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So, in the last lecture you see we got the differential equation that is satisfied by the

Weierstrass phe-function for a torus. So, let me write that differential equation down. So,

you see.
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So, we have a tau in the upper half plane set of all complex numbers is it imaginary part

of this z is 0, and corresponding to tau we have the lattice defined by tau which is the set

of all m plus n tau, where m and n are integers. Then we have the torus defined by tau

which is simply the complex plane modulo L tau and this is going model the equivalence

relation if given by translation by an element of L tau.

So, in other words 2 complex numbers are said to be related, if one is a translate of the

other by an element of L tau and this is you know this is the this is the complex torus

associated complex one dimensional torus. It is a compact Riemanns surface of genus

one right which is associated to this torus I mean which is associated to this this element

of the upper half plane. And of course, we associated to this tau, the Weierstrass phe-

function p tau of z which is 1 by z square plus sigma omega in the lattice omega not

equal to 0, 1 by z minus omega the whole square and so on by omega squared. So, this is

a Weierstrass phe-function.

And then we showed in the  last  lecture  that  this  phe-function  satisfies  a  differential

equation  now, and  that  differential  equation  is  just  to  write  it  correctly. P tau  z  the

derivative  the  whole squared is 4 times p tau z whole cube minus g 2 times beta of z,



minus g 3 where g 2 is summation of summation over omega in the lattice omega not

equal to 0, 1 by omega power 4 and I think there is a constant which is going to be I

guess 6 there is this whole thing in to 60, and g 3 is summation over omega in the lattice

omega not equal to 0 of 1 by omega power 6 in to 1 4 0 140 these were the constants that

we got and this was the.

So, I was telling you last time that somehow this differential equation I mean if you call

p of tau as a variable x and p dash of tau as another variable y, then this is the equation y

squared equal to 4 x cubed minus g 2 x minus g 3 which is the equation of a cubic. It is a

cubic polynomial equation and that is the first hint of the fact that of the fact that the

torus is actually algebraic we will see that later. But for the moment you see the aim of

our discussion has been to show that you wanted to show that the set of holomorphic

isomorphic  some classes  of  tori  namely  the  set  u  mod PSL to  zee,  which  we have

managed to make in to a Riemanns surface; the upper half plane modulo the action of the

unimodulor group PSL to zee ok.

We have managed to make that in to a Riemann’s surface and we want to show that that

is holomorphic isomorphic to the complex plane as with the natural Riemann’s surface

structure. So, you see this as I was explaining last time, this leads us to find invariants for

tori; quantities which depend only on the holomorphic isomorphism class of a torus. So,

you try  to  attach  to  every torus  a  quantity, which depends only  on the holomorphic

isomorphism class of the torus. But you see this  means that you are trying to find a

function on the upper half plane which is invariant under PSL to zee, because the orbits

of PSL to zee in the upper half plane are precisely, the holomorphic isomorphism some

classes of tori. 

So, the aim is somehow that you want to cook up your function on the upper half plane,

which is invariant at the action of PSL to zee that is what you want. So, and I told you

that because of the philosophy you are trying to find invariants for tori and therefore,

somehow the value of the invariant at a given point tau, has to do has got to do with the

geometry of the torus that it defines, and then you know we took in by the general we

took in the general philosophy that you see the geometry of the torus should be dictated

by the functions that it allows. And searching for such functions is what led us to get the

Weierstrass  phe-function,  and then we got  this  differential  equation alright.  Now the



reason we got it is because we can use this to cook up a function on the upper half plane

a complex function on the upper half plane in fact, an analytic function ok.

Which will be a kind of invariant to begin with what I am going to construct today is

what is called as the it is called a modular function alright, and this modular function will

finally, I want a function which is invariant under the whole group PSL to zee, but for the

moment I will begin by constructing a function, which is invariant under what is called a

congruence mod to subgroup of PSL to zee; namely a subgroup of matrices which are

congruent to identity, when you read the coefficients mod 2. So, I will explain that. So, to

begin with what you do is. 
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So, this is to recall but now, let us take this differential equation and you know write it in

the following form; p prime tau of z the whole squared is equal to let me write this as

well 4 times p tau z minus e 1 in to p tau z minus e 2 in to p tau z minus e 3 let me write

it in this form alright. So, in other words you see the I am thinking of the right side as the

polynomial 4 x cube minus g 2 x minus g 3. So, you take 4 x cube minus g 2 x minus g 3

this is the polynomial alright of degree 3, and it will have 3 roots alright. So, if you write

those roots if you write the factorization in terms of the roots, the factorization will look

like this  it  will  look leading coefficient  into x minus the first  root,  into x minus the

second root in to x minus the third group. Of course, it is true that you see x is p tau



therefore; it is obvious that since x depends on tau your e 1 e 2 e 3 will also depend on

tau. You must understand that e 1 e 2 e 3 are also functions of tau ok.

So, they will change if you change tau alright. So, enter and the point is the key is to find

what this e 1, e 2, e 3 are. So, to find you see we would like to look at when for what for

what  values  of  z this  side vanishes.  Because on this  side I  have p tau prime whole

squared if this vanishes, this will vanish only for values of z for which either one of the 3

has to one of the 3 vanishes. So, I am just trying to find out for what values of z will be

tau of z be a equal to one of the e i and this will be precisely the values of z, for which

the derivative vanishes because of this differential equations. 

So, this is where and this is how I am using this differential equation. So, let me write

that down, the values of z for which p tau of z is one of the e i are precisely the zeroes of

p tau prime of z. This are precisely zeros of this function which is on the left alright now

let us try to. So, I first try to tell you that there are 3 easy zeros that you can guess. So, let

omega be an element of that lattice. So, then you see if I take p tau of omega minus z; let

me calculate p tau omega minus z, see this is you see therefore, you know omega is in

the lattice. Therefore, omega is of the form n plus m tau alright. So, I take p tau of omega

minus z and this is you see this is p tau of z minus omega that is because p tau is an even

function alright the Weierstrass phe-function is an even function which you can anyway

see by looking at this this series expansion it involves only even powers right. And you

see since omega since omega is a period this also equal to P tau of z.
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So, now, you take the first one and the last one and differentiate with respect to z. What

you will get is, you will get if you difference is the first one I will get minus p tau prime

of omega minus z is equal to p tau prime of z. And now you see suppose I plug in z zee is

equal to omega by 2 in this. Put z zee equal to omega by 2 what you will get is you will

get that omega by 2 is a 0. So, you will get 2 times p tau prime of omega by 2 is 0. So,

this implies p tau prime vanishes at omega by 2, for every omega in the lattice.
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So, in particular if you know if you look at the.



So, let me draw this this period parallelogram, this fundamental parallelogram namely

the parallelogram formed by the generators of this lattice. So, you see you have 1 here

and well you have tau somewhere here. So, this is a complex plane and this is upper half

plane and tau is there and I have this parallelogram here, this point is 1 plus tau and well

the 3 zeroes I can immediately 3 distinct zeros I can immediately spot the closure of that

parallelogram are of course, half tau by 2 and 1 plus tau by 2.

So, I will get a 0 here this will be tau by 2 and of course, I will get a 0 here which is half

and then I will get a 0 here this is going to be 1 plus tau by 2. Of course, you have to be

careful that here omega is not 0 because I cannot put omega equal to 0 here, because the

derivative at 0 is not defined. So, the point I want to make is that, you see if you shift if

you translate this parallelogram a little bit so that these 2 zeros are not on the boundary

of the parallelogram, then my claim is that these are the only 3 zeros and they are simple

zeros for p prime tau ok.

So, the claim, let me draw the parallelogram which is slight shift of this parallelogram so

that these two zeros come inside the parallelogram translate of this parallelogram. So, let

me draw it. So, it should look something like this, let me let me put tau by 2 here and so

that I can. So, let me draw a parallelogram like this, and let me write the half here and

here is translate of this parallelogram let me call this parallelogram as O, A, B, C let me

call this parallelogram. So, A, B, C and well and let me if I want to integrate along the

edges of this parallelogram as a closed path, then the orientation I take is the counter

clockwise orientation.

So, the orientation is like this so, but the claim. So, the claim is the following. The claim

is the only zeroes of p prime tau of z in this translate in O, A, B, C are these 3 1 by 2 tau

by 2 and 1 plus tau by 2 and these are simply zeros. So, this is the claim; the claim is that

these are simply zeros. So, how does one see that, the first thing that one needs to use is

the so called. So, you will have to use the argument principle and you also have to use

the residue theorem at the same time. So, for that what you do is, consider you consider

this integral I integrate over O, A, B, C which is a closed path with the orientation the

way I have drawn it, and I am going to integrate the function p tau prime the whole

prime by p tau prime or z d z ok



I am going to look at this interval alright. Now on the one hand you see because p sub

tau the phe-function is doubly periodic, this function continues to be doubly periodic and

with periods 1 and tau therefore, if you calculate the, if you break this integral in to 4

pieces one along each edge of the parallelogram, then you see the integrals the car the

contributions for the opposite edges will cancel that is because of periodicity. So, this is

equal to 0 which is. So, let me write that which is 0, because the integrand is periodic has

periods 1 and tau.

So, I am again and again using this fact that you see the I mean another way of stating

this is trying to say that the sum of residues of an elliptic function is always 0. And this is

an elliptic function it is meromorphic and it is periodic with respect to both 1 and tau and

that  result  also  comes  in  the  same  way,  because  you  integrate  over  a  suitable

parallelogram  like  this  and  then  you  see  that  the  integral  automatically  becomes  0

because of periodicity.

On the other hand the residue theorem tells that this is 2 pi i in to sum of residues of the

function, at the poles inside this parallelogram right. So, this is on the one hand 0, on the

other  hand what  is  the argument  principle.  See the argument  principle  tells  you that

integral  of  f  prime  by  f  d  z  will  be  2  pi  i  times  number  of  zeros  counted  with

multiplicities minus number of poles counted with multiplicities.
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So, let us apply that it is also equal to by Riemann’s principle this will be. So, this is our

this integral is already 0 I have. So, I will get on the left side I have 0, that is equal to. So,

number of zeros in O, A, B, C and when I of course, you know when you take number of

zeros  you  have  to  count  them  with  multiplicity  you  have  to  count  zeroes  with

multiplicities, when you come poles you have to count poles with multiplicities. So, it is

number of zeroes in O, A, B, C counted with multiplicity minus number of poles in O, A,

B, C counted with multiplicity, but for which function for the function. So, this is for phe

prime sub T of z.

So, here let me write that for phe prime sub T of z and here also it is for T prime sub T of

z and it will be this in to well 2 pi i this is argument principle. Now you see you know p

prime tau of z has you know that it is it has precisely a pole of order 3 at each lattice

point; because you see if you recall we have this p prime tau of z is equal to minus 2

sigma omega in the lattice 1 by is at minus omega the whole cube. We have this we get

this  by  differentiating  this  term  by  term,  which  you  can  do  because  of  uniform

convergence right and this clearly tells you that at each lattice point you have a pole of

order 3 alright. So, in this parallelogram the only pole is at 0, and it has to be counted 3

times.

Therefore, the number of poles this is 3 alright minor and here I will get number of zeros,

and the zeros the only zeros are these 3 and they will occur with some multiplicities it is

no. So, let me write that suppose I write n sub n of half as a multiplicity of 0 at half plus

n of tau by 2 as multiplicity of the 0 at tau by 2 and n of 1 plus tau by 2 as a multiplicity

of the 0 at 1 plus tau by 2, then this is the sum this is the number of zeros counted with

multiplicity, and this in to 2 pi i this is equal to 0 what does it imply? It means that each

one has to be at least 1 so, but the sum is 3 therefore, each one has to be 1.

So, the moral of the story is it tells you that these are 3 zeros, and each of these zeros are

simple zeros plus it also tells you that you cannot have any other zeros because otherwise

this you want this will because the sum of all the zeros counted with multiplicities has to

be equal to 3. So, this implies. So, that implies this claim. So, this implies claim. So,

what we have proved is that the zeroes of p prime are precisely these. And now the next

thing that I want to say is well. So, where are we? So, we are we know that for z equal to

half and tau by 2 and 1 plus tau by 2, p tau of z will be either e 1 or e 2 or e 3. So, let us

put. So, we can put. So, put e 1 to be you know p tau of half, e 2 to be p tau of tau by 2,



and e 3 to be p sub tau of 1 plus tau by 2. Because e 1 e 2 e 3 are precisely the values that

p tau has to take in order for the right side to be 0 and that means, these have to be zeroes

of p tau prime p prime. 

So, we do this. So, see we have managed to find what these for what values you will get

zeroes on the left side on the right side by looking at the zeroes on the left side alright.

Now the next thing that I want to tell you is I want to make another statement I want to

make the statement that none of. So, you see now already what you see here is that there

is a dependence on tau. See this is what we are originally looking for because we are

trying to cook up a function on the upper half plane and tau is varying in the upper half

plane. So, you see tau is showing up already alright, but we have to make sure. So, first

thing is I claim that e 1, e 2, e 3 are all distinct. I claim that even can never no matter

what the value of tau is e 1 can never equal e 2; e 2 can never equal e 3; e 1 can never

equal e 3. So, that is the next claim alright. So, let me write that down here claim.
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E 1 is not equal to e 2; e 2 is not equal to e 3 and e 1 is not equal to e 3 for any tau in the

upper half plane. I came that all these values are different, e 1 if you fix a tau then you

get 3 values of e 1, e 2, e 3 and these 3 are three distinct values and how does one prove

that. So, that involves trying to understand what is called the order of an elliptic function.

So, let me define this. So, you see let. So, let me do the following thing let maybe. So, let

f of z be an elliptic function with respect to L of tau.



What does it mean? It means that it is w periodic function, which is meromorphic which

is that is it is analytic except for pores ok. That it is periodic with periods 1 and tau and is

meromorphic. Meromorphic means the only singularities that are allowed are poles. So,

you take a general elliptic function, this elliptic function connected to this lattice alright.

Now of course, you know what this means is that you are considering on the complex

torus, a general meromorphic function because they a function a function like this. So,

what is this? This is a function which is in which goes from C minus the lattice to so in

fact; I should say C minus set of poles, it goes from C minus set of poles to C. So, this is

my function f and if you want you can also consider it as you can extend it to a function f

from C to C union infinity, you allow you set the value of f at a pole as infinity.

So, you get you can also think of it as a holomorphic map in to the Riemann’s sphere and

the point is that since it is invariant under the lattice, it will go down to this torus that is

this projection map which is going modulo L tau that goes to T tau which is just C model

tau and you get that. Therefore, you get a map like this. So, you get a map like this. So,

maybe I can call  this as f bar and this diagram permits.  And of course, the fact that

because this is a locally by holomorphic map because this is a universal covering it is a

holomorphic  universal  covering  it  is  locally  by  holomorphic  therefore,  this  guy  is

holomorphic

So, in per in other words what is f bar? F bar is a holomorphic map from this complex

torus in to C you in infinity, that in other words it is a meromorphic function on the torus

I which means it is going to be holomorphic, at the torus minus image of all these poles

and you see all these poles if it has a pole at one point, because of periodicity, it will have

a pole at every translate of that point by the lattice and all these will go down to a single

point in the torus below.

So, it will have and b and you see therefore, we get a meromorphic function alright and.

So, I am and such a function is what is called an elliptic function, and we our standard

example is the basis p function and it is derivative alright. So, take a general elliptic

function and see I am trying to define what is meant by the order of such an elliptic

function. 

So, you see, I make the following claim. So, let me write this number of times f assumes

a value lambda in C; look at the number of times the function assumes a value lambda in



C, now that will be equal to the number of zeros f minus the number of zeros of f minus

lambda. So, the centerfolds z where f of z equal to lambda is precisely the set of all zeros

of f of z minus lambda, and the fact is that the number of zeros of f minus lambda. So,

you know suppose I am looking at only number of times f assumes a certain value, and

suppose I look at that only in a translate of this fundamental parallelogram in a translate

such as O, A, B, C of course, I am sorry to call this also as O because this is one that is

O. So, I did not confuse. So, this is this is the origin and this is it is bad notation. 

So, you see you take a translated parallelogram like this and I am considering my I am

confining  my  attention  only  to  number  of  values  number  of  places  inside  this

parallelogram, where the function is taking the value lambda. So, let me write that. So, I

am not trying to write that because it will be too much write down, but let me again

repeat when I say number of times f assumes a value, I am looking at only values inside

a translate of the period parallelogram that this basic parallelogram.

So that I translate it so that the edges of parallelogram do not have do not hit any poles I

mean that is all I want. I do not want the edges of the parallelogram to hit any poles of

this function and I look at the number of times f assumes that value. Then this will be

equal to the number of zeros of f minus lambda, but you see we have just, but you see f

minus lambda is I claim that this is number of poles also of f minus lambda. That is

because you see the number of 0 is minus number of poles will be integrating f minus

lambda derivative by f minus lambda, which continues to be doubly periodic.

So, again I am using the argument principle alright. So, the number of zeros of f minus

lambda will be equal to the number of poles of this will be equal to the number of poles

of f  minus lambda, and you see translation is not going to affect your pole then the

number of poles of f  minus lambda I  mean these are the points where f is  going to

infinity; and if f is going to infinity then f minus any constant complex number will also

go to infinity. So, this is also going to be equal to number of poles of f. 

So the moral of the story and mind you and this is exactly number of times f assumes the

value infinity. The number of times at  a pole f assumes value infinity. So, what this

calculation tells you. So, of course, at this point I am using argument principle, literally

replacing the numerator by f minus lambda derivative and put here f minus lambda. So,

whatever I proved; I proved that an elliptic function will assume each complex value



including the value infinity, exactly the same number of times. It cannot assume one

value many more times than it assumes another value and this number is called the order

of the elliptic function. This is called this is equal to order of the elliptic function; this is

the order of the elliptic function f alright. So, we have already we have examples of this.

So, you see. So, the examples that we have seen or you know phe. So, you see zeta. So,

phe of z this order 2 well and it is derivative is order 3 and so on.

So, now, you see now this is enough to show this is enough to prove my claim. See

because if e 1 is equal to e 2, then you are saying that this value common value which is

e 1 or e 2 is assumed at half and at tau by 2, but you see at half already it is assumed

twice because you see at half it is already assumed twice, and at tau by 2 it is assumed

twice because order is 2 because order is 2 it will assume each value twice. So, at half it

will assume the value e 1 twice at tau by 2 it will assume the value e to twice that is

another way of saying that p tau of z minus e 1 has a 0 of order 2 at half P tau of z minus

e 2 as a 0 of order 2 at tau by 2.

But if the e 1 is equal to e 2 what it will tell you is that, it will assume that common value

which is equal to e 1 and e 2 4 times that is not possible because of because it is order 2.

So, this is the argument that will imply the claim, that none of the e i is the e is are all

distinct and this is extremely important alright. So, this implies the claim above see the

point is that since f see the elliptic function f suppose. So, at least phe it assumes the

value infinity twice because it has a pole of order 2.

So, what will happen is that you will have the same. So, it will assume each value twice,

it cannot assume a value 4 times and the point is each value it assumes at a point with

multiplicity 2, it add it assumes each value at a given point with multiplicity 2 right. So,

that is the reason why these 3 are all why the e i’s are all distinct. Now what you do is

now we really take advantage of the dependence on top. So, we do the following thing.

So, let me use this side of the board. So, you see what I am going to do is a I mean it is

very clever trick. So, what you do is the following. So, you take. So, you again look at

this carefully.
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E 1 is p sub tau of half and well what is it let us expand it this is well I have to substitute

z zee is equal to half. So, p tau of z is 1 by z squared plus sigma omega in the lattice of

defined by tau omega not equal to 0, 1 by z minus omega the whole squared minus 1 by

omega squared.

And I have to substitute z zee is equal to half right well. So, if I do that well I will get 4

by z squared here plus well here what I will get is, let me rewrite it as sigma over m

comma n an ordered pair of integers and m comma n not equal to 0 comma 0, and here I

will  get  1  by  said  this  half.  So,  it  is  half  minus  m minus  n  tau,  because  omega  is

supposed to be m plus n tau as m meant and vary that is how you get the lattice and of

course, you do not include 0 here because the contribution for 0 is already out there. So,

it sorry I think this there is no z here.

So, I put z equal to half. So, I will simply get 4 and that will just be 4 and then I get

minus 1 by well omega squared is going to be m plus n tau the whole squared this is

what I am going to get if I put z equal to half. Now look at it carefully, you will see that

if you forget the lattice, that is the reason why I wrote the summation over zee cross zee

forget the lattice. Notice that this never vanishes see because purposely half is not a point

of the lattice and this of course, converges. So, you can see very clearly that in the upper

half plane as tau varies, this is an analytic function. This is an analytic function of tau on



a upper half plane see the clever thing is. So, you see e 1 depends on tau; e 1 is e 1 of tau.

So, if you want I should write I should be careful and write e 1 is equal to e 1 of tau.

Now, look at it as a function of tau it is very clear that this is an analytic function of tau.

In the same way you plug in for the other 2 roots this other 2 zeros of the derivative of

the phe-function. So, you will get e 2 of tau and e 3 of tau are also analytic functions of

tau in the upper half plane alright they are also analytic functions of tau. So, by looking

at the zeros of the derivative of the weierestrass function, you have produced 3 analytic

functions on the upper half plane, and now the trick is your defined lambda of tau to be I

think it is e 1 e 3 minus e 2 by e 1 minus e 2. So, you define it as e 3 of tau minus e 2 of

tau by e 1 of tau minus e 2 of tau you take this ratio. Notice that I told you for no value

of tau these are all the same, the I am short of that is e 1 of tau will never be e 2 of tau.

So, this will always be analytic, e 3 of tau will never be e 2 of tau for any given tau. 

So, it is never going to be 0 alright. So, what I am going to get and you see e 1 is not

equal to e 3. So, this is never going to be 1. So, what I get is, I get a analytic function in

the upper half space on the upper half plane which is never 0 which is never 1 and this is

going  to  be  the  modular  form that  is  going  to  first  give  you something  that  is  not

invariant under the whole unimodular group, but it you I will prove in the forthcoming

lectures that this will be invariant under the under subgroup of PSL to zee, the congruent

subgroup mod 2 alright. So, let me write that down.

So, then lambda of tau is analytic on U on the upper half plane, and is never equal to 0 or

1  and why this  function  is  so  important  is  because  it  will  you will  see  that  if  you

compose this function with an automorphism upper half space given by a unimodular

matrix which is whose entries if you read mod 2 you get the identity matrix, then this

function is invariant. So, such see usually functions which are analytic are meromorphic

functions holomorphic or meromorphic functions are invariant under certain group of

mobius transformations, they are called automorphic functions or automorphic forms and

those  which  are  invariant  under  the  unimodular  group  PSL to  zee,  they  are  called

modular forms. So, and this is a modular form which is not a modular form for the whole

uni modular group, but it is a modular form of for only the congruence of group mod 2;

namely those matrices in PSL to zee, whose entries if you read them mod 2 you get the

identity matrix 2 by 2 identity matrix. 



So, that is the importance of this function and. So, this is how you see we cook up one

part this is a partial invariant you can think of it as a partial invariant and then use this to.

So, what we will do is, we will use this to build a function which is invariant under the

full modular group, and that is a function we are looking for. Because we are trying to

get hold of a analytic function on the upper half space which is invariant under the whole

or unimodular group PSL to zee this is. The first step is to get this modular form of way

2.

So, we will do that in the forthcoming lectures.


