solves f of X comma Y equal to 0 for all X in V

lambda, that is, for every lambda prime in V lambda f of lambda prime comma g lambda

prime is 0 this is the. So, this is the implicit equation is solved by an explicit equation in a

neighborhood of the variable, in a neighborhood of a point where the partial derivative with

respect to the explicit dependent variable is non-zero.

The second condition is of course, what will happen is that the g is holomorphic, so, what is

its derivative? The derivative can be d g by d X is actually minus dou f by dou X divided by

dou f by dou Y this is this is derivative in V lambda. So, this is the identity that you get the

you take the total derivative of this if you take the total derivative of this and think treat Y as

a function of X then you will automatically get this, but then to bring it to this form you must



have that the derivative dou f by dou Y is non-zero. So, you must you must remember that

small f is a polynomial. So, dou f by dou Y is also polynomial, it’s always continuous. And if

continuous function doesn’t vanish at a point you can always choose a neighborhood where

it’s never going to vanish. So, that is what allows me to divide by dou f by dou Y.

And, the third thing is most important z, the 0 set of f of X comma Y locally at the point

lambda comma mu looks like the graph of g. So, in other words, the first point is for every

lambda prime V lambda we have f of lambda prime comma g lambda prime is 0, that is one

thing; the other thing is because lambda if you take a point lambda prime comma mu prime in

the 0 set of f X, Y then it must happen that mu prime is actually g of lambda prime. That is

what  it  says.  So,  in  other  words  if  I  take;  let  me draw a  diagram to  explain  this  more

graphically.

So, you see you have this is C 2, C cross C and what is happening is that you have this 0

setup  f  of  X comma Y and then you are  choosing a  point  lambda comma mu with  the

property that the partial derivative of small f with respect to Y at that point does not vanish;

then what happens is that you are able to, then you project down here, you get this point

lambda and then you are able to find a V lambda; V lambda is  a open neighborhood of

lambda and on V lambda there is a holomorphic map, if you draw the graph of this map,

namely, you take the set of all lambda prime comma g lambda prime here then that is exactly

this graph. So, you know if I just extend it like this and if I extend it like this then this guy is

exactly graph of g.

So, in particular it means that you know if you take any lambda prime comma mu prime such

that lambda prime is in V lambda the mu prime has to be g of lambda prime. So, it is locally

graph of that function and if you grant. So, I am not going to giving a proof of this because

this is quite standard you can look it up and, but the point is that I want to say that once you

have the implicit function theorem, the immediate corollary is that if you give me if you look

at the 0 set of a polynomial then locally already it is a graph of a holomorphic function.

Therefore,  locally  already a Riemann surface because I  already explain to you how very

easily the graph of a holomorphic function is a Riemann surface. So, what is the upshot of

this result is the movement of polynomial satisfies this condition. Then, in a neighborhood of

that point it is a Riemann surface. You can make neighborhood of that point on the 0 locus

Riemann surface.



The question is what happens if it does not satisfy this condition? Then it might satisfy the

same condition, similar condition with respect to the first variable. And then you can use

projection out of second variable and you know instead of writing Y as a function of X, you

will able to write X as a function of Y, if dou f by dou X at a given point is non-zero. So, all

these put together the point is that if you have a polynomial which is so called nonsingular

namely which satisfy the condition that one of the partial derivatives of the polynomial never

vanishes at each point, then it is very clear that the graph, the set of 0 of that polynomial is

naturally locally a Riemann surface. The only thing that one has to check there is globally

Riemann surface is to check that all these local Riemann surface structure agree, you will

have  to  just  check that  all  these  charts  that  you got  by  the  graph construction  there  all

compatible once you check that then it is very clear that the 0 set will be Riemann surface.

So, and of course, this 0 set being it is a close subset of C 2, so, its automatically housed off

and second countable. Any sub space of housed off space and house and any subspace of a

second countable space is a second countable. So, those conditions are automatic of course,

you might want it  to be connected and the fact is that you will.  So,  if you put this  non

singularity condition then you are all then automatically mean it is connected. In fact, more

generally you could have assume or rather to be on the safer side one sufficient condition you

can put on f then it is irreducible as a polynomial. So, that is a technicality that one need not

worry about  at  this  stage,  but  at  the  worst  if  you take  a  polynomial  who is  first  partial

derivative  simultaneously  do  not  vanish  at  any  given  point  then  it  becomes  a  Riemann

surface.
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So, let me write the rest of it. So, if dou f by dou X at lambda comma mu is not equal to 0

then there exists an open neighborhood, W mu of mu in C and a holomorphic function h from

W mu to C such that Z f of f X comma Y is locally for that is for X in for Y in w mu the

graph of h. So, this is condition on the other variable.

So, you know you have to rewrite. I am not writing everything down I am just stating the case

when the first partial with respect to the first variable is non-zero, that was the case when the

first partial with respect to the second variable is not 0. Then, you are then you can write the

second variable as the function of first variable in this case you will be able to write the first

function, the first variable X as a function of second variable. So, X will be h of Y. So, what

is the upshot of this? Upshot this is that the if you give me a polynomial which satisfy one of

these 2 conditions at  each point  of it  0  locus,  then there are  Riemann surface structures

locally which come out of graph construction.
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So, let me write that now. Thus, if a polynomial f X Y is such that there is no point, there is

no solution to the system f of X comma Y equal to 0, dou f by dou X at X comma Y is equal

to 0, dou f by dou Y at X comma Y is equal to 0, in which case we say f is non singular, then

the 0 set of f of X comma Y is locally a Riemann surface.

So,  the  upshot  of  the  thing  is  that  the  0  set  of  this  polynomial  which  is  non  singular

polynomial; non singularity means that you should not able to find the point 0 locus at which

both first partial derivatives vanish, then f is such a polynomial is called non singular and

then the 0 locus is locally Riemann surface. Now, I only need to verify that. To verify a

Riemann surface I have to only tell you that all this Riemann surface structure locally they all

glue together, I  mean they all  agree;  namely, I  just  what  do I  mean by saying it  locally

Riemann surface locally I am getting charts which are given by the projection of because

locally  these  are  graphs  of  holomorphic  functions  and then  I  take  projections  on  to  the

independent variable then I get the charts.

So, to show that all these together make this into a Riemann surface I will have to only check

that they charts are compatible. So, if I do that then for a non singular polynomial, I will have

that it is automatically a Riemann surface. Then you know what I am going to do, I am going

to check that this particular polynomial that I having this cubic satisfy and this polynomial

here. I am going to show that this satisfies a non singularly hypothesis and therefore, that will

tell you that this E 2 tau is in fact, a Riemann surface alright.



So, and we will also the way in which we have done it. We will also see this map is naturally

holomorphic, because what will actually happen is, that locally the coordinate chart I just

given by projection and the first projection is going to be P which is holomorphic, the second

projection  is  going  to  be  P  prime  which  is  holomorphic;  therefore,  this  map  becomes

holomorphic, is a holomorphic bijective map. So, it is a holomorphic isomorphism and we

are done.
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So, let me go ahead and try to show you why all this Riemann surface structure locally they

all give same Riemann surface structure on globally. So, we verify that all these Riemann

surface of structures glue, that is, agree, that is, the charts given by the graph construction the

local charts given by the graph construction are mutually compatible. So, basically there are 3

cases; the first case is when the local Riemann surface structures comes from both projections

are on the first variable. 

Basically,  I  will  have  to  take  2  local  Riemann  surface  structures  and  show  that  at  the

intersection the charts the transition function are holomorphic that is what I have to show. So,

it might happen that the Riemann surface structure on these 2 overlapping pieces open pieces

of  the  0 locus  they  both come from first  projection or  they  both come from the  second

projection or one may come from the first projection and the other may come this from the

second projection.
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So, there are 3 cases. So, let me draw diagram for each of this. So, you know, this is first case

namely. So, here this is my 0 locus and the well basically I have point here let me call this is

P 1, oh god, no. Let me call this as something let me call this is as t 1, let me call this is as t 2

and t 1 is lambda 1 comma mu 1 and dou f by dou Y at t 1 not 0. So, what happens is that you

find a neighborhood lambda of lambda 1 in C which is given by V sub lambda 1 and you find

a function g 1, holomorphic function from g 1 to C such that the graph, Z of f X comma Y is

equal to graph of g 1 for X in V sub lambda 1. So, in this case, basically I draw a diagram it is

going to look like this.

So, this is my V 1, V 3 sub lambda 1 and then similarly let me assume that, this portion that I

have drawn here, from here to here the Z of X comma Y is the graph of g 1 and then you also

have the same conditions for t 2. So, dou f, t 2 is again lambda 2 comma mu 2 and dou f by

dou Y at t 2 is non-zero; then you get and open neighborhood V sub lambda 2 of lambda 2

and a function g 2, holomorphic function g 2, defined on that with values in C such that Z of f

of X comma Y is actually graph of g 2 for X in V lambda 2. 

So, what happens is that, this V lambda 2, so this is V lambda 1 and well V lambda 2 could be

something like this. So, let me not write here. So, here is V lambda 2. This lambda 2, this

projection is lambda 2. So, from here to here this is V sub lambda 2 alright and so what are

the, how do I check that these 2 charts are compatible. So, you see basically I have this open

set which is the image of V lambda 1 and then I have this open set which is the image of the



holomorphic of V lambda 2 under the holomorphic map and this is the intersection. So, this

intersection I can call this intersecting set as W 12 rather let me call it as U 12 and what is the

situation is I have to look at transaction function. So, I have from U 12 on the one hand I

have. So, there something that I have to correct here, see the when I write a chart I the first

member is an open set on the Riemann topological space on which I want to get a complex

coordinate, the second one should be defined on that. So, actually this should not be phi sub

g, this should actually be P 1. So, please correct this should be P 1. So, that is a global chart.

So, you see, you know, I have P 1, that is one P 1 which goes from U 12 is thought of a sitting

inside well you know if I call this whole thing as U 1 and if I call this whole open set as U 2.

So, this is if I think of it sitting inside U 1, then my and U 1 is actually graph of g 1 and this is

from U 1, it will go to V sub lambda 1 this is this is just P 1 and this is this is a holomorphic

isomerism, homeomorphism and so, I will go into P 1 of U 12. So, this is which sits inside

this. So, it will be this region here I mean it will be this open set and you also have the

coordinate coming from U 2 via g 2. So, you have also U 2 which is graph of g 2 and you

have well, again it is P 1, so, this is P 1 which is again an isomorphism with V sub lambda 2.

So, this will go to t 1 of U 12 again. Now, you know if I follow this up, the transition function

is the composition of these 2. If I do that I actually I get the identity map see because if I start

with a lambda; transition function, what is the transition function? The transition function

will be just lambda going to from here to here you will go to lambda comma g 1 of lambda,

but then you see and then if you project it again the first variable I simply get lambda. So,

you can see this is transmission function is just identity map. It is just the identity map on this

intersection and the fact these 2 open set V lambda 1, V lambda 2 intersect is because U 1 and

U 2  intersection  and  I  am actually  trying  to  check  the  compatibility  on  U 12  which  is

intersection of U 1 and U 2.

So, the transition function is just identity. It is just identity map, hence holomorphic. So, this

settles the case that the charts,  the local  charts  that you get  compatibility  when both are

graphs of function of first variable. Yes, you can I would not be writing it down, but if I do it

with the assumption that both partial derivatives with respect to X are not vanishing, then I

will have to take projection with respect to second variable. So, effectively the argument is

you just take a mirror image of this. You take a mirror image about the diagonal line, that is

kind of diagram you will get and essentially in that case also you will see that the transition

function will continued to be identity, so, it is holomorphic.



So, the only case that I will have to worry about is when one of the partial derivative with

respect to X and non vanishing and the other is with respect to Y is non vanishing and in that

case you will see that it will be one of those functions whose graph is being considered. So, in

that case also it will also be holomorphic. Let me just write that down. Similarly, we can

argue for the case when dou f by dou X at lambda comma mu is non-zero and dou f by dou X

at yeah at t 1; let me use t 1, t 2 and t 1 is not 0 and t 2 is not 0.

So, if similarly you can argue for other case; in which case also the transition function turns

out to be identity. So, it is holomorphic. So, the only case that is left is that one of this is with

respect to X and the other is with respect to Y which also pretty easy. I’ll write it down.
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We are left with a compatibility checking for dou f by dou X, let me write dou f by dou Y at t

1 is not 0 and dou f by dou X at t 2 is not 0. So, this is the only case you have to check; that

means, the charts are coming from different projection on different variables. So, that case if I

draw the same kind of diagram what I will get you can see it pretty easy. So, you see this is

my 0 set of f of X comma Y and so I have this. So, here is my t 1 and here is, this is my, I get

this my V sub lambda 1 and then and this portion is you U 1 and U 1 is just the graph of g 1,

while g 1 has been defined it is a holomorphic map from V lambda 1 to C and then you also

have t 2 here, but with respect to t 2 it is only the first variable partial derivative which is

non-zero.



So,  you  have  basically  you  know  something  like  this,  I  get  open  neighborhood  of  this

projection of t 2 which is mu 2 and I get it W sub mu 2 which is open neighborhood of mu 2,

this is of course, open neighborhood of lambda 2 and this portion is U 2 and U 2 is actually

the graph of h 2, where h 2 is from W mu 2 to C. This is lambda 1. So, then you see if I look

at this piece which is U12 and try to look at the transition function, it is pretty easy.

So, what you will get is that if I write the same kind of diagram as here, so, U 12 is sitting

inside U 1 and U 1 is from and then you have first projection of U 1 into V sub lambda 1.

This is holomorphic isomorphism and under this projection you are looking at t 1 of U 12

which is going to be a open sub set of V lambda 1 and this also of course, homeomorphic and

then from U 12, you also have U 12 is also sitting inside U 2 and from U 2 it is P 2, it is a

second projection because the coordinate chart is in this direction.

So, it is t 2 and this goes to W sub mu 2 and well, this second projection will give me P this

was P 2. So, it is P 2 of U 12 which is an open sub set of W mu 2 and now if I look at the

transition function, the transition function is well if I start with a lambda it will go to lambda

comma g 1 of lambda and then if I take the second projection it will go on to g 1 of lambda,

the composite is therefore, lambda going to g 1 lambda which is holomorphic by definition

therefore, transition function is holomorphic. So, you are done with this case also. So, which

is holomorphic. So, this implies that the moment you take a polynomial f X by which is non

singular then the 0 set of that polynomial is automatically a Riemann surface.
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So, let me write that down thus if f of X comma Y is non singular its 0 set is Z f X Y the sub

set of C 2 is naturally a Riemann surface. Now, I will verify I just want to say that this E 2 tau

I  want  to  say  is  actually  a  Riemann  surface.  The  only  thing  I  have  to  verify  that  this

polynomial capital F 2 sub tau is non singular.

So, to ensure that F 2 tau sorry E 2 tau which is just the 0 set of F 2 tau is a Riemann surface,

we need to  only check that  capital  F  2 sub tau  is  non singular. So,  that  is  there are  no

common, there are no solutions to the system F 2 tau of X comma Y is equal to 0, dou F 2 tau

by dou X is equal to 0, dou F 2 tau by dou Y is equal to 0. So, let us write this out, it is pretty

easy and you will see that we will be using again. The fact that E 1, E 2, E 3 are distinct E 1

tau, E 2 tau and E 3 tau which are the zeroes of the derivative to the P function you know

they are the 3 distinct zeros of P function and their distinctness is what is going to give you

the non singularity in this case, you will see we will see that.

So, let’s do the computation; what will get is basically, I will get, let lambda comma mu be a

solution and we let us assume there is a solution get a contradiction. Let lambda comma mu

be a solution and we arrive at a contradiction. So, what it will mean is lambda comma mu

satisfy that equations, so, I will get 4 lambda cube minus g 2 tau, lambda minus g 3 tau minus

mu square 0, this is the first equation. The second equation is I differentiate dou F 2 tau by

dou X and this is by differentiate it with respect to X, I am going to get 12 X squared minus g

2 tau, that is all.

Then if, so this equal to 0 at lambda comma mu will tell me that 12 lambda squared minus g

2 tau is 0 and then dou F 2 tau by dou Y is 0 for that condition I differentiate partial with

respect to Y and I end up with my minus 2 Y. So, the condition I will get is minus 2 mu is 0

alright and this already tells you that mu is 0. The first thing I want to tell you is that you see

if; let me go back to the first equation put mu equal to 0, I will get 4 lambda cube minus g 2

tau lambda minus g 3 tau is 0. So, I will get this and then I will add this equation also 12

lambda square is equal to g 2 tau. So, I will get these 3 equations and I am just saying that

these 3 equations will give us the contradiction.

See, first thing I want to tell is that you know the. So, as I told you the point come from on

the fact that the when you factorize the right side of the equation into 3 linear factors the

zeros are E 1 tau E 2 tau E 3 tau. They are the values of P tau at half tau by 2 and 1 plus tau

by 2, the 3 fundamental zeros of derivatives of the P function. They are distinctive we have



already seen that. So, if you use that factorization you will, actually what happens is that the 4

lambda cube minus g 2 tau lambda minus g 3 tau, this factorizes as 4 times lambda minus E 1

tau into lambda minus E 2 tau into lambda minus E 3 tau and then if you now calculate so

called discriminant of this cubic, discriminant of a polynomial equation of one variable is just

the square of the difference of the distinct of it is roots. Square of the difference of it is roots

taken in some order and it is an important tool in algebra because you can check that the

polynomial  has  distinct  roots  namely  there  it  is  so  called  separable  by  checking  that

discriminant is non-zero.

So, you if you calculate the discriminant in this case, this is the little bit of algebra which you

should be able to do, then you will find that it is not a difficult exercise. You can do it.
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Then you will find that, if I take discriminant; discriminant is just product over i less than j, e

i  tau minus e j  tau,  these are  the square of the differences.  And you can check that this

discriminant you compute it, you can see that is discriminant when you compute it, it turns

out to be let me write it tell you what it is, it is 16 times g 3 tau. I think squared minus, no

cube minus 27 g 2 tau, the whole square. So, this is the discriminant and the discriminant is

not equal to 0. So, the discriminant is not 0 because all the e i’s are distinct. So, you see you

know already mu is 0, if lambda is 0, what will tell you, it will tell you g 2 and g 3 are 0. If g

2 and g 3 are 0 then the discriminant is 0. That is the contradiction. So, the first thing you can

tell, you can conclude from this is lambda is not 0. So, you see lambda is not equal to 0.



So, once lambda is not 0 it is also clear that g 2 is not 0 and g 3 is also not 0. So, which

implies that g 2 tau is not 0, g 3 tau is not 0; these 2 are not 0 and then what I can do is

literally, I can just eliminate lambda from this equations and you know I have 12 lambda

squared is g 2 tau and I have you know, I eliminate lambda from these 2 and believe it or not

you eliminate lambda from these 2, what you will get is, g 3 cube tau minus 27 g 2 square tau

equal to 0. It will give, if you eliminate lambda you will exactly get determinant is 0 which is

not which is not true that that is contradiction.

So, eliminating, basically I take a square root of lambda here and equated to a cube root of

lambda from here and then I raise both sides to the power 6 and that’s it. So, eliminating

lambda gives 27, I mean you will get g 3 cube tau, wait a minute I think it is g 2 cube and g 3

square, I should be careful. So, this is g 2 cube and this is g 3 square. Let me check that, yeah

g 2 cubed and this is g 3 squared please correct it. So, eliminating will give you g 3 square

minus 27 g 2 cube minus 27 g 3 square tau is 0, a contradiction. So, you see the it is the

distinctness of the zeroes of the phi, the derivative of the phi function that actually gives you

the fact that the corresponding polynomial that defines the affine algebraic elliptic curve is a

non singular polynomial therefore, it become a Riemann surface.

So, the moral of the story is that this E 2 tau is elliptic curve is indeed a Riemann surface,

naturally, by the construction that we have just seen using the graph construction the implicit

function theorem. So, E 2 tau is a Riemann surface and the bijective continuous map that I

wrote down namely phi 2 it is from the torus minus special point which is the image of lattice

to the E 2 tau is basically this map is z going to, it is just z. So, I put box here to show that

this is equivalence class, because the torus is set of equivalence class and this goes to P tau of

z, P prime tau z, this map is actually holomorphic because if you project on the first variable

it  gives a holomorphic map P sub tau and if  you project on second variable you get the

holomorphic map P prime sub tau, is holomorphic. Hence, bi holomorphic.

So, you because essentially how do I check that this is holomorphic? The method is that I will

have to take locally an open set which has a chart. So, locally it will be a graph and then for a

graph  the  coordinate  map  is  just  projection  onto  either  the  first  variable  or  the  second

variable. So, I will be essentially be locally getting t tau or P prime tau depending on whether

I  am  projecting  on  the  first  variable  or  on  the  second  variable;  therefore,  they  are

holomorphic. Therefore, this map is holomorphic map and that shows you that the punctuate

torus is naturally isomorphic as Riemann surface to the affine elliptic algebraic curve, defined



by  the  polynomial  equation  that  comes  out  of  the  differential  equation  satisfied  by  the

Weierstrass P function. So, I’ll stop here. The next lecture, I am going to tell how you can

extend this map from the torus to one point compactification of this  affine elliptic curve

which will live in projective 2 space. So, I stop here.


