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So, let us recall whatever general aim has been so far, see we are trying to look at the set

U mod PSL 2 z and in the last few lattice we have proved that U mod PSL 2 z is a

Riemann surface, and how did we prove that we proved that by show by realizing that

PSL 2 z is you know a discrete group, and it leaves invariant the upper half plane. So, it

is a fiction group and then we proved the result that for a fiction group, you know the

notion  of  discreteness  coincides  with  the  notion  of  being  claniun  and  because  it  is

claniun.  Therefore,  we  prove  that  the  set  of  points  where  the  group  acts  properly

discontinuously namely the region of discontinuity of the group is certainly contains the

invariant half plain or disk, ok.

So, in this way PSL 2 z, just using the p the fact that PSL 2 z is discrete and the fact that

PSL 2 z is leaving the upper half plane invariant, we are able to conclude that the you

know the  region of  discontinuity  for  PSL 2  z  includes  the  upper  half  of  plane,  and

therefore, you are able to divide by the upper half plane and conclude that U mod PSL 2

z is a certainly a Riemann surface. Now the next part of the story is to try to show that

this Riemann surface U mod PSL 2 z is actually none other than the complex numbers.

So, I just want to show that there is a holomorphic isomorphism of U mod PSL 2 z with

the complex numbers. So, to try to understand where this will lead to, let us try to do

some heuristic thinking. 
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So, you see basically you have. So, you have U you have U mod PSL 2 z and so you. So,

I may be I put a thickened U to specify that this is the upper half plane alright and of

course, U the set of all complex numbers tau, such that imaginary path of a tau is positive

which  is  the  upper  half  plane  and you know PSL 2  z  leaves  upper  half  plane  it  is

precisely  the set  of  holomorphic  automorphisms of  the not  precisely. In  fact,  it  is  a

subgroup of PSL 2 r, which is precisely the automorphism holomorphic automorphisms

of the upper half plane. And we want to prove that this Riemann surface we have proved

that this is this map is a map of Riemann surface it is it is a holomorphic map, and the

quotient is a Riemann surface. We want to show that this is Riemann surface is actually

biholomorphic that is isomorphic holomorphic isomorphic through the complex numbers

ok.

So, for a moment believe that we have that,  what does it  mean? See for that  matter

suppose I give you even any function phi into the complex plane; suppose I give you a

function phi from this Riemann surface U mod PSL 2 z this is the set of orbits of PSL to

z in the upper half plane, which has been made into a Riemann surface. Suppose I give

you a holomorphic function on this well you must realizes that if I compose it with this

projection, suppose I call this projection as a pi. If I compose it with this projection, I get

a holomorphic function let me call this as ph hat, I get a holomorphic function from the

upper half plane to z, because after all this is just composition if this is a holomorphic

map canonical quotient map is holomorphic, because that is the way we constructed the

Riemann surface structure on this and I have assumed that phi is a holomorphic function.

So, the composition if I call it as phi hat, then phi hat is also a holomorphic function. 

So, but what kind of a holomorphic function is it? Is a holomorphic function that is going

to  have  this  same value  on  the  orbits  of  PSL to  z  in  U.  So,  trying  to  find  even if

holomorphic function for that matter even trying to find a set theoretic function on this

Riemann surface, is trying to find a function on the upper half plane which is constant on

orbits, it has to have the same value on orbits, only then I a function on the upper half

plane which is constant on orbits only such a function will go down to give define a

function  on the  set  of  orbits.  So,  you see.  So,  you are  trying to  look at  you say in

particular if you want a holomorphic function into z, that is a holomorphic map into z

you are trying to look at holomorphic maps from U to z which are constant have the



same that is which have the same value on every PSL 2 z to z orbit. So, what does this

mean?

See, let us go back and try to understand what this set U mod PSL 2 z was originally

where it came from. See if you remember what we did was, for every tau in the upper

half plane, we associated the lattice L of tau, this was you can take the lattice spanned by

one and tau. Namely you take all complex numbers of the form n times 1 plus m times

tau, where n and m are integers this is the lattice this is that is it is an additive subgroup

of the complex numbers. And of course, it is a z module, it is a discrete sub module z sub

module of the complex numbers. This is a lattice and then if you remember using this

lattice, we constructed the torus the complex torus defined by the lattice by simple going

z modulo this lattice.

So, from this we went to C modulo this lattice to get a torus T sub tau. So, this T sub tau

it was a complex torus. So, you if you remember C to you know C mod L tau. So, you

know here when Ic mod L tau L of tau is elements in this lattice, but I am thinking of

them as acting on C by translations. So, and of course, translations are certainly mobius

transformation. So, L of tau is identified with a subgroup of automorphisms holomorphic

automorphisms of C and then I am just simply going modulo of that subgroup and you

know what this is. This is you know that this is a covering; it is a universal covering for

this  complex torus. And of course, the fundamental  group of this  of the base of this

complex torus can be identified with the depth transformation group, which is precisely

L of tau which is a isomorphic to L of tau which is isomorphic to z cross z ok

So, we are we know this. So, the point is for every tau in U we are associating this this

complex torus and in fact, what we how did we get this U mod PSL 2 z, we noted that to

the complex tori complex one dimensional tori T tau 1 and T tau 2 are holomorphically

isomorphic if and only if tau 1 and tau 2 can be moved to each moved by an element of

PSL to z. In fact, what we proved was that the set U mod PSL 2 z namely the orbits of

PSL to z in U is in bijective correspondence, with the set of holomorphism holomorphic

isomorphism classes of complex tori. So, U mod PSL 2 z is a let me put this is a bijective

correspondence with a set with the set of holomorphic isomorphism classes of complex

tori ok.



So, this is how we started and therefore, you see if I go back to this situation, trying to

get hold of a function on U mod PSL 2 z is the same as trying to get hold of a function

that does not change if you change the equivalence class of the element here under PSL 2

z.  In  other  words  it  should  be  a  something  that  does  that  depends  only  on  the

isomorphism class,  the  holomorphic  isomorphism class  of  the  complex  torus  that  is

defined by a point above. In other words what is a function like this? A function like this

which does not change on orbits is called an invariant. So, of course, you know it is

invariant under PSL 2 z, but geometrically you can also think of it as trying to produce

for every isomorphism class; holomorphic isomorphism class of complex torus, you are

trying to produce something which depends only on the holomorphic isomorphism class

ok.

So, you must think of. So, you must understand that trying to cook up a function like this

has to has got to do with finding invariants  for holomorphic  tori.  Namely quantities

mathematical quantities which depend only on the holomorphic isomorphism class of the

torus. You are trying to find for every complex torus some quantity that quantity should

be such that if you change the torus by an isomorphic torus, the corresponding quantity

should  not  change  such  quantities  are  called  invariants  and  you  are  trying  to  find

invariants for tori. So, it is obvious that you know these invariants have got to do with

the geometry of this torus. And in fact, they have to they must have something to do with

the geometry of all the tori which are in that particular orbit under PSL to z, namely all

the tori which are holomorphically isomorphic.

So, this leads to trying to you know look at some trying to study these tori themselves.

So, well you know if you go back to the famous ideas of Felix Klein. So, he somehow

thought that geometry has to be a geometry of a space has to be dictated by the functions

on the space somehow if you know the all the functions on your space, then you should

know the geometry on the space and you can turn this  around and say that you can

dictate a geometry on the space by specifying the kind of functions that you are allowing

on the space. And in a way this is we can see this already in trying to say that you know

if you want to study differentiable manifolds,  you take the allowed functions to be z

infinity functions. If you want to study complex manifolds you take you take the allowed

functions to be holomorphic function well, if you want to study algebraic manifolds you

take the allowed functions to be locally rational functions for questions of polynomials.



So, if  you go by that  then I  would like to look at  functions on this,  and see this  is

certainly a Riemann surface. I would like to look at let us say holomorphic functions of

this.
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So, what I would do is well I will try to look for functions on the torus, you try to look

for functions on the torus and then you know one hopes that you try to find the function

that depends only on the isomorphism class, the holomorphic isomorphism class of the

torus and then you have found an invariant. And finding such invariants will precisely try

to give you functions from this set into whatever set.

For example, trying to show that there is an isomorphism phi of this set with c. Let us

say I want to show even that there is a bijection of this with C suppose I just want to

show leave alone holomorphic isomorphism. Suppose I just want to show that there is a

bijection of this with C, then what I should do is for every whole isomorphism class

holomorphic  isomorphism class  of  a  torus,  I  have  to  produce  for  you  one  complex

number and actually you can produce one such number that is called the j invariant of the

torus and we will see that ok.

So, but the point I am trying to say is that trying to look for invariants like this, leads you

to try naturally to look at functions on the torus now well you see. So, you see suppose I

look at function on the torus. So, suppose I look at a function let me call this as f let us

let us assume that you are looking at a complex suppose you are looking at a complex



function and let us be optimistic and let us assume that well they the best thing to assume

is that f is analytic. So, suppose f is analytic. So, I am searching for functions on the

torus  and  suppose  I  have  function  like  this  which  is  analytic  well  let  me  call  this

projection as pi sub tau not to be confused with this pi. So, well I can compose like this.

So, I put a circle at (Refer Time: 16:42) I put a circular arrow saying that this arrow is

this followed by this, that is what it means here also this arrow is this followed by this

that is what this circular arrow means namely that the diagram commits.

So, well you can see that if this is analytic or holomorphic then this is holomorphic, but

this is not going to give us anything that is because you see this guy here is compact this

this this torus topologically is compact. Because you know basically it is the image of the

fundamental  parallelogram formed by that  is  the fundamental  parallelogram,  the grid

formed by 1 and tau. So, actually what is happening here is that if you remember see I

have one here and I have tau there ok.

(Refer Slide Time: 17:31)

And you know there is a parallelogram like this, and if I repeat this parallelogram to

form a grid the points of the grid are precisely the point of this lattice. So, this the points

of the grid of the size is the lattice and that the image of this this whole parallelogram

along  with  the  boundary  (Refer  Time:  17:59)  onto  the  torus,  and  this  is  of  course,

compact it is closed and bounded and therefore, the torus is also compact, because this

map is continuous after all you have given it the (Refer Time: 18:06) quotient topology.



So, this is compact therefore, and of course, a holomorphic map is continuous therefore,

the image of this set in z is going to be a compact subset of z in particularly it is going to

be bounded; therefore, this map this holomorphic map will be an entire function which is

bounded and then it has to be constant. So, we are not going to get anything. So, the

moral f the story is trying to look for analytic functions on the torus, is not going to help.

So, what does it mean? It means you have to allow singularities. So, let me write that

here this means f has to be constant, of little help. So, we have to allow f to be to have

singularities, you must allow functions to have singularities.

So, well you know if you what are the singularities possible singularities on an analytic

function,  well  you  know  there  are  isolated  singularities  and  there  are  non-isolated

singularities. The isolated and among the isolate singularities there are the removable

singularities which are actually not singularities, then there are the poles and then there

are the essential singularities. 

So, if you want the mildest type of singularities what you do is that, you would like to

have at least poles and trying to study analytic functions, which have only poles and if

you also ensure that these poles are isolated leads to the study of what are called as

meromorphic functions. So, the whole the simplest kind of functions you can try to think

of  on  the  torus  are  going  to  be  meromorphic  functions.  So,  the  mildest  possible

singularities are the poles, and so we look for meromorphic functions f on the torus, you

look  for  meromorphic  functions.  What  are  meromorphic  functions?  Meromorphic

functions are functions, which are analytic at all points except for a subset of isolated

points, where this function has only poles and well. 

So, you are looking at meromorphic functions alright and notice that; and therefore, what

is it that I can do is well I can have a discrete subset and I can have poles at each point

with certain multiplicities, but even in that the simplest thing I could have is pole only at

one point. So, of them you take a pole at only one point for example, alright. So, well,

we could look at meromorphic functions with pole at only one point or let us say pole at

a few points to begin with. Now what I want you to understand is, what does looking at

such a function means above in the complex plane. So, you see supposed I have an f

which is meromorphic and well. So, if it is a meromorphic functions it is not defined at

the poles.



So, in principle when I draw this arrow this is not really a map from this to this, this is a

map only from this into z union infinity, because at poles the function will take the value

infinity. So, you know I will just. So, the best way to put it is well. Let me put z union

infinity and then write it as n holomorphic. So, you know meromorphic functions into

meromorphic  functions  complex  valued  functions  are  precisely  the  holomorphic

functions into z union infinity, because what happens is at the at the poles you define the

function  value  to  be  infinity,  and  then  you  get  holomorphic  functions  into  p  1  the

Riemann sphere.  So,  this  is  z union infinity  the (Refer  Time:  23:17) complex plane,

which  is  identified  with  the  Riemann  sphere  by  the  stereographic  projection,  it  is  a

Riemann surface  and then  a  hole  up into that  is  the  same as  giving  a  meromorphic

function otherwise; and the poles will be all the inverse image of the point at infinity ok.

So, mind you I am looking at meromorphic functions on the torus, now what is it above

what is it that is happening above. So, you see the first thing is that suppose I assume that

there are the pole; suppose I assume that the poles are isolated, then if I go all the way

above  and  look  at  this  function  f  hat,  then  this  function  of  f  hat  will  also  be  a

meromorphic function,  the only thing is that the they the poles will just it  will  have

infinitely many poles, and what will happen is if you have if f has a pole here, the inverse

image of that pole will be an inverse it will be a point, which will be spread over a grid

and then that grid will be translates this grid. And it will have poles at all those points

and what is. So, what you get is looking at good looking at a meromorphic functions on

the torus, is looking at a meromorphic functions on z and further notice that this function

of f hat has to be invariant under the action of this of translations by elements of these

lattice.

So, you see f hat of z n times 1 plus m times tau must be equal to f hat of z for all z that

is not a pole for f hat. This should happen because after all these 2 points are going to be

identified  when  you  by  this  map  by this  projection,  by  this  because  this  point  is  a

translate of that by this element, that is an element of the lattice and that is the group of

translations  by  which  you  are  modding  out.  So,  this  function  f  has  to  satisfy  this

condition. Now you know see what does it tell you what it tells you is that it tells you

that f hat has to be a w periodic function with periods 1 and tau. So, f hat has to be a w

periodic function with periods 1 and tau ok.



So,  what  is  the  moral  of  the  story?  The  moral  of  the  story  is  the  simplest  kind  of

functions you can try to write on the torus are going to be w periodic meromorphic

functions, and these are precisely what are called as elliptic functions, and where studied

first by Weierstrass who gave a decent beautiful theory for these functions. And it is

through these functions that you are completely understand the geometry of the tori and

everything that is connected with tori right from number theory to algebraic geometry is

done by looking at the meromorphic functions. So, the after this point our discussion has

told us, that you know actually you should look at w periodic meromorphic functions on

C namely elliptic functions on C they are called elliptic functions and with periods 1 and

tau.

So, well let us function let us look at the properties of such a function see.

(Refer Slide Time: 27:47)

 

So, such functions such functions such w periodic meromorphic, and why they are called

elliptic functions is because, they help to actually prove that this Riemann surface this

complex torus can be thought of as zeros of an algebraic equation and that. And in fact, it

turns out to be an algebraic curve, and that curve is called an elliptic curve and that is the

reason why they are called elliptic functions.

So,  I  will  come  to  that  later  on  because  it  is  a  deep  fact  that  every  complex  one

dimensional torus of this form is actually an algebraic is given by an zeros of algebraic

equations and in fact, it  is a much more deeper theorem, that you take any Riemann



surface,  you put the topological  condition that the Riemann surface is compact,  then

amazingly the Riemann surface this compact Riemann surface becomes can be thought

of as zeros of an algebraic functions. So, it becomes completely algebraic. So, it is a

demonstration the demonstration of that fact for the case of complex tori can be achieved

by using the elliptical functions ok.

So, we have (Refer Time: 29:37) studied particular case of elliptical functions, which are

called famous Weierstrass phi function. So, I will explain you how this Weierstrass phi

functions is motivated. So, well we have to look at elliptic functions alright. Now what

are the kind of functions that we can look at. So, of course, you have to decide let us take

at least one point or a couple of points, and try to and let us decide that the function has

poles at those points, but before that I want to make a remark.

So, you see here is a remark if I calculate. So, you know I take. So, here is my. So, let me

draw a small diagram. So, you see I have. So, here is my torus. So, here is my torus and

you know and what is above is a complex plane, and this is the projection, this is T tau

see. Suppose I take a say a couple of points finite set of points separated from each other,

and take their inverse image, well you know there is grid of on the complex plane there

is this lattice, which corresponds to 1 and tau. 

So, I have this lattice here, this is the fundamental parallelogram whose image is here.

And if I take the image of such points the inverse image, well if the inverse image is if

you look at inverse images if an inverse image is going to lie inside this parallelogram in

the interior, then it is going to be only one. But it could happen that you know it could lie

on the boundary in which case you will get 2 and if it is one of the vertices you will get

all the 4. So, what I am trying to say is that since there are only definitely many points.

So, let me call these points as say p 1 p 2 etcetera up to, let us say p n. Then what I can

do is well I can translate this grid in such a way, that you know I can translate this grid in

such a way that all these inverse images of these points, I have only one representative

inside that grid I can translate it ok.

So, I can move it if some points tries to come at the vertex I can avoid it. So, I can

translate this. So, in other words what I can do is you know well, it may happen that well

p 1 is inside, p 2 in inside maybe for p 1 I can find a unique representative for p 2 maybe

I can find a unique representative because it is inside, but maybe for p 3 I may I might



get 2 representatives one here and one on this, one exactly in the in the opposite edge of

the parallelogram well. So, it will be some p 3 prime hat and then maybe pn might be

might have all the 4 vertices as universal images it could happen alright. But well the

point is I can move this move this this parallelogram a little bit by translating it, so that

all the representatives there are come into the interior of the parallelogram and all the

representatives are already there.

So, you know I can actually choose an a such that you know if I take a I can choose a

vector I can choose a complex number and trying to think of them a vectors well I can

choose a complex number a, such that you know if I now draw this parallelogram if I

translate it by this a, then when I will get a plus 1 then I will get well a plus 1 plus tau,

then here I will get a plus tau I will get this parallelogram, which is just a translate of

that, but I can choose a in such a way that I get exactly one representative for each point

in this line inside in the interior I can do this ok.

So, choose an a such that this translated parallelogram has exactly one translated (Refer

Time: 34:26) from each of these things. And look at let us look at let us call this this

boundary. Let  us give an orientation  to the boundary of this  parallelogram so that  it

becomes a closed path and then try to look at the integral 1 by 2 pi i integral over where I

mean let if I call this rectangle as I mean this parallelogram as A B C D if I take the path

integral over ABCD of this function, which is above which is f hat of z dz if I look at

this, what will I get? Well you know by the residue theorem, I should get the sum of the

residues at each of the points inside where the function has poles, ok.

So, what I will get is I will I get summation i equal to one to n residue of f hat of z at the

point p i hat. This is what I will get this is the residue theorem, but you see the point is

that f hat is periodic is w periodic. Therefore, the integral of f hat from A to B will cancel

with integral of f hat from C to D. Because after all the f values here are the same as f

values here, because tau is a period and the integral of f from B to C will cancel with the

interval of f from D to A that is because one is also a period for the function. See in the in

the definition of the periodic function I could have taken m equal to 0; what it tells is that

f of z plus 1 is also f of z and I could have put n equal to 0 and I will get f of z plus tau is

also f of z. Points here it differ from the from the corresponding points there by tau and

points here differ from corresponding points here by 1therefore,  all  the integrals  will

cancel this is going to be 0. 



So, the moral of the story is the sum of the residues at this poles is going to be 0 what

does it tell you? That tells you that to begin with you cannot have a single pole which is a

simple pole, because suppose there is only one pole and the simplest thing is that I would

like to have only one point where there is a pole and the simplest kind of pole I can think

of is a simple pole, I can try that that is the simplest I can try, but that will not work;

because then will tell you that residue at that pole is at a simple pole is 0 that cannot be.

So, what is the moral of the story the moral of the story is that you must have if you take

only one point, you must have a pole of at least order 2 or you should at least use 2

points with simple poles. So, there are 2 choices you can make to at the simplest trying to

study  the  simplest  meromorphic  functions.  Either  you  can  choose  a  single  you  can

choose a single pole and make it order 2 or you can choose 2 poles and of order 1 in any

case you must have some of residues and both the poles must be 0 ok.

So, Weierstrass did is that he chose a single pole of order 2 and. So, what we do is well

we look at this probably this line does not look. So, very straight let me draw another. So,

that it looks little decent ok.

(Refer Slide Time: 38:28)

So, what we will do is we will do the following thing; we will take this lattice I mean.

So, we go back to our.



(Refer Slide Time: 38:39)

So, let me write the conclusion here this implies we cannot f cannot have a single simple

pole, this cannot happen alright. So, here we take this. So, here is my again here is my

lattice. So, this 1 this is tau, this is 1 plus tau just a complex thing and. So, well here is

my torus T tau and I am looked. 

So, I am we are following Weierstrass, prime to get hold of trying to study meromorphic

functions, having a double pole at one point below. So, and what is that one point we

may actually choose that one point with the image of this whole grid. So, this whole grid

goes to some point here, because all of them are equivalent under translations of the

lattice. So, all the points of the grid are going to be mapped to a single point, that point

you can look at that point and well I can. So, in particular it is that point is a image of 0.

So, I will call that point as pi tau of 0, it is also pi tau of any point of the lattice, and I am

trying to study a function defined on the torus, which is meromorphic with a double pole,

which means a pole of order 2 at that point pi tau of 0, this is what I am going to study.

And well; that means, that the function above f hat is going to be an elliptic function, a

meromorphic w periodic function, which is going to have a double pole at every point of

this lattice. It is going to have a pole of order 2, at every point because you know if this

function has a pole here, then they this function above will have a pole at every point

which is the inverse of this point. So, your f hat will be a w periodic function which will

have you expected to have a double pole at every point of the lattice. What kind of a



what kind of function would it look like? Try to guess see you can write well you can

just take 1 by I can take if you know if I take a point of the lattice, it looks or the in the

form n one n times 1 plus m times tau and if I write 1 by z minus n times 1 plus m times

tau this will give me a pole of order 1 at n times one plus m times tau ok. 

But if I want to want a pole of order 2, I cannot have a simple pole at one point, I need to

have a double pole from what I said here. So, if you want to have a pole or order 2 I

square alright and then this. Well, this gives me pole of order 2 at this lattice point, but

then I want this to happen at every lattice point. So, what I do is I sum this over n comma

m integers, but of course, I should not let n comma m equal to 0 comma 0, well I would

rather well n comma m can be 0 comma 0 also I mean that is not a big deal, I will get one

z squared, I will get a pole at the origin that is all fine, but then. So, you know this

summation, because the summation let if I write it as omega in the lattice, 1 by z minus

omega the whole square this is what the summation becomes ok.

Now, there is a problem, I will tell you why. See this is 1 by I can write it as 1 by z

squared  I  separate  the  pole  at  the  origin  alright.  So,  I  will  write  it  a  sigma omega

belonging to the lattice minus the origin, 1 by z minus omega the whole squared. So, all I

have done is I have just removed at the pole at the origin. Now we see of course, I have

written down some series here and of course, there are questions of convergence right

now as z tends to omega alright of course, if I fix a particular omega and I let z to tend to

omega then of course, this is going to go to infinity, that it should because it is a pole, but

then you see I get the term 1 by omega squared, and you do not want for reasons of

convergence what you do is that you take away that 1 by omega squared.

So, what you do is put minus. So, let me write that separately. So, this is exactly due to

Weierstrass. So, you have the Weierstrass phi function, phi tau of z is 1 by z squared plus

sigma omega not a non zero element of the lattice defined by tau, belonging to L tau

minus 0 of 1 by z by omega the whole squared minus 1 by omega squared. Now this

minus 1 by omega squared is plugged in. So, that as z tends to omega the contribution of

1 by omega squared,  that  comes from this  term gets  cancelled  with the contribution

minus  1  by  omega  squared  that  comes  from  the  other  terms,  and  it  is  there  for

convergence purposes.



So, this is called; in fact that is there is a bracket here. So, this summation is common to

both of these guys and this is the Weierstrass phi function. So, this is how the Weierstrass

theory of elliptic function starts, this is how it begins and it goes on to give beautiful

results about to tori,  which are connected with complex geometry algebraic geometry

number theory and so on.  So, this  is  the motivation for studying the Weierstrass phi

function.

Now of course, one needs to check that whatever one has written down heuristically is

actually something that make sense you cannot simply write the series and expected to

be a function, you have to check that it converges, you have to check that it is really a

meromorphic function, you have to check that is a meromorphic function that converges.

Namely; it is analytic at the points where you expect it to an analytic namely it is analytic

at every point different from any point of the lattice. And you make sure that it is w

periodic. And you must also make sure that the only poles of this function or at the lattice

points and the poles are of order 2. I mean nothing is clear; I mean everything has to be

proved.  But  the  point  is  that  one  is  able  to  arrive  at  the  phi  function  in  this  way

heuristically, and then it is a matter of some analysis to prove that one is indeed right.

So, I think in the forth coming lectures, therefore what I will do is I will show that this

phi function indeed has all the properties. And we will see that this phi function actually

characterizes the torus thoughts. So, by that I mean if you take two non holomorphically

isomorphic tori the phi functions you get they will not be compatible with each, you will

get  different  phi  functions.  So,  this  phi  function kind of distinguishes.  And this  is  a

starting point of trying to find an invariant for tori and which is what we are trying to

search for. We are trying to find a complex invariant for every isomorphism holomorphic

isomerism class of tori. So, this is the starting point.

So, we will continue with the forth coming lectures.


