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Invariant

So, let me recall several things to continue the discussion.

(Refer Slide Time: 00:38)

See we have, we have the upper half plane, the set of all complex numbers such that or

let me use tau such that imaginary part of tau is positive. And then we know that as we

are we are looking at  this  quotient  U to U mod PSL 2 z.  And this  quotient  has the

fallowing meaning tau going to the equivalence class of tau model of the action of this

group PSL 2 z which is the unimodular group namely, tau going to it is orbit. This is the

just the set of orbits of the group unimodular group PSL 2 z on the upper half plane. And

it this is just tau going to it is orbit, but then we think of it also as the isomorphism class

of the complex torus defined by tau. And our aim is we, want to show that we want to

show  that  this  as  a  Riemann  surface  is  biholomorphic  to  see,  that  is  isomorphic

holomorphically isomorphic to the complex plane. 

So, what we did was we have constructed a function J. The so called elliptic modular

function which value which is a holomorphic function with values in c. And the way we



got J was we got first function J tilde which was defined on the upper half plane which is

a which was a holomorphic function defined on the upper half plane. And we proved that

J tilde is PSL 2 z invariant. And therefore it goes down to a holomorphic map J. 

So,  if  you if  you recall  for  a  tau,  we given tau,  using  the  Weierstrass  phi  function

associated to tau. We defined the partially modular function, the function that is modular

not under the whole unimodular group, but only under the congruence mod 2 subgroup,

which we called as lambda of tau. And this was a e 3 of tau minus e 2 of tau by e 1 of tau

minus e 2 of tau. Where e 1, e 2, e 3 are related to the Weierstrass phi. These are the

these are the zeroes of a the derivative of the Weierstrass phi function.

And then, using lambda we defined the function J tilde. J tilde was the function that was

invariant under the whole unimodular group. So this lambda was invariant only under the

congruence  mod  2  subgroup.  But,  using  this  we  cooked  up  J  tilde  and  J  tilde  was

invariant under whole unimodular group. And what does the definition J tilde it was as

follows yeah.

So, let me write that here. So, before I write that on let me say, lambda is holomorphic on

the upper half plane. Lambda never takes the values 0 and 1.
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So, lambda holomorphic on the upper half plane, lambda not equal to 0, 1 on the upper

half plane.



So, then we defined J tilde of tau to be, well this has given by a formula. So, let me write

it out. It was, well it is, 4 by 27, 4 by 27 into 1 minus lambda of tau plus lambda square

tau the whole cube. Was it whole cube or was it whole square. So, let me check for a

minute. Yes it is whole cube divided by 1 minus by lambda squared tau into 1 minus

lambda tau the whole square. 

This is how define the function J tilde of tau. And since lambda is never 0 or 1 on U, it

turned out that, so this denominator is never going to vanish and this is a quotient of a 2

holomorphic functions on u with the denominator never vanishing. Therefore this is a

holomorphic function on U, which is holomorphic on U.

(Refer Slide Time: 06:00)

And we proved in the last lecture that this is this function J tilde was PSL 2 z invariant

ok.
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So, the moral of the story is that we have gotten hold of this J tilde. We need to next say

that this J tilde is. So, of course, J tilde goes down to a map J because any map from U

which is constant on orbits will go down to a map to the set of orb[its] from the set of

orbits ok.

So,  J  tilde  goes  down  to  map  J.  And  of  course,  I  want  you  to  realize  that  J  is

holomorphic. Because you see we have already proved that U mod PSL 2 z which is, it is

already a Riemann surface, such that the map from U to U mod PSL 2 z is a holomorphic

map. And therefore, you see that the and if you and if you look at it carefully ok;

If you look at that construction carefully, you can show that J is also holomorphic. So, J

is J is holomorphic. So in fact, you see J is holomorphic for the natural Riemann surface

structure on U mod PSL 2 z given, making, that makes the quotient map. Well let me call

this as pi, let me call this map as pi, that is a quotient map holomorphic.

So, the there is a natural. We have already proved this. On U mod PSL 2 z there is a

natural structure of Riemann surface. And the structure of Riemann surface is such that if

you consider U also as a Riemann surface, then this map is a holomorphic map. And so, J

becomes a holomorphic function right. And our aim is to prove that J is an isomorphism

alright. So, there are 2 steps that we have to I mean we have to do it do this in.



The first step is to show that J is surjective. Then the second one is to show the J is

injective. The easy part is a surjectivity. The hard part is a injectivity. The injectivity will

require us to again go back and look at the mapping properties of a J which depend on

the mapping properties of lambda which we have already know. Then there is another

thing that will have to study, we will also have to study, the mapping properties of PSL 2

z. In the sense that you will have to find it fundamental region for PSL 2 z in the upper

half plane ok.

So, the surjective department is pretty easy. So, let me write that down. So, let me write

this here, well.
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Theorem J is surjective. J is surjective. So, you see lambda; lambda does not take the

value 0 and 1. But J takes all values. And you know, to show that J is surjective, it is

enough to show the J tilde is surjective, alright.

So, because, this is already surjection. This is a surjective map. It just every point going

to it is orbit right. So, proof, it is enough to show that J tilde is surjective. So, I will have

to show that J tilde takes every complex value ok.

So, what do I do? I literally look at the formula of J tilde and literally solve for, solve for

a value.
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So suppose, mu is a complex number. Suppose mu is a complex number. We can try to

solve for tau in the upper half plane. Or let me say tau naught in the upper half plane

such that, well J tilde of tau naught is mu.

We can do we can try to solve for this. So, let see what it means. So, you see. So, you

will have well, if I write it down 4 by 27 times 1 minus lambda tau naught plus lambda

squared tau naught the whole cube divided by lambda square tau naught into 1 minus

lambda tau naught the whole squared. This is, you want this to be equal to mu naught.

(Refer Slide Time: 12:14)



Now, if I cross multiply it out and write it out, what I will get is I will get 4 times 1

minus lambda tau naught plus lambda squared tau naught whole cube is equal to 27 mu

naught lambda squared tau naught times 1 minus lambda tau naught the whole squared.

This is what I will get, this what I will get.

Now, you think of, you first of all think of lambda tau naught as a variable. Think of

lambda tau not as a variable. Then you see, if I think of lambda tau naught as a variable,

let us call it z. Then what I have here is a polynomial equation in z. And it is a non trivial

polynomial equation because on the left on the left side the highest power of the variable

is 2 into 3, 6 on the right and it is coefficient is not 0.

So,  and the right  side you have lesser  powers.  And now you know the fundamental

theorem of algebra guarantees that you give me a polynomial with complex coefficients

in one variable, there is always a root. So therefore, the moral of story is, I can always

find a certain, I can always find a certain value of a lambda of tau naught which a when

which when I plug into this equation will satisfy this equation ok.
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So, let me write that down, by the fundamental theorem of algebra, of algebra namely,

the fact that the complex number are algebraically closed. Which is saying that every non

trivial  complex  polynomial  with  polynomial  in  1  variable  with  complex  coefficients

certainly has a 0, which is the complex number. We can find, we may find lambda naught



belonging to C such that that lambda tau naught is equal to lambda naught satisfies this

equation. May be I will label this equation as star ok.

So,  I  can certainly  find here lambda naught  such that  lambda tau when I  instead  of

lambda tau naught if I put lambda naught here, then it will satisfy this equation. Namely,

it will be it will be a solution to this polynomial equation aright. Now you see, now the

aim is I want to find a tau naught such that therefore, you see I have to find a tau naught

such that lambda tau naught is lambda naught alright.

So, you see. So, what I have done, in order to show that J tilde takes a certain value mu

naught, because of the formula for J tilde and fundamental theorem of algebra I have

reduced it to problem of trying to find solve for lambda taking a particular value. Now

you we make use of fallowing fact namely the mapping properties of lambda that you see

lambda takes every complex value on the upper half plane except for 0 and 1 ok.
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So, since lambda takes every complex value U in U well in fact, I should say lambda

takes every complex value in U except 0 and 1, 0 and 1. We have already done this. I

need to therefore only check that you see that lambda naught is not 0 or 1 ok.

So, lambda takes every complex value in c x of 0. So, yeah that is right. So the only thing

I will have to check is that, I will have to check that this lambda naught is not 0 or 1. So,

we only need to check, we only need to check lambda naught cannot be 0 or 1. But you



see if  I put lambda naught equal to 0 or lambda naught equal to 1, you will  get the

contradiction from star. Because after all  instead of lambda tau naught I have to put

lambda naught and if I put lambda naught as 0, I if I put lambda naught as 0, I will get 4

equal to 27, 4 equal to 0 which is observed. And if I have put lambda naught equal to 1

then again I will get 4 equal to 0 ok.

So, I will get 4 equal to 0 it any case which is observed. Therefore, it cannot happen. So,

lambda naught is not 0 or 1 and therefore, we are done. But lambda naught is not equal

to  0,  1  due  to  star.  So,  we have  done  alright.  Therefore,  you  see  the  function  J  is

surjective. So, this is a pretty easy thing pretty easy given the fact that you know the

mapping properties on lambda, aright. 

Now, the, for the rest of the discussion what we will need to do is we need to show that J

is injective.
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So, for this we will have to again get what is what is called a fundamental region for j 

and so that will again involve studying maps. So, let me begin that. So you see.

So, what I am going to do now is, I am going to draw big diagram here and yeah. So, let

me draw it here yes.
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So, this is 1. This is minus 1. This is the vertical line through 1. This is the vertical line

through minus 1. And then I have this I have this point which is half and I have this

circle. So, this is 1. So, I will draw something here see here.

So, this is 1 plus i. Well this is i. And this is minus 1 plus i well. So, I am going to, So, I

will, I will draw the circle centered at half the radius half which we have already seen

while studying the mapping place of lambda and I will draw similar one here centered at

minus half again radius half. So, this another circle and that what I am going to do is I

am going to now draw circles centered at 0, 1 and minus 1, which are radius 1 alright.

So, I am going to draw these circles well here is 1. So, here is 1. Here is a second 1. So,

this centered at 0, radius 1. This is one centered at 1 radius 1 which will look like this.

There is one centre at minus 1 radius 1 which will look like this. And well I am also

going to draw couple of lines. Well I am going to draw this vertical line like this that

goes through this and passes through the point half.  Another vertical  line that passes

through minus half right.

So, the first thing that I want to tell you is just to recall what I use here. See this you take

the region that is bounded by this the; you know the positive imaginary axis. And this

semicircle  and then this  ray namely  you take  this  region right.  And that  region was

suppose to be mapped by the; that region was proved to be mapped by lambda on to the

upper half plane. And this and the corresponding region here which is a reflection of that



region by the imaginary axis namely the region bounded by this. And this, namely this

region, this region was mapped by lambda on to the lower half plane. And they you we

were able to extend the mapping lambda to continuous 1 map to the boundary.

So, that you know the real line is also covered. And therefore, put together; both put

together you see we proved that lambda takes all values on the complex plane except for

the value 0 and 1. Because lambda went to 1, as you go lambda takes a value 1 at 0 and it

takes a value infinity at 1 ok.

So, you will have to consider the point it infinity if you want the value 1 right. And of

course, you know this much was enough to study because lambda was having period 2.

So, this whole thing is you know spread over an x coordinate of length 2. So, it is enough

to study lambda here ok.

So, that something that  we already done.  Now you see this  function J that  we have

cooked up is slightly more complicated. So, let me tell you that for J, what is going to

happen is that the fundamental I mean the region that is going to that J is going to map

on to the upper half plane will be this piece bounded by this. 

So, this piece will be mapped by J outer the upper half plane and it is reflection delta

prime is going to be mapped by J on to the lower half plane. And so, that is what we will

have to show first. So, how do we do this? So, we do this by considering several Mobius

transformations.  See  if  you  remember;  how did  we  show that  J  tilde  was  PSL 2  z

invariant because we showed that J tilde was invariant under yes. Well bunch of Mobius

transformations in fact 6 of them including identity which gave as a complete set of

complete set of unimodular elements in z mod 2 that is mod 2. 

So, that is how we verified it. And these in fact, in fact studying lambda on these helped

us to understand what happens if an arbitrary unimodular element acts on lambda. So, let

me write out those let me write recall those transformations.
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So, they are as follows. Here they are may be the numbering is, well, I be consistent with

what I wrote earlier. So, this is the identity map the identity Mobius transformation. Then

you have A 2 of tau which is a translation by 1. Then you have A 3 of tau which is a

minus 1 by tau. Then you have A 4 of tau which is minus 1 by tau plus 1. A 5 of tau is tau

by tau plus 1. And A 6 of tau use well 1 by 1 minus tau. So, these were the 6 Mobius

transformations which if you if you consider them as elements of PSL 2 z and read them

mod 2 then you will get all the 6 elements of PSL 2 z mod 2.

So, and in fact, lambda when you apply this to lambda; each of these to lambda, then

lambda satisfies a certain functional equation. That is something that we proved and that

was used to show that that was used in the proof of showing the J tilde is a you know is

not effected by any element of PSL 2 z, PSL 2 z invariant right. 

So, you see now what I want to tell you is. So, let me, let me write this down. So, I will

draw some, I will draw some arrows and I will draw some, I will do some shading to tell

you what happens. So, this delta is. So, what I want to say is, see if I call this thing as

delta, then this delta is of course, well this is, that is A 1 of delta because after all A 1 is

identity alright. And then this one, this see this region here is A 2 inverse of delta which

is pretty obvious which pretty obvious because see A 2 is translation by 1, A 2 inverse is

translation by minus 1. 



So, this region is got by this region just by translating by minus 1. So, it is a 2 inverse of

delta. So, I will shade that also. And right then, the nice thing is, this region here, this

region here turns out to be A 3 of delta. So, this region here is A 3 of delta and mind you

this is well A 3 is a same as A 3 inverse A 3 is A 3 inverse alright.
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So, well you can call this as A 3 delta or you can also k call it as A 3 inverse delta alright.

But I am trying to write everything in terms of inverse. So, let me call this A 3 inverse

delta  right.  And that  is  this  region  right.  Then,  this  region  here,  this  region  here  is

translate of A 3 by A 2. Literally translate by translation by 1 ok.

So, and this turns out to be A 6. It this turns out to be A 4 delta which is same as A 6, A 6

inverse of delta.  So, that is right.  So,  this  is  A 6 inverse of delta  right.  And what is

happening here is well and let me write this from certain results here. 

So, you apply A 3 inverse, then you apply translation by 1 which is A 2 what you get is A

6 inverse and that is a same as A 4. So, this is something that you can check. And then

this guy here I mean this we this piece here, this piece here turns out to be this is A 4

inverse delta that is this piece.

This is A 4 inverse delta. And of course, you know A 4 inverse delta is A 6 delta because

A 6 inverse is A 4. And then there is this piece and this is A 5 inverse delta which is this

piece. And A 5 inverse turns out to be of course it is A 2 inverse A 6.
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Because you see it  is  just  A 4 inverse is  A 6 and then this  is  applying A 2 inverse

translating by minus 1 alright.

This is also the same as A 2 inverse A 6 is A 4 inverse alright. So, the moral of the story

is that, this is how the regions are mapped into each other by A 1 inverse of course, A 1

inverse is just A 1, A 2 inverse, A 3 inverse, A 4 inverse, A 5 inverse, A 6 inverse. Of

course, you can renumber them if you want a certain order. But that is not the point. The

point is they are all mapped by holomorphically on to one another with the boundaries.

And if you want to also I am going; I will, let me explain a couple of these how do you

how do you check this for a couple of regions and then you can do it on your own for all

the region alright.

So, but of course, when we say we should also, because these are all conformal maps,

you will have to give orientations to the boundary. So let me do that. So, the orientations

are as follows. So, if I take, I will use a triple arrow orientation for, I will use single

arrows, double arrows and triple arrows. So, here is and this is not to be confused with

on any of these.

So, let me just put it here and put that triangle here and similarly a triangle here. So, here

is a triple arrow. And then use the single arrow and there is a double arrow and what do

the;  what  do  they  correspond  to.  Well  of  course,  when  I  go  to  here  to  here,  the



orientations are not going to change. So, you see this is continue going to continue to be

a triple arrow.

This is going continue to be a double arrow and this is this is going to continue like this

right. So this going to continue at this. And the question is; how does it go from here to

here. So, this goes to this. So, this goes to this and this goes to this. So, this arc goes to

this arc from infinity to i, goes from 0 to i. And the double arrow use this one.

So, this goes to this right. And in the same way, you can draw orientations for all of

them. So, let me draw it for this one. So, here. So, this arc, it will go to, this goes to this.

And well the other one is this. And let me draw something here for this one. So, here it is

this. And it is these 3 and well it is these 2.

So, this is how the regions are. So, there of course, you know this is just translation. So,

you know that from this I can put a 3 arrow heads here and I can put double arrow head

here and of course, an arrow head like this. So, this is how these regions are mapped and

well the.

So, you see, now you see if you look at.  So, what I wanted now tell  you is that the

unshaded region is mapped also to. So, you see there are 6 shaded regions, where a 3

here and 3 here. And all these 6 shaded regions are mapped by the inverses of all these

guys.  The region delta  is  the;  is  mapped to all  the  6 regions  including itself  by the

inverses of all these maps alright. And the fact is that if you take the region delta prime

that will be a map to the others to the 6 unshaded regions by all these maps themselves

ok.

That is the claim. And what is the result of this (Refer Time: 34:20) claim. The result of

this claim is, you see you. So, in particular if you take delta and delta prime, then using

these 6 elements or their inverses, I can map the regions composing of delta and delta

prime to all the to this region as well as this region. And then you see that is mapped by

lambda on to the whole complex plane.

So, the upshot of this is that you can see that this delta will be mapped on to half plane

by J tilde. So, that is the point alright. So, let me explain how to get this, how to get this

things. So, let me explain a couple of them alright. So, let me look at let us look at this

guy.
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 So, to find example, to find image of delta under A 3. Suppose, I suppose I will work

this out and you can do it for the others the others fine.

So, I am just looking at the images under Mobius transformations and you know Mobius

transformations will preserve boundaries alright. Therefore, what I will have to do is,

check  what  happens  to  each  of  the  boundary  curves.  So,  in  this  case  if  I  take  this

boundary curve that is parameterized by I, it  is parameterized by i times t where t is

greater than or equal to 1 ok.

So, if you take if you take i t, i t goes to A 3 of i t. And A 3 of i t is well, it is minus 1 i t

and this is going to be i by t. So, and you know t for me is greater than or equal to 1. So,

as if t is 1, i simply goes to i and if t is infinity, then A 3 of i t, A 3 of infinity will go to 0

alright. So, the moral of the story is that, this line which coming from infinity to i. So,

this point is I, this line which is coming from infinity to I, is mapped on to this line which

is coming from this line segment from 0 to i ok.

So, that is the reason this triple arrow head corresponds to this triple arrow head and the

orientation is from infinity to i is same as 0 to i under the image. So, next look at, look at

this, look at this boundary curve. This boundary curve is just the unit circle alright. So, it

is parameterized by e power i theta ok.



So, if I take e power i theta, e power i theta will go to A 3 of e power i theta and that is

going to be minus 1 by e power i theta and this is minus e power minus i theta and this is

e since minus 1 is e power i pi. So, this is e power i into pi minus theta.

So, you see which is just reflection. It is just the reflection about the imaginary axis. So,

if theta varies. So, this point is actually minus 1 is actually 1 plus i root 3 by 2. This is

exactly 60 degrees and this is a and this points corresponds to a complex cube root of

unity, the 1 and the upper half plane ok.

So, this. So, this point is actually, let me write this, 1 plus i root 3, i root 3 by 2 right. And

so, theta is varying. So, as theta varies from 60 to 90, pi minus theta will vary from 120

to 90. So, this the image of this curve, this arc of the unit circle will be precise to this arc

of the unit circle. That is a reason why I have put a single arrow head from here to here

and that corresponds to single arrow head from here to here. 

Then I will have to look at this boundary curve. So, that boundary curve is. So, so this is

here the parameter is pi by 3 less than or equal to theta less than or equal to pi by 2. That

is the that is this portion of the arc right which is map to this portion of the arc. Now I

will have to next look at this boundary curve which is the line real part of z equal to half

or real part of tau equal to half. Because we consider the variable; think of this is a tau

plane cannot the z plane. So, this is a tau plane ok.

So,  well  what  is  the  parameterization  for  this  line?  It  is  half  plus  i  t.  That  is  the

parameterization for this line. And where will it go to. It will go to well A 3 of half plus i

t. That is going to be, write it out. It is going to be minus 1 by half plus i t. That is let us

multiply and divide by the conjugate complex number. So, that I get a real denominator.

So, I end up with. So, which is which is as a point in a with coordinates. It is minus half

by 1 by 4 plus  t  squared  comma i  t  by 4 plus  t  squared.  And well  that  suppose to

correspond to you know this image of this line should be this arc.

So, what is this? This is a circle centered at minus 1 radius 1. So, to show that it is indeed

that, you use you show that that parametric representations satisfies the equation of the

circle. So, what you do is at if you calculate, if you call this as capital X comma Y, then

do you check whether it satisfies equation of the unit circle centre at minus 1 comma 0.

So, you calculate X plus 1 the whole squared plus Y squared.



You will see that X plus 1 the whole squared plus Y squared turns out to be in fact 1. Let

us write it out. It is minus half by 1 by 4 plus t squared plus 1 the whole squared plus i t

sorry I should write it coordinates, I should remove this i.
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So, it is i, it is t by 1 by 4 plus t squared the whole squared and if I write it I will get, I

will  get 1. So,  what is this is.  So, let  me write it  here.  This is  going to be well  the

numerator I am going to get. Here I am going to get, you know minus half plus 1 by 4

plus t squared whole squared plus t by 1 by 4 plus t squared the whole squared and ah.

This is of obviously going to give me t squared minus 1 by 4 the whole square identify

simplify this, I will get 1 I will simply get 1. Because it is will t squared it will be t

squared minus 1 by 4. The whole squared and then there is a t squared there if I add it I

will get a t square plus 1 by 4 the whole square that will cancel. So, I will get 1. So, the

moral of the story is that, the image of, the image of this line is certainly going to lie on

this circle. On the circle and of course, the point at infinity I will get by putting t equal to

infinity. If I put t equal to infinity here I will get, I will get 0. Both entries will be 0.

So, I will get this point. And if I put t equal to for this point corresponds to t equal to root

3 by 2. So, if I put root 3 by 2 you will see that I will get this point which is minus 1 plus

i root 3 by 2. Therefore, this line segment from infinity to 1 plus i root 3 by 2 is mapped

on to the arc of the unit circle centered at minus 1 comma 0, from 0 to minus 1 plus i root

3 by 2. Then that is a reason why I put the arrow, the double arrow for this and at and the



double  arrow  for  this.  And  now  because  everything  is  conformal,  then  the  region

enclosed by this is going to be map to the region enclosed by this.

Where in principle,  the region inside can be mapped a to the region inside or region

outside, but you can you can test it at any point and you can see that it has to be mapped

to the region inside. So, that completes the proof of the fact that this region is mapped by

A 3 inverse which is a same as A 3 on to this region. Now what you can do is, you can

makes similar computations and show that if you apply I mean A 4 inverse, then A 5

inverse and A 6 inverse you get all these regions as stated.

And then, as a further exercise, what you can do is you can take delta prime and you can

show that delta prime is map can be mapped to all the unshaded regions. There are 6

unshaded regions 1, 2, 3, 4, 5 and 6. Or we never always consider this region inside the

semicircle. We this is this is always left out. It is everything in we are considering our is

above that, is above these 2 semicircles.

So, you can check that as well. And so let me state what it is that we need to we need to

prove namely. So, here is a claim.
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So, here is a. So, here is a, here is a theorem ah. For which for which we will have we

will have to further work. So, the theorem is that you see if you take delta and delta

prime and then you take in for the boundary you take of course, a boundary will contain



this and then this and then this and then this. But you leave out these 2, these 2 you leave

out. So, you take delta and delta prime and you take the only this segment. You take this

segment and also of course, you take the imaginary axis.

So, basically you take this whole, this whole region and add to it a part of the boundary

namely this arc of the unit circle centered at the origin and this vertical line. The claim is

you restrict J tilde to this set. Then J tilde is both injective as well as surjective on that

set.

So, let d be delta bar union delta prime bar. And then from that throw away the arc well,

e power i theta varying from. So, through this arc which is a theta varying from i by 2 to

2 pi by 3. Throw this away. And also throw away, throw away this line. Because actually

you see this line to that line it is translation by 1 and you know translation by 1 is a

unimodular element and J, values of J are going to be the same.

Therefore  all  the  values  of  J  it  corresponds here  or  the  same as  values  of  J  on  the

corresponding points here therefore, throw away this vertical line as well and that is the

set of all are tau such that real part of tau is a minus half. That this whole line and then I

will take imaginary part of tau greater than or equal to root 3 by 2. So, I will leave out, I

will leave out this, I will just take out this whole thing ok.

So, and imaginary part  of tau is greater  than or equal to 3 by 2 right.  So, I am just

throwing away this piece, I am throwing away this piece and then I am taking everything

else. And therefore, when is set delta bar. Therefore, these imaginary axis, this portion of

the imaginary axis is included. i is also there. I have not thrown out i, because I have put

theta greater than pi by 2 ok.

So, let d be this. This is not a, it is actually, it is not closed. Then J tilde restricted to d is

both injective  and surjective.  So,  this  is  a  statement  that  one has  to prove,  this  is  a

statement one has to prove. And so, this see this script d this region is every special

region. Of course, such a region is called a fundamental region for J tilde and what will

prove is we will prove that even for PSL 2 z it is a fundamental region.

I mean what we mean by that is in the whole upper plane, this region consists of exactly

1 representative of each PSL 2 z orbit. We will prove that as well. So, if you put both



together you will get the fact that the function J is actually a bijective holomorphic map

ok.

So, we have to prove this and we will, which is saying that this script d is a fundamental

region for J tilde. We also have to prove that script d is a fundamental region for PSL 2 z.

In principle, it is not a fundamental it is not a region, it is actually, I mean it is not open

part of the boundary is omitted and it is omitted because those values are already taken at

other parts of boundary. So, that is the point. So, this is what we have to do and we will

do this in the coming lectures. So, I will stop here.


