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So, last time you see; we were looking at the modular function lambda and you know

that this modular function is only invariant under the congruence mod 2 subgroup. It is

not invariant under the action of an general element of the uni-modular group PSL 2 Z.

So, we ask the question what will happen if you apply you know general element of PSL

2 Z, then we found that this modular function lambda satisfied certain nice functional

equations which we derived. So, just to put our discussion in proper perspective, see we

are trying to get hold of a modular function which is which is which is modular for the

whole group the whole uni modular group PSL 2 Z; what we have at  present is  the

function lambda which is which is invariant only for the congruence mod 2 subgroup

alright.

So, the aim is we have to use this lambda to cook up another function which will be

invariant under the action of the full uni modular group. So, that leads us to study the

mapping  properties  of  lambda.  So,  let  me recall  among various  recurrence  relations

satisfied by lambda we have the following. So, in particular you see we have. 

(Refer Slide Time: 02:16)

So, you see we have lambda from the upper half plane with values in C this. So, this

lambda is invariant under the action the action of a of an element an element of any

element of PSL 2 Z subscript 2 this is the congruence mod 2 subgroup; in other words

you see if well a is an element of this congruence mod 2 subgroup then you know if I

take a tau in the upper half plane and apply a of tau of course, it is going to give me



another point in the half plane because after all PSL these are all these are all elements in

PSL 2 r which are automorphisms to the half plane and then if I apply lambda to this I

will simply get back lambda evaluated at tau. So, this is the invariance property. So, we

have seen this and see. In fact, we saw.
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So, you know see we would like to know that if you if you look at the; well the complex

plane which I call as the tau plane and then I take the mapping omega equal to lambda of

tau. 
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So, this is a mapping that is going to be that is going to go into take values in another

complex plane which I will call the omega plane and well we are looking at of course,

you see for the movement lambda is defying on the upper half plane, alright, So, lambda

is defined here this is this is upper half plane. So, lambda is defined in this shaded region

alright. 

So, it is defined here and so, lambda is defined here and you know of course, lambda is

analytic lambda never takes the values 0 or 1 and we want to know what is the what kind

of a mapping lambda is of course, you see lambda is it is an analytic function. So, it will

have good mapping properties, but the question is what are those mapping properties we

need to we need to understand that.

So, the first thing I want to tell you is that you see lambda. 
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So, the first observation is that lambda has period 2. So, this is the first observation see

that is that is lambda of tau plus 2 is lambda of tau for all tau in the upper half plane the

first property is that lambda has period 2 now how does one see this well you see there

are 2 ways of seeing this one thing is you see the transformation tau going to tau plus 2

this has matrix has representative has matrix representative well the matrix representative

will be you know for a general linear transformation a tau plus tau going to a tau plus b

by C tau plus b the matrix representation is a b c d the matrix a b c d and of course, you

always formulize to make sure that this is the that the determinant of that matrix is one.



So, that it is uni modular and well this is going to be that way it is going to be 1 2 0 1 this

is the matrix representative and you see you can see that this matrix if I read it mark 2 it

is identity matrix see which is equal to the which is I 2 mod 2.

So, this matrix mod 2 is identity, therefore, you see this is in the this is in the congruence

mod 2 subgroup after all the congruence mod 2 subgroup consists of all those elements

which when you read mod 2 give you identity that is you have to read every coefficient

mod 2 alright this is in the this clearly this matrix is in the congruence mod 2 subgroup

and you know that the function lambda is invariant under such an element. So, you see.

So, lambda of if I apply 1 2 0 1 to tau these are same as lambda of tau. So, of course,

applying 1 2 0 1 to tau means it means that you are applying the Moebius transformation

z going to one z plus 2 by 0 z plus 1 to tau. So, which means your; so, the left side is just

left side is just lambda of tau plus two. So, lambda of tau plus 2 is lambda of tou.

So, the moral of this story is that if you want since lambda has period 2, alright. So, it is

enough to study to study you do not have to study lambda on the whole the effect of

lambda on the whole upper half plane it is enough to study on a vertical strip of length 2.

So, therefore, what we do is that we actually. So, we do the following we restrict our; it

is enough to restrict our attention to the strip. So, I will take this strip. So, I will take this

strip namely you see I will take this as one this as minus one. So, it is enough to study

lambda only in this region the effect of lambda on this region that will do it is enough to

study the effect of lambda on this cross shaded region you can restrict to a vertical strip

of horizontal length 2 alright.
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So, it is enough to study lambda only here alright now well of course, there is there is

also another way there is another way of looking at it you can also use you can also use

the fact we may also use. So, maybe I maybe; I will draw line here we may also use the

functional  equation  the functional  equation  lambda of  tau plus 1 is  I  guess 1 minus

lambda of tau see we proved this last time lambda of tau plus 1 is 1 oh no I think it was it

is lambda tau by lambda tau minus 1 sorry. 

So, that was lambda of minus 1 by tau. So, this is lambda tau by what was that it was

lambda tau minus 1 and now you know you apply this twice alright, then you will get.

So, lambda tau plus 2 will be lambda tau plus 1 by lambda tau plus 1 minus 1 and then

you apply this to this you will get lambda tau by you know lambda tau minus 1 divided

by lambda tau by lambda tau minus 1 minus one and you will see that this is going to

give a lambda of tau. So, that there are 2 ways of seeing this right of course, this is this is

very straight forward right alright.

So, the situation is now that I it is enough to study the effect of lambda on this on this

region then the. So, what is it that what is the kind of result we are going to get? So, let

me state what state the result that we will get it is the following. So, let me write the

theorem.
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So, this you see let me let me draw the circle here which is centered at half and radius

half.

(Refer Slide Time: 13:06)

So, I get this; I get this region and similarly I can draw a circle centered at minus half

again with radius half. So, I will get something like this and let me look at this region let

me look at this region, let me look at this region that is bounded by the imaginary axis by

this circle and by this line which is a real part of real part of tau equal to 1.



So, you see this is this is real part of tau equal to 0 this line is real part of tau is equal to 1

and of course, this line is well real part of tau equal to minus 1. So, you look at you look

at this you look at this region that I have not shaded it fully, but the boundary is supposed

to be consisting of this portion of the imaginary axis followed by this a semicircular arc

and then this portion of the line passing through one vertical line passing through one let

me call this region let me give a name to this region, let us call this region as omega let

me call this region as omega alright then the theorem is following the theorem is lambda

max omega injectively. In fact, let me say lambda max omega isomorphically on to the

upper half plane.

So, it is very beautiful. So, this region you see this region here this region omega the by

omega I mean only the interior of the region do not include the boundary curve; the

bounding curves. So, the that interior is of course, an open set and the fact is that this

open set is completely mapped isomorphically by lambda on to the upper half plane. So,

the image of that is this whole upper half plane and the and the fact is that you see it is

the  fact  is  that  it  is  an  isomorphic  it  is  isomorphic;  that  means,  it  is  injective  and

holomorphic of course, lambda is of course, holomorphic, right. So, to prove this you

just have to prove that the map lambda restricted to this open set is one to one and that it

takes every value in the upper half plane if you do that; then you will get; you will get

this the proof of the statement.

Not only that of course, you know you expect a confirmer map when it maps a certain

region to a certain region, then it has to map the boundary to the boundary alright. So,

the beautiful thing is that this of course, you know lambda is defined only for the upper

half plane, but the fact is that you can extend lambda to the boundary of this region

omega in such a way that you can expect where the boundary has to go you see the

boundary has to go the boundary here the boundary is the real axis. So, the fact is that

lambda can be continuously extended to the boundary. 

So, that the boundary of omega goes to the real axis. So, let me write that down further

lambda can be continuously extended to the boundary of omega which means you know

this portion of the imaginary axis followed by this semicircular arc and then this portion

of the of this  line.  So, that.  So, that which is mapped which is mapped by which is

mapped onto the real axis which is what you should expect because the boundary of this

region has to go to the boundary of that region.



So, you see; so, this whole thing is going to map get mapped to the real axis and the and

which values are going to be mapped to which. So, you see lambda the value of lambda

at the point at infinity will turn out to be 0; so, in such a way in such a way that 0. So, if

the point at infinity goes to 0. So, on this on this complex plane there is a point at infinity

you which you must think of as you must actually think of this stereographic projection

and think of the point at infinity as that point goes to actually 0, then the point 0 goes to

one 0 goes to one this one will go to infinity this one here will go to the point in infinity.

So, you see what is happening as you come from the point at infinity  on the on the

Riemann sphere to 0 to one and again go back to the point at infinity on the Riemann

sphere what happens is the lambda values go from 0 to one to infinity and then back to 0

that is how lambda that is how lambda is extended to the to the boundary. So, this is the

theorem. So, I mean the importance of this theorem is that because of the behavior of this

region under several of those mappings which were the mappings that you got in the

congruence mod 2 subgroup when you read it in z mod 2 you this allows us to extend I

mean to cook cup from lambda a function which is modular on the for the whole uni

modular.

So, the key lies in this in studying this region the key lies in studying this region and this

region is kind of fundamental for the way lambda behaves the way lambda maps. So, we

will have to prove this. So, this is roughly the roughly the aim and in fact, I should also

say that you know I could have also taken I could have also taken the mirror image of

this region I can take the mirror image of this region about there the imaginary axis and

you know I will get this region here I will get this region I will get this region alright.

Now let us call this region as something; let us call it as let us say omega prime the fact

is that this omega prime will be mapped by lambda to the lower half plane ok.

This omega prime will be mapped by lambda onto the lower half plane and again the the

mapping will extend to the boundary with the same properties and mind you the values

of lambda here are exactly the same as values of the lambda here because this differs by

2 which is a period of lambda alright. So, what will happen is that you see the image of

this is going to be is going to be this; the lower half you are going to get this. So, let me

write  that  lambda  also  maps  omega  prime  isomorphically  onto  the  lower  half  plane

which is which I will call as minus u. So, this is this is well this is u. So, this is the upper

half plane this is minus U this is the lower half plane. So, this is how lambda behaves



this is how lambda behaves and of course, the. So, the effect of the mapping on these 2

pieces will give you the full image and of course, you will have to extend the mapping to

the  boundary  to  this  boundary  and of  course,  if  you have  extended  it  automatically

extends here. So, you have to only extend it here right.

So, this is what we have prove this is what we need we need to prove and as a first step

towards that you see. So, I am going to try to prove this. So, the first thing I am going to

try to show is that that the value of lambda on this on this boundary I am going to show

the value of lambda on this boundary is actually real because after all you see you see

what lambda is doing what lambda is doing is that you see it is mapping this whole thing

onto the real line now. So, for that let me again draw this draw the diagram here and

make a certain observation.
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So, here is. So, this is 0 this is one this is the tau plane. So, you have. So, you have. So,

you have the semicircle here ok.

So, you see this is real part of tau equal to 1 this is this is real part of tau equal to 0 and of

course, you know this, this semicircle is you know mod tau minus half is equal to half

this is the this is the equation of a circle centered at half and radius half right now what

you must understand is that or what we can observe immediately is that you see this

imaginary I mean this imaginary axis is mapped by tau plus 1 onto this. 



So,  you see  if  I  if  I  apply  tau  going to  tau  plus  1  this  every  point  here  goes  to  a

corresponding point here alright and the point in the upper half plane goes to a point in

the upper half plane 0 will go to 1 alright and notice that we know that lambda of tau

plus 1 is as I wrote it down here lambda of tau plus 1 is lambda tau by lambda 2 minus 1.

So, you know what is the advantage of this functional relation it is if I prove lambda is

real on this if for tau on this if I prove lambda of tau is real then this will tell me that

lambda is also real on this ok.

So, that is the advantage of this functional equation. So,. So, lambda real on a imaginary

axis implies lambda real on real part of tau is equal to 1 and of course, of course, I should

I will have to worry about the 0.0 and the 0.1 because for the moment lambda is only

defined on the upper half plane. So, what I am saying here applies only to only when

imaginary part of tau is greater than 0. So, let me write that down where imaginary part

of tau is greater than 0. 

So, you will have to leave out this point and you have to leave out this point right then

notice also that you see this; this line is mapped on to the circle by the transformation.

So, there is a transformation that s going like this and this transformation is none other

than tau going to 1 minus 1 by tau you see take the transformation tau going to 1 minus 1

by tau; it is a Moebius transformation it is certainly a Moebius transformation and you

see and you know that a Moebius transformation will map straight lines to straight lines

or circles and circles to straight lines or circles you know that is a fundamental property

of Moebius transformations.

So, you see if you take this tau going to 1 minus 1 by tau you see if I put a tau if I put tau

equal to infinity. So, infinity will go to one tau minus tau going to 1 minus 1 by tau if

you calculate this infinity goes to one the point at infinity goes to one the point at infinity

goes to one alright and then well infinity goes to one then if I take the point one with if I

take the 0.11 goes to 0 I mean I should maybe I should put now that s all right I mean I

am only worried about this transformation I am not applying lambda. 

So, if I put tau equal to 1, one goes to 0 alright and then well if I put something in

between; say for example, suppose I put tau is equal to suppose I put tau equal to 1 plus i

which is which is this point here which is which is this point here 1 plus i somewhere

here this length being 1, then 1 plus i will go to what it will go to 1 minus 1 by 1 plus i



which if you calculate it is 1 plus i minus 1. So, it is i by 1 plus i and that turns out to be I

into 1 minus i by 2 and this is i plus 1 by 2 this is. So, it is 1 plus i by 2 which is this

point it is half plus i by 2.

So, you see this Moebius transformation maps infinity 1 plus i by 2 1 2 1 1 plus infinity 1

plus i 1, in that order to 1 1 plus i by 2 0. So, you know. So, this is the confirmality as

you go from as you move from infinity to one h the image of this line is traces this semi

circle in this order. So, you see this is mapped onto this now you have another functional

equation this the second functional equation that we saw was that lambda of minus 1 by

tau plus 1.
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This turned out to be well if you recall that it is it is lambda tau minus 1 by lambda tau

we have this, we proved also this functional equation. Now what does this tell you this

tells you that if you knew that lambda is real on this you can then conclude that lambda

is real on this ok.

So, lambda real on real part of tau equal to 1 implies lambda real on this segment on this

on this semi circle for imaginary part of tau. So, you see to show that lambda is actually

real on this boundary I have to only show that lambda is real on this imaginary axis and I

have to worry about the point 0 I have to worry about the point 1 that s all I will have to

do. So, you see. So, the first part of our discussion proceeds to show that lambda is real



on the imaginary axis. So, lambda is real on the imaginary axis. So, let me write that

down.

(Refer Slide Time: 33:13)

We only need to yeah to check lambda define is defined and real on the boundary of

omega del omega we only need to show.
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Number 1 lambda is real on the imaginary axis, we need to show this in U of course, and

number 2 lambda at 0 and so, you have to show lambda of 0 is 1; lambda of 1 is infinity

and you know I need to also show unit as tau tends to 0 lambda of tau a tau inside omega



is one limit tau tends to one tau inside omega lambda of tau is infinity. So, this is what I

have to show see if I show this. So, if I show this then I will know for sure that you see

that this boundary is mapped onto the real axis and that it and that the only 2 troublesome

points are these 2 points and there that s those are the points where I will have to check

continuously. So, that I make sure that the mapping when you extend it to the boundary

is also continuous. So, I will have to verify these 2 limits as well I have to check the

limits are these values and then I will have to verify these things. So, this is going to be

the first part of our discussion right. So, how does one go about this?

So, to begin with now I need to go down to go back and define a more general function.

So, let me do that let us recall that you see we need to define a more general (Refer

Time: 36:39) as phi function we need to do this.
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So, what do I mean by that. So, what you do is while you fix a 2 complex numbers

omega 1 omega 2; 2 complex numbers with a the ratio with omega 1 of course, both not

0 both not 0 and omega let us say omega 2 by omega 1 is non real that is omega 1 and

omega 2 are linearly independent as elements over r the real numbers then associated

with this we will have a lattice ok.

So, you get L of omega 1 comma omega 2 this is the lattice spanned over z by omega 1

and  omega  2  and  what  is  this?  This  is  just  the  z  span  namely  it  is  all  z  linear

combinations of omega 1 and omega 2. So, it is of the form n omega 1 plus n omega 2



where n and m are integers and of course, the lattice that we have been so far considering

was L of 1 comma tau where tau was in the upper half plane, but instead of taking one

and tau we are simply taking 2 complex numbers such that the ratio omega 2 by omega 1

is non real alright. 

Now you if you if you recall  you take you take the complex plane and then you go

modulo this lattice namely you declare 2 complex numbers to be equivalent if they differ

by an element of this lattice in other words you are thinking of the lattice as the group of

Moebius transformations that act by translation by elements of the lattice and then you

are going modulo that group what is the result the result is again at complex holomorphic

torus it is a surface. So, what you get. 
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So, this what you get here is a torus t sub well t sub omega 1 comma omega 2 it is a

complex torus complex torus and of course, you know you will you will see that the way

we got the Riemann surface structure on this torus was such that this mapping pi is a

holomorphic map and in fact, this mapping is a holomorphic universal covering for this

torus and the fundamental group of this torus can be identified with the lattice above as

the deck transformation group of this covering and the deck transformations are precisely

elements of the lattice being thought of as translations on which are automorphisms of C

ok.



So, this is the picture and again see our aim is to get hold of a simple function on this;

simplest possible analytic function on this; of course, you will again not get an analytic

function on this because this is compact; any analytic function on this will be constant.

So, you will see that you will have the simplest function you can think of this will be a

(Refer Time: 40:42) function with which will shows up as a (Refer Time: 40:46) function

above which is invariant under the lattice. 

Under the translations by the lattice, it will have a double pole just like the phi function,

that we saw for the case when this was one and that was tau, it will have again a double

pole at each point of the lattice with residue 0 and again what happens is that you will get

you will get a (Refer Time: 41:15) function let me call this as P sub omega 1 comma

omega 2 and this will take values in C union infinity this is the Riemann’s sphere this

will  be the Riemann’s sphere and of  course,  it  will  go down to give you will  get  a

function here which is a simplest metamorphic function you can think of on a complex.

Now, and how do you define this P sub omega 1 comma omega 2 it is the formula is

literally  the  same form same as  the  formula  that  we that  we used to  define  the  phi

function when omega 1 was one and omega 2 was tau. So, the formula is pretty the same

pretty much the same. 
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So, you see phi sub free sub omega 1 comma omega 2 of z turns out to be 1 by z square

plus summation omega varying over this lattice of omega 1 comma omega 2 omega not



equal to 0 1 by z minus omega the whole square minus 1 by omega square, it is a same; it

is literally the same of the same form as you as the as the phi function we define then

omega 1 was 1 and omega 2 was tau.

So, phi tau of z is just phi in this notation it is phi 1 comma tau the original the function

that we defined earlier is just phi 1 comma tau you take omega 1 as 1 and omega 2 as 2

then again you can see that the arguments that we had for P tau of z about its properties

we will  all  hold for  this  and.  In fact,  again just  like P tau of  z  satisfied differential

equation this will also satisfy a differential equation alright. So, what will happen is that

you will get this will satisfy the differential equation? 

So, that is the that is the same its literally the same differential equation that we had

earlier and that s going to be well P phi prime square is equal to 4 phi cube minus g 2 phi

minus g 3 you are going to get the same differential equation where of course, this phi is

phi sub omega 1 comma omega 2 you are going to get the same differential equation and

you can continue to factorize it as 4 times phi minus e 1 into phi minus e 2 into phi and

into phi minus e 3 and to determine what e 1, e 2 and e 3 are we look at the 0s of phi

prime and you find that e 1 is actually phi of omega 1 by 2 e 2 is phi of omega 2 by 2 and

e  3  is  phi  of  omega  1  plus  omega  2  by  2  you get  all  these  things  alright  and  the

arguments are exactly the same as they were when omega 1 was one and omega 2 was

tau ok.
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You can do you can try writing that out as an exercise and you will see that literally the

same arguments do it alright now well the advantage of this is that I can I mean the

advantage of all of this is that you know I can replace omega 1 by one and omega 2 by

minus tau where tau is in the upper half plane see in the original phi sub tau that we

defined tau was in the upper half plane. So, I could not replace tau by minus tau because

if tau is in the upper half plane minus tau is in the lower half plane and I have not defined

the phi function when tau is in the lower half  plane.  So, it  is only to overcome that

difficulty that I am looking at this more general phi function; now what I want to tell you

is that.

So, I want to tell you that if you now look at this these functions yes. So, what I want to

tell you is that I just want to say that if you now put omega 1 equal to 1 and omega 2

equal to tau, but now do not assume tau to be just assume tau to be imaginary non real

assume it to be complex not real. So, it could lie in the upper half plane or it could lie in

the lower half plane then these 3 become functions of tau on the which may lie either in

the upper half plane or in the lower half plane alright, then I want to say that these 3 as

functions of tau they are real on the imaginary axis. So, you see. So, let me write that

down.

(Refer Slide Time: 47:41)

So, you see e 1 note that e 1 is actually a function of omega 1 and omega 2 that is I mean

each of the e I s are a function of omega 1 and omega 2.



So, the e 1 is phi. So, from here onwards phi is actually phi sub omega 1 comma omega

2. So, the phi depends on omega 1 and omega 2 alright. So, e 1 is this phi of omega 1

comma omega 2 evaluated at omega 1 by 2. So, what you must understand is though I

write e 1 is P of omega 1 by 2 you should not misinterpret it to think that e 1 depends

only on omega 1 e 1 also depends on omega 2 similarly e 2, e 3. So, all the a s are

functions of both omega 1 and omega 2 alright. Now see the fact is if a tau is if tau is a

purely imaginary if tau is purely imaginary; that means, either tau is in the upper half

plane or a and in the on the imaginary axis or it is in the lower half plane and on the

imaginary axis.

Then the e i of tau or all real they are all real value then these a s are all real value and

what is e what is the proof for that. So, let me take let me compute. So, you know so, but

before this I need to tell you I need to ask you to put omega 1 equal to 1 omega 2 is equal

to tau which is not an element of which is not real. So, put omega 1 equal to 1 put omega

2 is equal to tau where tau is not real and then the fact is if this tau the tau may see tau is

not real. So, it could still have a real part tau is not tells you that it has an imaginary part

which is not 0 it could have a real part if further that real part is 0; that means, that is the

case when tau is purely imaginary then I say that e I of tau are all real value.
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So, you see. So, when I write e i of tau now it is really a function of only tau because the

only variable here is tau alright; now let us calculate this for example, what is e 1 of tau e



1 of tau is by definition P of 1 comma tau of 1 by 2 this is what it is by our definition and

you see this is what is this; this is by our definition it is one by one by 2 the whole square

plus summation over omega in the lattice generated by one and tau omega not equal to 0

one by one by 2 minus omega the whole square minus 1 by omega square this is what it

is this is what e 1 of tau is.

Now, you see calculate e 1 of tau conjugate calculate e 1 of tau conjugate e 1 of tau

conjugate if i. So, if I take conjugate on this on this side if you watch this is not going to

be affected if I take conjugate here you see what s going to happen is that this omega is

going to be replaced by its conjugate. So, what I will get is I will simply get one by one

by 2 the whole square plus summation over omega in L 1 comma tau omega not equal to

0 I simply get one by half minus omega bar the whole square minus 1 by omega bar

square this is what I will get alright now you see that if tau is purely imaginary, then tau

bar is minus tau. 

So, what you will see is that you see that this will be the same as this which will tell you

that therefore, that e 1 of tau is real if tau is purely imaginary. So, because you see what

is omega bar see omega bar will be an element of the form n plus m tau I mean omega

will be an element or element of the form n plus m tau therefore, omega bar will be an

element of the form n plus m tau bar ok.

So, you know this can be written as 1 by 2 the whole square plus summation over well

omega belonging to L of 1 comma tau. So, now, you see I replace omega bar by omega if

I replace omega bar by omega in the summation I have to replace tau by tau bar alright.

So, I have to put tau bar and I will have to put omega not equal to 0 and I can write the

same old expression I can now write it as half minus omega the whole square minus 1 by

omega square I can do this because I have replaced omega by omega bar and replacing

omega by omega bar is to compensate for that I will have to replace tau by tau bar, but

you see tau bar is if tau is imaginary tau bar is minus tau. So, L of one comma tau bar

will become L of 1 comma minus tau, but the lattice generated by one and minus 2 is

same as lattice generated by 1 and tau. 



(Refer Slide Time: 54:19)

So, this will be simply equal to e 1 of tau if tau bar is equal to minus tau.

So, the moral of the story is that if tau is imaginary then tau is purely imaginary then e 1

of tau is real alright. So, from this it follows that lambda is real because lambda was

cooked up from these things. So, let me write that down. 
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So this is thus e 1 of tau is real if tau is purely imaginary similarly e 2 of tau e 3 of tau

are real if tau is purely imaginary. So, this implies that lambda of tau which was defined



to be e 3 of tau minus e 2 of tau by e 1 of tau minus e 2 of tau this is how lambda of tau

was defined.

This turns out to be real if tau is pure is purely imaginary. So, this completes the proof of

this statement that lambda is lambda is real on the imaginary axis. So, this is the next

statement that one has to prove and I will do that in the next lecture.  


