
An Introduction to Riemann Surfaces and Algebraic Curves: Complex 1-
dimensional Tori and Elliptic Curves

Dr. Thiruvalloor Eesanaipaadi Venkata Balaji
Department of Mathematics

Indian Institute of Technology, Madras

Lecture – 31
The First Order Degree Two Cubic Ordinary Differential Equation satisfied by the

Weierstrass phe-function

 (Refer Slide Time: 00:09)

(Refer Slide Time: 00:17)



So, last time we have looked at what the Weierstrass phe-function is which is essentially

you know the basic meromorphic function that you can define on a torus. So, let me

recall that.
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So, our usual notations, where tau was a complex number in the upper half plane. So,

this is a set of all complex numbers z such that imagery part of z is positive. And we

associate to tau a torus complex torus, how do we do that we define the lattice L of tau

this is the set of all m plus n tau, where m and n are integers; and your torus is just gotten

by going modulo this lattice. So, you have the map a natural projection from C to C

modulo the lattice, and this is what is called as the torus associated to tau T tau and of

course, this map is pi sub tau.

And of course, so this quotient is the set of equivalence classes where the equivalence

relation is two complex numbers are e are declared equivalent if their difference is an

element of this form. Another way of saying it is that each element of L of tau acts as a

translation on the complex numbers and if you go a modulo that action so this is an

abelian  group which  is  just  isomorphic  to  z  cross  z.  And this  acts  on c,  and this  is

precisely the set of orbits. And we know that this is a this is a universal covering with the

a deck transformation group equal to the fundamental group of the torus which can be

identified with the L of tau yeah.



So, the point is we define the Weierstrass phe-function, so the Weierstrass phe-function

was defined. So, phe of z this is phe sub tau of z. So, this was a Weierstrass phe-function

that was defined on C union infinity I mean it is defined on c with values in C and

infinity the sense that it is a meromorphic function. So, it is a meromorphic function with

precisely a double pole at each point of this lattice with sum of residues 0. And we had a

series  expansion  for  the  Weierstrass  phe-function,  which  was  1  by  z  squared  plus

summation over omega in the lattice omega not equal to 0 of 1 by z minus omega the

whole squared minus 1 by omega square.

So, we saw that this series converges uniformly and compact subsets outside points of

this lattice. And at each point of the lattice of course, this is at each point omega of the

lattice including omega equal to 0, this has a pole of order two and there are no other

singularities.  So,  it  is  a  meromorphic  function.  So,  this  function  is  a  meromorphic

function. And it has been normalized, so that the Laurent expansion at the origin has

singular part 1 by z squared, so that was a normalization. And we also know, we also

showed that this Weierstrass phe-function is a doubly periodic function. So, it is what is

called an elliptic function. It is doubly periodic function, which is meromorphic in the

sense that you know if I replace z by any element by translation by any element of this

lattice, I get back, I get the same value.

So, one is a period for the Weierstrass phe-function,  and tau is also a period for the

Weierstrass phe-function that means, phe of is z plus 1 is also phe z from which you can

inductively deduce at phe of z plus m for any integer m is also phe of z. And tau is

another period and phe which means phe of is z plus tau is phe of z from which you can

deduce inductively that phe of is z plus n tau is also phe of z and if you put both together

you will get this. So, we proved this last time of course, m and n are of course integers

and it is assumed that z is not one of the lattice points because at the lattice points the

function is not defined as it is a pole. As z tends to any lattice point you know that this

quantity goes to infinity and that is the reason why we write this map as a holomorphic

map into cu in infinity, which is the Riemann sphere given the natural complex structure

on the Riemann sphere that we have already seen.

So, well, we got the Weierstrass phe-function, because were searching for some functions

on the torus. And we realized that we could not have holomorphic functions on the torus

with complex values,  because they will  reduce to constants.  Therefore we had allow



poles and then we realized that such a function if you have such a function defined here

if you composite with pi tau you will get a function on top. So, you will have function on

top and that function should be periodic with period one and tau. So, functions on the

torus will give you rise to functions on the complex plane which are doubly periodic and

conversely a doubly periodic function on the complex plane with periods one and tau

will define a function on the torus and then of course, holomorphic functions are not

allowed.

So, you are forced to allow, I mean you have your forced allow singularities, I mean by

holomorphic functions I mean holomorphic functions are not constant. And then we saw

that you the easiest thing we could do is to allow for pole of order two at each lattice

point because you cannot have a simple pole because sum of residues will be 0. So, you

cannot have a simple pole. So, we had to have a pole either you had to have a pole of

order two at each lattice point with sum of residue 0 or you must have allow for two

poles with canceling residues, so that the sum of residues is always zero. So, finally, we

got this Weierstrass phe-function. So, what is the aim of this lecture. So, you see let me

again recall why we are doing all this, so that you know we get the broad picture as I

explained in an earlier lecture.
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See our aim was to show that you know or the upper half plane, if you go modulo the

upper half plane by the the unimodular group PSL 2, z these are mobius transformations



of the form z going to a z plus b by cz plus d with abcd integers. And ad minus bc is

actually plus or minus 1. And we see you have already seen how this can be made into a

Riemann  surface.  And  our  aim  is  to  show  that  this  Riemann  surface  is  actually

isomorphic to C, it is actually isomorphic as a Riemann surface to the complex plane, so

that means, you would have to find an isomorphism of this Riemann surface with the

complex plane.

Of course, you will recall that trying to get this Riemann surface use the fact that we real

we realized that even though PSL 2, z has fixed points in its action it was acting we were

able to do to prove that it acted properly discontinuously. And the region of discontinuity

contained u and therefore, that you can go mod this to get a Riemann surface structure on

the quotient, so that this map becomes holomorphic in particular it becomes a maps of

map of Riemann surfaces. 

And we also noted that over every point of view given a point of view where there is this

non trivial stabilizer for this group, we noted that that was a point of ramification. So,

this  is  a  ramified  cover,  but  the  point  is  we  also  next  wanted  to  show that  this  is

isomorphic to C. So, that means, that you have to construct a holomorphic function on

this  which  whose  image  is  c,  and  which  is  injective  and  which  is  surjective.  So,

essentially you want to have functions on this. So, you want an isomorphism of this with

C, and well I will I will let me call this is for the moment let me call this as j.

So, I want to construct this holomorphic function j,  which is an isomorphism of this

Riemann  surface  with  c  for  the  complex  plane  given  the  natural  Riemann  surface

structure. So, you see, but of course, you know constructing a function like this is would

mean in particular that your function like this. It will mean that you have function like

this, suppose I call this function as say j tilde, and then this diagram commutes namely

this arrow is just this compost to this. And since this is also holomorphic that is also

holomorphic, so you are having a holomorphic map from the upper half plain to C. And

the fact that this holomorphic map goes down to a map below a will it should tell you

that this map j tilde is going to be constant on orbits of PSL 2, z.

So, trying to construct any function here is the same as trying to construct a function on

the upper half plane which is constant on PSL 2, z orbits, but we have already seen that

the  all  the  elements  in  PSL 2,  z  orbit  they  correspond  to  exactly  to  holomorphicly



isomorphic complex Tori. So, we have already seen that this is this can be identified with

the holomorphic isomorphism classes of complex tori of the form t sub tau and. In fact,

you  know  this  map  is  none  other  than  send  a  tau  in  the  upper  half  plane  to  the

holomorphic isomorphism class of the torus defined by the tau.

So, this pi is just the map pi of tau is just you take T tau and then you take this I put the

square bracket to say that this is holomorphic isomorphism class. So, if you believe that

you want to get the function here, you have to find your function which is constant on

holomorphic isomorphism classes of Tori, but usually a function which is constant on

holomorphic isomorphism classes in general. If a function is constant or isomorphism

classes, it  is called an invariant,  because it  is something that does not change if  you

change the isomorphism class.

So, the moral of the story is that somehow you are trying to find invariants for complex

Tori. And therefore, you see this these invariants for complex Tori should depend on the

geometry of the Tori. So, if you believe the philosophy that you know the geometry of a

space is controlled by the kind of functions you allow on the face on that space then you

will see therefore, that you are led to search for functions on the Tori and that search to

that search is what let us to the Weierstrass phe-function.

So,  somehow  I  will  have  to  use  the  Weierstrass  phe-function  to  get  hold  of  a

holomorphic invariant for the Torus that is I have to attach to each Torus a complex

number such that this complex number will not change if the torus is changed up to

holomorphic isomorphism. And how do I change the torus by holomorphic isomorphism

I do that by simply placing tau by another element which is in which is gotten from tau

by a unimodular transformation an element of this group. So, this is the story of how we

got the Weierstrass phe-function.

And now what  I  need  to  do  is  so  somehow I  will  have  to  using  this  phe  function

somehow, so I have got a function a nice function on each complex torus somehow I

have to use it to produce a function on the upper half plane which is going to be invariant

under the action of PLS 2, z. So, the key to that is beautiful differential equation satisfied

by the Weierstrass phe-function, which is what I would like to prove in this lecture. So,

that  differential  equation  is  of  at  most  importance  also  in  showing  that  every



holomorphic I mean every complex torus like this actually has an algebraic structure, so

that will also come out as a result of that differential equation.

So, let me state what the differential equation is. So, I will just say that if you want j here

you want a j tilde above. So, let me draw a line here we shall prove that the Weierstrass

phe-function satisfies the following differential equation differential equation. So, what

is  the differential  equation,  let  me write  it  down.  So,  the differential  equation is  the

following it is, so it is derivative of tau derivative of phe tau of z whole squared is equal

to 4 times phe tau of z cubed minus g 2 of phe of z phe tau of z minus z 3. So, this is a

differential equation.

You can see it is this involves the Weierstrass phe-function and it is derivative. So, it is

ordinary differential equation. And you can see that this is this a first order differential

equation and you can see this is of degree 2. And what are these g 2 and g 3, this g 2 and

g 3 are functions of tau. So, what is this g 2, see g 2 is I will write it down we will

compute it and tell and explain what this is, let me see what this is. 

So, this is g, so this is 60 times g 2 I am just referring to my notes, so that I do not make

a mistake in writing things down. So, it is 60 times sigma summation over all the lattice

points of 1 by omega power 4. So, g 2 is this quantity all right. So, where g 3 is 140

times summation over all the lattice points different from 0 of 1 by omega power 6. So,

you see that see g 2 and g 3, they depend on summation on the summations and the

summations depend on tau.

So, you must realize the g 2 and g 3 themselves depend on tau. So, g 2 and g 3 are not

are just some constants they depend on tau if you think of dependence on tau. And why

should you think of dependence on tau because you must always remember that you

must think of tau as varying over the upper half plane. So, therefore, you are trying to

find an invariant as tau varies you are trying to find any invariant for p tau that is a

quantity  that does not change if  you change t tau or that is if  you change tau by an

element of PSL 2, z. So, this dependence on tau should all never be forgot. So, this is a

differential equation.

Now, let me point out one thing immediately. You can see that this differential equation if

you call a phe of z as a variable x and phe prime z as a variable y, then this differential

equation becomes a the algebraic cubic equation y squared is equal to 4 x cube minus g 2



x minus g 3 that is an algebraic cubic equation. The equation of a cubic and that is the

first evidence to show that a complex torus has an algebraic structure. So, it is actually

what is called an algebraic curve and that yeah algebraic curve is called analytical and

analytical curve will generally have an equation of this form y squared is equal to 4 x

cube minus some constant into x I mean plus some constant with x plus another constant.

So, the point is the beautiful thing is that doing so much of analysis, and calculus and

getting this differential equation helps you to finally say that your object is algebraic. So,

we will see that also.

So, let me try to explain how we get this how we prove this differential equation. So, the

key to proving this  differential  equation  is  to actually  look at  it  look at  the Laurent

expansion and the  origin.  And well  the Laurent  expansion of  the  origin  for  the phe

function, we know pretty well that the Laurent expansion at the origin has this as the

singular part and this will be the analytic part. Now, the point is that you should write

this analytic part in a nice way, so that you can deduce this relationship. And the one way

to do that is to first get an anti derivative for the Weierstrass phe-function, so which is

what we will do first. So, so let me make the following remark. So, the first remark that I

want to make is well you take yeah, so you see the function.
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So, the usual notation is zeta of z, so zeta of z is defined as 1 by z plus summation over

elements of the lattice which are not zero and I put 1 by z minus omega plus 1 by omega



plus is z by omega square. So, I look at this function and the claim is that this function is

an anti derivative for the phe function for in fact for minus p tau of z. So, let me explain

why this is this is correct. 

So, the first thing is you take the phe function and look at each term here in the in the

series that defines the phe function look at each term. So, let us call each term as f sub

omega of z. So, f sub omega of z is for me 1 by z minus omega the whole squared minus

1 by omega squared. Now, this is a it is clearly an analytic function except for z equal to

omega the particular point z equal to omega, which is the lattice point where it has a pole

of order 2.

Now of course, you can integrate this function all right. If you integrate this function

over let say any path gamma, which is a path, so this is a complex plane and I choose z

to be a point which is not in the lattice. And what I do is that I choose a path gamma

from the origin to z and make sure that the path does not pass through any lattice points,

gamma does not pass through any lattice points that is you know points of L of tau, you

take such a path.

So, you try to suppose I integrate over gamma over that path of suppose I integrate this f

omega z dz. Well, this is if I you can see that this is integrating from zero to z of this

quantity 1 by z minus omega the whole squared minus 1 by omega squared and dz. Well,

I mean if you want to be a little bit more careful then maybe you should call this the dz

inside the integration as a different variable because my upper limit is also z, so that

should not confuse you. Well if I integrated, you know what I will get is I will get minus

1 by z minus omega minus z by omega square this is what I get plus of course, I will get

a constant; this is what I will get. If I naively integrate it, but you have to be careful

because this naive integration is correct only when the integral does not depend on the

path.

Now, the fact is that the integral does not really depend on the path that is because you

see if I replace this path by another path. So, of course, the path has to be directed, so I

am going from zero to z suppose I replace it by another path gamma prime. Suppose, I

replace it by another path gamma prime and also make sure the gamma prime is also not

going to pass through any lattice points, then I claimed integral over gamma is same as

the integral over gamma prime that is because you see the integral over this closed path



that is gamma prime followed by gamma inverse will actually the integral of that of this

function will be by the residue theorem, it will be 2 pi i times sum of residues of this

function.

And well there are two possibilities if omega is inside if omega is not inside then anyway

there  is  no  problem.  Then  the  function  is  analytic  in  this  region  inside  and  on  the

boundary and therefore, the integral does not depend on the path. On the other hand if

omega is inside then it will be to pi a sum of residues at that point, but sum of residues is

zero because you know this is the reason why we put this in the expression for phe of z is

because we wanted a double pole with residue zero. Therefore, this naive integration is

correct.

So, you can see that therefore, you know you can see that minus of this which is 1 by z

minus omega plus 1 by omega plus is z by omega squared is already these two terms

here. Now, the only other thing is to worry about the summation. So, you see that, so I

just recall a result that if you have a sequence of functions which are defined on a path,

and suppose a sequence of functions converges uniformly to a function. And suppose

each of these functions in the sequence is integrable, then if you integrate each of these

functions and then take the limit that will be the same as taking the limit and integrating

over the path.

So, in other words, so long as a sequence of functions converges uniformly on a path, it

will you can interchange limit and integration. And the same argument applied to partial

sums of a series of functions which are each of which is continuous will tell you that you

can integrate a series of functions term wise. So, long as the series of functions converge

is  uniformly  and  we  know  that  the  Weierstrass  phe-function  actually  converges

uniformly on compact subsets we proved that last time. 

Therefore, I can literally integrate this function over such a path and so the integral over

the summation can be taken as summation of the term wise integration that is because of

uniform convergence; and if I do that this is what I will get, this is what I will get. So, I

am sorry I am not integrating this, but I have I am integrating this. So, what I am saying

is that, so you see, so let me write that down clearly.
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P tau of z minus 1 by z if I take this quantity and you know integrate it for this path.

Then I claim that, so this is going to be integral over summation omega in the lattice

omega naught equal to 0 of 1 by z minus omega the whole squared minus 1 by omega

squared.  And of  course,  I  will  get  it  dz,  but  you know that  this  integration  and this

summation can be interchanged because of uniform convergence on compact subsets. In

particular the uniform convergence will also hold on any path which is of course, you

know any path is a compact subset because it is say both closed and as well as bounded.

So, you can interchange this summation and integration and get that I can write it like

this, and I can write integral over gamma 1 by e z minus omega the whole squared minus

1 by omega squared dz, I can write this. And this is just integral of f sub omega of z dz

which turned out to be this. So, finally, what will happen is that you will see that this is

going to be this will be summation over omega in L of tau omega not equal to 0 of well

minus yeah. So, I will get minus 1 by z minus omega minus z by omega squared plus a

constant, this is what I will get. And you see the net effect of all this will be that.

So, you see the only thing that I will have to do is worry about I will have to worry about

what concept I am going to add here. So, what I that constant can be uniquely fixed by

assuming that the integrated function is an odd function of z, putting the condition that

the anti derivative is an odd function of z makes the constant will become 1 by it is going

to become, so this constant will be by minus 1 by omega inside the summation. So, if



you do that what you will get is that you will get this function you will get this function

defined in this way with this constant term 1 by omega coming here. And this constant

term has been added, so that this function which is the anti derivative of the Weierstrass

phe- is an odd function. You see because if I say change z by minus z this will change by

a by a minus sign of course, there is no problem; and this will also change by a minus

sign. The only problem is with these two terms.

You see if I change z by minus z then if I want to push the minus outside then I have to

change omega to minus omega, therefore you must realize that this constant has to be 1

by omega. I mean if this constant is one by omega then if I change z two minus z I can

pull out the minus sign provided I change omega to minus omega; and changing omega

to minus omega and the lattice is not going to change this sum. But then changing omega

to minus omega allows me to pull a minus out of these two terms and there is already a

minus coming out of this  term and that  term.  So, I can pull  a minus out throughout

therefore, this function becomes an odd function offset. So, the condition that this is an

odd function of z fixes this constant inside the summation. And you of course, see that

you know if I differentiate this I will get minus of the phe function.

So, let me say that zeta prime of z is well minus of this is the phe of z, this is the phe

function. And mainly in principle I should keep remembering the tau because, but for the

moment let me drop the tau all right in the subscript. So, I write phe of z instead of phe

sub tau of z, please remember that the tau is there in the background. So, I get this. Now,

why did I do this what is the advantage of doing this, the advantage of doing this is you

see I wanted to prove this differential equation. And as I told you the key to proving this

differential  equation is  by looking at  the Laurent  expansion at  the origin for the phe

function.  And of course, at  the Laurent expansion of the or at the origin for the phe

function has this is a singular part and this is the analytic part, but you need to write this

since this is an analytic part, you see this is this is going to be a power series in z. And of

course, you know we have also normalized the phe function. So, that the constant term is

0. 

So, this is going to be an analytic function and you know the Weierstrass phe-function is

an even function, therefore, you know if you expand this as a power series in the origin

you should get only even powers of z, and you will get some coefficients. And the point

is how do you write out those coefficients.



So, the fact is that from this expression directly it is not easy to write it down, but it is

easy to write it down f from this expression and from the Laurent expansion of this at the

origin which is quite easy to compute. Because you know the Laurent expansion of 1 by

z minus omega can be written out using the geometric series. So, the whole point of

these argument is you write out the Laurent expansion of zeta of z at the origin using the

geometric series because this is the term that will give you the expansion. And then mind

you the if I look at the Laurent expansion of this at the origin, this will be the singular

part, and this will be the analytic part, but this analytic part is now easy to write because

1 by z minus omega can be expanded using a geometric series,

So, therefore, to put it all together it is easy to write down the Laurent expansion for zeta

at  the  origin  n  and  once  you  know that  and  once  you  know this  that  the  negative

derivative of zeta is actually the phe function you can get hold of the Laurent expansion

for phe at the origin. So, this is the reason for having introduced this function. So, let us

try to get the Laurent expansions.
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So, let me look at only this part of the only that part of the summation, so that is 1 by

consider 1 by z minus omega plus 1 by omega plus z by omega squared take this. And

what you do is that you assume that mod z say is less than mod omega, you assume this,

so that  well  in other words mod z by omega is  less than 1,  so that  I  can apply the

geometric series. 



So, what happens is that this term you know as usual you can write rewrite it as 1 by

omega into 1 minus z by omega, no this should be omega, omega times 1 minus z by

omega, you can write it like this. I mean, this is the usual trick that you use to get hold of

series expansions using the geometric series. So, if I write it like this, I will have to bring

in a minus sign above and then of course, other two terms are 1 by omega plus two by

plus z by omega squared.

And of course, when I am certainly z is not equal to omega because mod z by omega is

less than 1, and then this is minus 1 by omega n. And if I expand this I will get by

geometric series I will get one plus z by omega plus z squared by omega squared and so

on, the general term will be z power m by omega power m. I will get this plus 1 by

omega plus z by omega square. And you can see that this 1 by omega is going to cancel

with this the first term minus 1 by omega and this z by omega squared is going to cancel

with minus the second term which is z by omega squared. So, what I am left with is

minus of you know z squared by omega cube plus z cube by omega power 4 and so on

the general term will be z power m by omega power m plus 1 and so on. So, this is very

easy to write down. So, I am just writing down the analytic part of the Laurent expansion

of zeta of z at the origin the singular part is of course, is 1 by z.

Now, what you do is that well. So, now, you use this computation to get hold of the

Laurent expansion at the origin for zeta, and how does one do it. So, what one does is

one take zeta of z minus 1 by z. Now, this difference is actually the summation of terms

each  of  which  we  have  expanded.  So,  what  you  can  do  is  that  you  can  write  this

difference as well, so that I do not make a mistake in signs, let me look at what I have

written down. So, it is yeah. 

So, I write it as minus. So, this is going to be remember 1 by z is the is a similar part of

the Laurent expansion at the origin therefore, this difference is going to be an analytic

function. So, it is going to be given by a power series. And I am just going to write it as

minus G m z power m, and of course, I will have to put a summation. So, I am going to

put the summation over yes. So, I will have to write. So, let me write this clearly. So,

minus summation over omega in the lattice omega naught equal to 0 of terms like this

correct. So, I will get a series here. So, this is what I will get.



Now, well, I write it as only powers of z. So, if I write as powers of z I write is g sub m.

So, I write sigma m equal to 2 to infinity, and I will probably I will put a minus sign

outside and put z power m. So, let me write it like this. So, this is going to be you can see

that, so I am summing over each of these omegas and for each omega I get z squared z

cube and so on. I can sum it the other way. So, what I can do is I can keep z squared

fixed and take the summation over 1 by omega cubed and then observe that as a constant

which depends on tau essentially. So, I can write it in this form.

But the point is there are two points to be observed, I just want to say that here only odd

m will survive, even m will not survive because the quantity on the left  side is odd.

Because you see if I change z by a minus z, I can pull out a minus sign from here and I

can also pull out a minus sign from here so that means, that in when I expand it in the

form of a power series I should have only odd powers of z. So, because of that you know

I can actually write it as sigma minus of sigma m equal to 1 to infinity G sub m z power

2 m minus 1. Now, I am rewriting it only in terms of odd powers of z namely z, z cube, z

power phi and so on that  is  because the if you sum over, if  you keep z squared for

example, and sum over all the coefficients that you will become 0, it has to become 0.

Similarly, you do it for any other even power of z, all the coefficients if you sum it has to

be equal to 0. The reason is because the left side is an odd function, and therefore, you

cannot  have even powers series on the right  side,  this  is  essentially  your  use of  the

identity theorem for power series which says the two power series are equal if and only if

all the coefficients are equal. 

So, in fact, if two power series convergent power series are equal on set, which has a

limit point at which also the power series converges even that is enough to ensure that

the power series the analytic function is defined by those power series are everywhere

equal. And therefore, the coefficients of power series have to uniquely be related to they

have to be the Taylor coefficients for the Taylor expansion of that function. So, therefore,

you see here I am switching from writing all the terms to only the odd terms. And what is

this G m.
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So, let me write it out G m turns out to be, so where G sub m terms out to be, so it will be

summation 1 by 2 power m summation over omega the lattice omega not equal to 0 1 by

omega to the 2 m, yes, this is what it would be. You can see because when there is an odd

power, you have to sum over omegas of one power more, so it will be in this form. So, if

it is z power 2 m minus 1, the term below will be z power omega power 2 m and then

you have to sum over all those omegas. So, this is what you will get.

But the point here that we are cleverly using is that the ms for even m they do not survive

there are all zero that is because of the oddness of the function on the left side. So, we get

this. So, let me write it out. So, you get zeta of z is equal to 1 by z minus sigma m equal

to 1 to infinity gm z power 2 m minus 1. I wonder that I put the summation correctly

because the first power that I should get is z 3, which means I should start only with two.

So, I have to be careful here I have to put 2 here. So, please there is no z term, there is

only a z cubed down right. So, here also I should be careful. So, it is m equal to 2 to

infinity.

So, now, you see we have a nice Laurent expansion for zeta in a neighborhood of the

origin. It is nice because you see the singular part was already known it is 1 by z it was

the anal it was the analytic part for which we wanted coefficients in a nice way and that

we are able to get. Now, how do you use this to get a Laurent expansion for the phe

function, you just make use of the fact that zeta is anti derivative for phe. So, you take



the negative derivative of that and because that is going to be again you know uniformly

convergent series you can differentiate term by term.

So, as a result  what  you will  get is  this  Laurent  expansion of zeta  at  origin gives a

Laurent expansion of phe at the origin just by term wise differentiation. So, what I will

get is  phe of z is equal  to minus zeta  prime of z.  So,  what I will  get is  minus of I

differentiate it, I will get 1 by minus 1 by z squared and then I will get minus sigma m

equal to 2 to infinity I will get 2 m minus 1 G m z power 2 m minus 2. So, you get it very

easily. So, this turns out to be 1 by z squared plus sigma m equal to 2 to infinity 2 m

minus 1 into gm z power 2 m minus 2.

Now, you see between the original description of the Weierstrass phe-function, and this

you see now the analytic part is a very neat. You have all the coefficients of the even

powers of z; of course, you will have only even powers of z because this is an even

function, but the coefficients were not clear. So, you get the coefficients in a nice way.

Now, once you have these coefficients, one can write down a set of inequalities. So, I am

just worried about the sign somewhere. So, what one does is that one can differentiate

any number of times. So, what one does is just one differentiates, so we are not very far

away from establishing  the  differential  equation  that  we want  that  zeta  that  the  phe

function Weierstrass phe-function satisfies. So, the first thing you do is you differentiate

and of course, right only a few relevant terms and it will be clear why these terms are

relevant.
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So, let me write down here. So, phe of z is well it is 1 by z squared plus well the first

term if I put m equal to 2, I am going to get 3 G 2, I will get 3 G 2 z power z cube if I put

m equal to 2 no z squared. Of course, I should it should not get z cube we should get

only even powers of z. So, then I will write maybe I will write one more term that the

next term is going to be put m equal to 3, I will get 5 G 3 z power you see 4 plus other

terms. 

And why I  put  dot  dot  dot  is  because  I  those terms  are  not  going to  matter  in  my

calculation. So, this is phe then I calculate the derivative phi prime of z. If we calculate

the derivative I end up with well I will get minus 2 by z cube, I can do term by term

differentiation because this  is a uniformly convergent power series I mean uniformly

convergent Laurent series. And I will get I will get 6 G 2 z plus 20 G 3 z cube yeah I stop

with that I am not worried about higher order terms.

Then I calculate the square of this p prime z the whole square, I calculate this. And I will

get well 4 by z power 6 is one term; then I am going to get I mean the term is time

interested in or the I am essentially interested in the singular part plus say the constant

term all right. So, I will get 4 by z power 6 and then well I will get my I will get minus

24 G 2 by z square or is it I think it will be yeah z squared that is a product of these two

terms multiplied by 2, and then I will also get. So, I will get a minus 80 G 3 and then I

will get the higher powers of z and so on. And of course, this term is by you know by



taking the product of these two terms in the square and then multiplying by 2, so I get

this all right 

Then I also calculate 4 phe prime of z, no rather the 4 phe of z cube n this is what I want.

And this turns out to be well if you do it by hand it is 4 by, so phe of z is this if I take phe

z the whole cube I will get 1 by z power 6, so I will get 4 by z power 6. You can see the

reason why I am doing this because you see I can if I subtract then this coefficient goes

away it is quite magical rather god given somehow. Then the next term is 36 G 2 by z

squared and one more term plus 60 G 3 and so on. And these are of course, higher order

terms involving z squared and so on. 

So, now if you calculate and also calculate 60 G 2 times phe of z which is going to give

me 60 G 2 by z squared plus. So, I am really not see in the last three equations, in the last

three expansions I am really not interested in the power you know terms involving z

squared, z power 4 and so on. Now, what I do is you know I just take this minus, this

plus, this probably and then I am yeah. So, I take phe prime z the whole squared minus 4

phe of z cube plus 60 G 2 p of z if I calculate this. So, if I calculate this, then what I end

up is of course, you see I here this minus this, so 1 by z power 6 is going to go away term

is going to go away. And then you see this minus, this is going to be giving minus 60 G 2

by z squared; and if I add it to this plus 60 z 2 by z squared. So, the 1 by z squared term

is also going to go away.

So, finally, I will get minus 80 G 3 minus 60 G 3 which is minus 140 G 3. So, what I will

get is I will get this is equal to minus 140 G 3 plus some terms which will involve you

know z squared and z power 4 and so on. Now, here is a beautiful point, the beautiful

point is you see the function on the left side is a doubly periodic function the function on

the  left  side  is  a  doubly  periodic  function  which  is  a  in  principle  you  see  phe  is

meromorphic. So, you expect this side, you do not expect this side to be holomorphic,

but on the other hand it is equal to the right side the right side is holomorphic see the

right side is minus 140 G 3 plus some you know power series involving even power

subset.

So, what you have got is you have got a doubly periodic function the left side is a doubly

periodic function because phe is periodic a phe is doubly periodic with periods one and

tau and that is equal to a holomorphic function, this is what you are getting. But you see



we already know a doubly periodic function which is holomorphic has to be a constant

by Liouville’s theorem. 

So, LHS, RHS, LHS doubly periodic and RHS holomorphic imply that LHS is equal to

RHS the left side the left side is equal to the right side is equal to constant this has to be a

constant. And what is that constant that constant can be evaluated by taking the right side

and substituting z equals 0. If I take the right side and substitute z equal to 0, I will

simply get 1 minus 140 G 3, so that constant will be equal to minus 140 G 3. 
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So, what is the upshot of this, the upshot of this is that we have the following differential

equation which is what we wanted to prove. So, the upshot of this is that the Weierstrass

phe-function satisfies the following differential equation. Let me just check the design is

I am supposed to get a there is a, so I think yeah minus 140, which is what I wrote as

four times p of z the whole cube minus G 2 p of z minus G 3. So, you get this you get

this differential equation which is what we wanted to show. Where of course, I have put

small g 2 60 times capital G 2 and capital G 2 is summation over all nonzero lattice

points of 1 by omega power 4. And g 3 is 140, small g 3 is 140 times capital G 3 and

capital G 3 is summation over all nonzero lattice points of 1 by omega power 6. So, you

get this nice differential equation, so that was the aim of this lecture.

So, in the forthcoming lectures I will explain how you use this information to get hold of

a function on the upper half plane which is going to be invariant under the action of the



unimodular group namely a function which will try to give you an invariant for the Tori.

So, we will see that in the forthcoming lectures.


