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So let me quickly recall where our discussion is at this point of the course.
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So, we have this function lambda of tau. So, this we have this function lambda defined

on the upper half plane with values the complex numbers, lambda of tau was defined as e

3 of tau minus e 2 of tau by e 1 of tau minus e 2 of tau. And we are trying to see so this

function is invariant only for the action of the congruence mod to subgroup, and we are

trying to study the mapping properties of this function. So, the theorem that we are trying

to prove is the following that.
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See, if you take the following region the complex plane. So, this the tau plane and we

have a so this coordinate is one and well this the line real part of tau equal to 1. This of

course,  imaginary axis,  this  real part  of tau is equal to 0. And then we take a semi-

circular arc which is centered at half and radius half. And we take this region omega, we

take this region omega which is bounded on the left by the imaginary axis; and on the

right by this line which is real part of tau equal to 1, and below by this semicircular arc.

And the claim is that lambda gives us an isomorphism of omega on to the upper half

plane and the isomorphism is an; is in such a way that, so it is an isomorphism it is a

holomorphic isomorphism. So, it is a holomorphic isomorphism of omega onto the upper

half  plane.  And  the  under  this  isomorphism  can  be  extended  to  the  boundary

continuously.

So, you can define omega on the board or you can define lambda on the boundary. So,

that the boundary is mapped to the boundary of the upper half plane namely the real axis.

So, if I draw this diagram, so I am taking the transformation omega equal to lambda of

tau and the corresponding the image plane is the omega plane and the claim is that this

region omega is mapped into the upper half plane. So, this also the upper half plane here,

it is also the upper half plane there. So, it is mapped here onto the upper half plane here.

And in such a way that the boundary is mapped onto the real axis, so that is what we

have to prove alright this what we have to prove.



So, we started out in the previous lecture by proving that lambda is real on the boundary.

The problem with the boundary is only at these two points at 0 and at 1, because you see

lambda is anyway analytic on the upper half plane. So, it is defined on the imaginary axis

in the upper half plane the problem is at 0. Similarly, there is no problem along all the

points of this semicircular arc, the problem is only at 0 here and at the point 1 there. So,

what one has to do was what one has to show is that you know lambda approaches a

proper limit at 0 and at 1, and the limit and that limit is achieved no matter how you

approach it. So, long as you are inside this inside this region or in the boundary of that

region that is what you have to verify, and you should verify it for the limit here as well

as for the limit there.

And in fact, what I had said yesterday was that I mean in the last lecture was that you see

the fact is as tau goes to infinity in particular as tau, so since we are considering only the;

this  portion  of  the  vertical  strip.  As  tau  goes  to  infinity  essentially  you  are  letting

imaginary part of tau go to infinity, then the point the fact is that it should give you the

value of lambda at infinity and that turns out to be 0. And the value of lambda at 0 turns

out to be 1, and the value of lambda at 1 turns out to be infinity. And this how lambda is

supposed to map the boundary of omega onto the real axis. So, of course, I have already

shown except for the point 0 and one that lambda is real on the boundary of omega that

was done in the previous lecture. So, this lecture is essentially to study the behavior of

lambda as you approach 0 or as you approach one.
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So, let me write down immediately what our claim is, our claim is the following. Our

claim is as so yeah I will draw that another diagram if I need one. So, as imaginary part

of tau tends to infinity as imaginary part of tau tends to infinity. So, in fact, I should say

as imaginary part of tau tends to plus infinity because this is the real variable. Lambda of

tau tends to 0, and the way it tends to 0, you see is uniform as a function of real part of

tau. So, you see as you let imaginary part of tau tend to infinity, lambda of tau will

essentially be thought of as a function of real part of tau. And the way it takes to 0 is

uniformly with respect to the real part of tau.

So, let me write that down uniformly with respect to real part of tau. So, this is the claim

now. So, this is the first claim. And how are we going to prove this? So, this will tell you

that you know the value of you can define the value of lambda at infinity as 0, you can

define the value of lambda at infinity as 0 and that is how lambda takes the value 0 in the

image.  So,  and  of  course,  you  see  if  you  think  of  this,  this  complex  plane  as  the

Riemann’s sphere, then infinity is actually is the corresponds to the north pole in the

Riemann’s sphere. So, it is really a point in that sense by the stereographic projection.

And all we are trying to say is that lambda can be extended to the point at infinity by

defining it to be 0, because this allows us to do that.

So, well, so how does one prove this? So, in order to prove this, one has to do some work

with series. So, let me begin with the following statement. We will need to use sin pi

square by sin square pi z sigma m equal to minus infinity to infinity 1 by z minus m the

whole square. So, we need to use this desired entity. So, we will have to use this identity.

You can realize why we will need it because you see this is what partly appears when

you write out the formula for the p function right. So, the first thing is let us first justify

this identity.
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See you see they the LHS the left hand side if you look at the function here this function

is analytic everywhere except the points where the denominator vanishes and the points

where the denominator vanishes precisely the integers. So, you see LHS is analytic in C

minus z in you take away the integers from the complex numbers. So, you see this. So,

here I should say z this valid for c minus z this valid for any z, which is not an integer.

So, the left hand side is of course, analytic in C minus z. What happens at points of z at

points of z, you get by z I mean integers at integer values you get poles of order 2. At

each value z equal to m, the LHS the left hand side has a pole of order 2, it has a pole of

order 2. And further and you know of course, if you have a isolated singularity then you

have a Laurent development. And if you take the Laurent development about z equal to

m that means, you try to expand in powers positive and negative of z minus m then the

singular part will be precisely 1 by z minus m the whole square. So, at each value z equal

to m the left hand side has a pole of order 2 and has singular part one by z minus m the

whole square this will be the singular part this will be the singular part.
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So, this is quite obvious. Now, but you look at the right side, in the right side, you are

simply adding all  those singular parts  together. The right  side I  have written just  by

adding all those singular parts, but the nice thing is I cannot just write down something

like this and expect it to define something sensible, but in this case it really does. See,

this the term on the right side is actually a convergent series in fact if you take mod y

greater than or equal to 1, then this will be uniformly convergent I just have to stay away

from the integers.
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So, the RHS - the right hand side converges uniformly for mod y greater than or equal to

1 that is it. You see the point is you see if you look at if I draw a diagram the situation is

like this, I have this is a complex plane.
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So, this C, this is z plane and you know I have all my integers here. So, I have all my

integers here see mod y y equal to one is a; you know it is going to be line parallel to the

x axis. So, mod y greater than one is going to be either. So, you know it is going to be

this region, it is going to be this and it is going to be this. So, this will be the region this

will be the region mod y greater than or equal to 1. And the point is that if you take that

region then you can compare the part of the series from 0 to infinity and the other part of

the series from say 1 minus 1 to minus infinity separately with sigma 1 by n square

which you know is convergent. So, you can by using Weierstrass M-test you can actually

confirm that this is uniformly convergent. So, the right side also converges uniformly for

mod y greater than 1, alright. Now, well now you see, we want to prove the left side is

equal to the right side which is the same as time to show that the left side minus the right

side is 0 is identically 0.
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Now let us let us look at the left side minus the right side. Look at g of z is equal to the

left hand side minus the right hand side, look at this one. Look at this function. You see

this function if you take a point, which is not an integer this going to be an analytic

function this  going to be an analytic  function because both sides are of course, both

entries are analytic, so long as z is not an integer therefore, this going to be an analytic

function.  And  the  fact  that  the  series  is  an  analytic  function  is  because  of  uniform

convergence and because each term of the series is analytic.

So, this function is going to be analytic in of course, C minus z, but more importantly if

you take points of, if you take integer points, you see the singular part of this at z equal

to m is already here. So, when you subtract the singular part is removed. So, you see if

you concentrate at z equal to m, it will become a removable singularity, z equal to m will

be a removable singularity. So, as a result, this function will be an entire function. So, at

z equal to m g of z has a removable singularity. In fact, I should it is actually analytic I

am saying it is a removable singularity because I do some local analysis and if I take a

Laurent expansion then the only the singular part I will get here is 1 by z minus m the

whole square the rest of it is all analytic for z in a small neighborhood of m. Because z is

going to be is not going to be any other integer other than m.

And this of course, if you take the Laurent development at z equal to m, the singular part

is  going to be 1 by z minus m the whole square.  So,  if  you take the difference the



singular part is going to go away. So, which means you have only the analytic part and

that is way of saying that it is actually a removable singularity. In fact, you can actually

say it is analytic. So, at z equal to m in z, so g of z is entire, so it is an entire function.

This function is an entire function that is a first observation. The second observation is

you see if I replace e z by e z plus 1 the left side is not going to change. In other words,

you see this function on the left side is periodic with period one and the same is true with

the function on the right side because if I replace e z by e z plus 1, I will still get the

same series. So, the fact is both the left hand side and the right hand side are single

periodic functions with period one and therefore that their difference is also a periodic

function with period one.
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So, let me write that down. Now, since the LHS and the RHS are periodic with period 1,

so is g of z. So, you see the difference which is g of z is actually periodic with period 1.

Therefore, e 2, so its values are completely controlled by the values in a vertical strip of

length one, of horizontal length one. So the values the values of g of z are the same are

those that it takes in say 0 less than or equal to real part of z less than or equal to 1 in this

vertical strip because it is periodic with period 1. Now, you know now you see what we

are trying to do we are trying to show LHS equal to RHS we are trying to therefore,

show that this analytic function is 0. So, what we would do you know what we will try to

do we will try to show that g of z is bounded in this vertical strip then by periodicity is

bounded on the whole plane Liouville’s theorem will tell you that g of z is a constant you



evaluate that constant. And then show that the constant is 0 that is how you prove g of z

is identically 0, so that is the; that is what we are going to do.

So, you see the point is that.  Now, you notice the following thing see if modulus of

imaginary part of z tends to infinity that is if you write z is equal to x plus i y and you let

mod y tend to infinity then you see the left hand side goes to 0 uniformly. Then the left

hand side goes to 0 uniformly in real part of z right it goes to 0 uniformly. And that is

basically because you see you must all be familiar with this with the fact that we may

use.
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We may use you know sin square pi z well if you expand it, it is cos h square pi y minus

cos squared pi x, these are elementary identities. So, you see you can use this to infer that

this is very easy to see. On the other hand, look at the right hand side that is look at this

series. This series for mod y namely for modulus of imaginary part of z greater than or

equal  to  1  is  uniformly  convergent  in  it  is  uniformly  convergent  in  x.  And you see

because of uniform convergence of this series, you can take individual limits instead of

taking the limit as mod y tends to infinity of this whole thing. You can take mod y tends

to infinity for every term, and then take the sum but you see as mod y tends to infinity of

every term it goes to 0. So, obviously, the sum goes to 0. So, the fact is this the right

hand side that also tends uniformly to 0 as mod y namely modulus of imaginary part of z

tends to infinity.



So, RHS namely so here I should say the of course, the by the LHS I mean pi squared by

sin squared pi z. And here by RHS I mean that series sigma m equal to minus infinity to

infinity 1 by z minus m the whole square tends to 0 uniformly as a modulus of imaginary

part of z tends to infinity in mod y in modulus of part of z greater than or equal to 1. So,

the moral of the story is that if you look at this vertical strip 0 less than or equal to real

part of z less than or equal to 1.
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So, you see so it is going to be like this. So, this my vertical strip. If you look at this

whole vertical strip, then your function g of z is bounded. See, at infinity, it is going to

go to 0; and then so that means, what does it mean it means that you know its value can

be the its modulus can be made less than any arbitrarily given small epsilon beyond a

portion above and below the strip. And for the remaining portion that is left out that is

anyway compact region and you know it has to have a boundary continuous function on

a compact set has to have a boundary. Therefore the up short of this the g of z is bounded

in this period strip. And since it is periodic with period one consequently it is bounded on

the whole complex plane and now Liouville’s theorem will tell you that it has to be a

constant. And what is that constant that constant has to be the same. And if you now let

modulus of imaginary part of z tend to infinity that constant has to remain the same, so it

has to be 0. So, g of z becomes identically 0 and we have proved that the left side is

equal to the right side.



(Refer Slide Time: 28:48)

So, let me write that down. Thus g of z is bounded in 0 less than or equal to real part of z

less than or equal to 1, hence bounded in C as it has period 1. Hence is a constant by

Liouville’s theorem and that constant turns out to be 0, if you let mod y tend to infinity

that constant is equal to 0 if we let modulus of imaginary part of z tend to infinity. Thus

the left hand side is equal to the right hand side, so that proves this formula. Now, the

point is that we have to use this formula to get this claim. So, we will do that next.
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So, what we are looking at is so we are trying to study what happens to a lambda of tau

as the imaginary part of tau goes to infinity. So, lambda of tau is e 3 of tau minus e 2 of

tau by e 1 of tau minus e 2 of tau. So, let us calculate what the numerator is. So, e 3 of

tau minus e 2 of tau is if you remember e 3 of tau is the phi function evaluated at 1 plus

tau by 2. So, this p tau evaluated at 1 plus tau by 2 minus p tau the p function associated

with tau evaluated at tau by 2 this what it is. And well we can expand it, this turns out to

be 1 by 1 plus tau by 2 the whole square plus sigma omega not equal to omega in the

lattice, omega not equal to 0, 1 by 1 plus tau by 2 minus omega the whole square minus

one by omega square this the expansion of the first term.

And then I will have to write out the second term. So, I will get minus 1 by tau by 2 the

whole square plus summation over omega in l of tau omega not equal to 0 of 1 by tau by

2  minus  omega  the  whole  square  minus  1  by  omega  square.  So,  all  the  series  are

uniformly convergent; in fact, I can get rid of these terms. And you can notice that when

I put omega equal to 0, I can put omega is equal to 0 here, if I put omega equal to 0 here

I  get  this  term.  So,  I  can  push  this  term  also  into  the  summation  and  remove  the

restriction that omega is not 0, the same thing can be done here.
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So,  this  simplifies  to  summation  over  omega  in  l  of  tau  omega,  now I  remove  the

restriction omega is not 0. And I simply write 1 by you know 1 plus tau by 2 minus

omega the whole square minus 1 by tau by 2 minus omega the whole square, so this is



what I get. And now the trick is if you want to use this you change from summing over

omega in the lattice to summing over pairs of integers because for omega in the lattice

after all omega is of the form n plus m tau. So, we rewrite this as a double summation.
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So,  what  one  does  is.  So,  well  this  equal  to  so you know now I  will  write  it  as  c

summation over n equal to minus infinity to infinity, another summation over m equal to

minus infinity to infinity and I write that as 1 by now you see I am putting omega is

equal to m plus n tau. So, what I will get is I will get 1 plus tau by 2 minus m plus n tau

the whole square minus the other term which is 1 by tau by 2 minus m plus n tau the

whole  square.  So,  this  becomes  summation  n  equal  to  minus  infinity  to  infinity

summation m equal to minus infinity to infinity of so I end up with half. So, I can write it

as m minus half, so I will get half minus m, I will write it as let me write it first as it is of

minus m is the real part. And coefficient of tau is going to be half plus half minus n into

tau the whole square minus the other term is going to be well I am going to get minus m

plus well half minus n into tau the whole square, this is what I am going to get.

And now you see yeah so now we are in good shape you see just look at look at only the;

forget the outer summation in the end look at the summation only in m. And use the fact

that summation from m equal to minus infinity to infinity of 1 by m minus z the whole

square  is  pi  square  by  sin  square  pi  z  which  is  what  we  prove.  So,  you  use  that

summation m equal to minus infinity to infinity of 1 by half minus m the whole square



plus well half minus n into tau the whole square is summation m equal to minus infinity

to infinity, what I am going to get is 1 by m minus;

Student: (Refer Time: 36:51)

There is no square here, yeah there is one square here. So, it is going to be m minus half.

So, if I switch the sign here its m minus half, if I switch the sign here it is n minus half

times tau. So, I guess this I hope this right, and of course, there is a whole square right

because. So, I get m minus half which is half minus m, the other one is n minus half it

should be n minus half into tau is that right. So, there we have n minus half if I switch it

switch the sign I get half minus m, there I get minus of m minus half tau if I switch the

sign. So, may be this should be half minus n, here this half minus n.

So, well if I apply that formula then I will get this I square by sin square pi times this

whole thing. So, I will get half plus half minus n into tau this what I will get, now if I use

the summation that summation formula. And of course, you know if I take sin square if I

push the pi inside then I can change this sin square to cos square, and then I can write

that as n minus half tau. So, this finally, it becomes pi square by cos square pi into n

minus half tau this is what you will get finally, so that is what you get of the first term.

And what do you get of the second term, let we write it down.
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So, I will get sigma m equal to minus infinity to infinity the second term is suppose I

calculate 1 by so that is minus m plus half minus n I switch signs throughout. So, I will

get m minus half minus n times tau the whole square, if I switch signs that is right. And

this going to be pi square by sin square pi by that formula it is going to be half minus n

into tau which for uniformity with previous with this one I will write it as pi square by

sin square pi n minus half tau. So, this where we have used the formula that we just

recently proved.
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Well, we will end up with e 3 tau minus e 2 tau is equal to there is a summation outside

summation n equal to minus infinity to infinity and what you get inside is this minus this.

So, it is going to be pi square by cos square pi n minus half tau minus pi square by sin

square pi n minus half tau this is what you get. And now you can see that if I let the

imaginary part of tau go to infinity then you can see that each term is going to go to 0,

and therefore this quantity on the left will also go to 0 given that the series on the right

side will converge uniformly. So, you can take the term by its limit.

So, the fact is of course, you can easily verify that the modulus of the denominators that

goes to infinity as imaginary part of tau goes to infinity that is very, very simple exercise.

Therefore, so what this will tell you is that as imaginary part of tau goes to infinity, this

will go to 0; and it will go uniformly to 0 in the variable real part of tau. And the fact is



you can take the term wise limit because of uniform convergence. And that term wise

limit is 0. So, if you want maybe it will be helpful if I write down that.

So, you see if you for example, you know if I take let us take for example, cos z which is

by definition e power i z by c power minus i z by 2 and then you calculate modulus of

cos z you will  get  this.  You must have probably seen this  in an in a first  course in

complex analysis and well anyway let me write it down, so that it is perhaps because it is

pretty easy. So, I put z is equal to x plus i y. So, I will get and what I will get is e power i

x e power minus y plus e power minus i x e power y divided by 2. And then I use a

triangle inequality and write that as greater than or equal to modulus of maybe I use yeah

I use triangle inequality and write this as modulus of e power i x e power minus y minus

e power minus i x e power y by 2. And which turns out to be well e power minus y minus

e power y by 2, this is what I get.

And you can see that as the imaginary part of z goes to imaginary part of z is y and as

that goes to infinity it is clearly this quantity is going to go to infinity, and therefore, mod

cos z is going to go to infinity. Essentially you will get the same kind of inequality if you

also put sin z, and therefore, as imaginary part of z goes to infinity both mod cos z and

mod sin z go to infinity therefore, the reciprocals will go to 0. And that is the reason why

as imaginary part of tau goes to infinity, these term will go to 0 this term will also go to 0

because it will go to 0 in mod in its modulus in its absolute value. And therefore, term

wise the limit  is  0 and you can take the limit  term wise because the convergence is

uniform.
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So, sort of all this the following namely that, so let we write that down. So, maybe I can

put this in brackets. Thus e 3 of tau minus e 2 of tau tends to 0 uniform as imaginary part

of tau tends to infinity uniformly with respect to real part of tau. So, we get this. So, this

is  what  we get for, this  is what we get for the numerator  of the lambda function as

imaginary  part  of  tau  goes  to  infinity.  A similar  calculation  can  be  done  for  the

denominator  as well.  A similar  calculation computation gives for the denominator  of

lambda of tau namely it is e 1 tau minus e 2 tau e 1 tau minus e 2 tau.

If you follow the same procedure remembering that e 1 tau is p tau of half and e 2 tau

remains as p tau of tau by 2 and do the same thing. What you will end up getting is the

following, you will get summation n equal to minus infinity to infinity pi square by cos

square pi and tau minus pi square by sin square pi n minus half tau. So, you will get this

you just have to follow the same steps and you will get this. And now well the same

argument applies as we decided for this case when the imaginary part of tau goes to

infinity. The only difference is that there is a term n equal to 0, the term n equal to 0 is

going to completely remove this denominator.

So, you take a limit it does not have any effect on this term. So, what you are going to

get is you are going to get pi square all other terms are good. So, only the n equal to 0

term and that too only this part is going to be unaffected, all other terms will die to 0. So,

what you will get is we get e 1 of tau minus e 2 of tau tends to pi square as imaginary



part of tau tends to plus infinity uniformly with respect to real part of tau. So, if I put

these two together I get that as tau tends as imaginary part of tau tends to plus infinity

lambda of tau goes to 0 uniformly in real part of tau which was the original claim. So,

thus lambda of tau tends to 0 uniformly in real part of tau, when the imaginary part of tau

goes to plus infinity. So, that tells you that at infinity you can extend lambda at infinity to

the point at infinity by defining it to be 0 and that will extend it continuously, so that is

the part of the claim.

Now, we need to still prove further claims, and I will do that in the forthcoming lectures.


