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So, let us get along with this third lecture in the series on Riemann surfaces and algebraic

curves. So, let us begin by recalling what we wanted a Riemann surface to be. The aim is

first of all I want to make our definition of Riemann surface slightly more sophisticated.

So, you recall that we took a real surface, so we start; we start with the real surface X.
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So, this is a surface which for the moment is one that we can visualize in three space for

example, the plane or the cylinder or a torus or the sphere these are all surfaces that you

can imagine in R 3 in three space.

And what is it that we wanted to do we wanted to do complex analysis on the surface.

So, we wanted to do complex analysis on the surface on the surface and that essentially

was trying to do the following if you are given an open set on the surface, and if you are

given a function defined on that taking complex values I would like to decide clearly

when I can call this function as holomorphic. So, because complex analysis is all about

studying the properties of holomorphic functions or analytic functions, well in order to

do this I told you that we have to use what are known as charts. So, so this is achieved

this is achieved by using charts U comma phi U i comma phi i if you want where i

belongs to an indexing set such that the U i cower X.

So, basically if you recall phi i was a homeomorphism from U i into V i which is an open

subset of the complex plane and this was a homeomorphism. So, this was our definition

of chart. And then for example, if I wanted to decide whether if a function defined on U i



is holomorphic all I had to do was to go from V i to U i by taking the inverse map which

is defined because V i is homeomorphism and follow it by my map my function. So, I

get a function from an open subset of the complex plane into the complex plane for

which I can certainly define what holomorphic is which I already know.

So, we could use these charts to define when a function is holomorphic and we of course,

needed to cover every point on the on the surface. So, we needed cover of the surface by

charts. And well there was one problem that we needed to avoid and that is that when we

decide the holomorphics key of a function it should not be something that depended on

the choice of a chart because holomorphicity of a function should be an intrinsic property

of a function and therefore, it should not happen that the function is holomorphic with

respect to one chart and it is not holomorphic with respect to another chart because charts

can intersect.

So, we overcome this problem by requiring that the charts are compatible. So, the second

condition was to ensure that the notion of  holomorphicity of a function defined on an

open subset is intrinsic, is intrinsic to the function that is not dependent on the chart on

charts we required that the charts were pairwise compatible.
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And what was this pairwise compatibility? The pairwise compatibility condition was if

that if U i and U j were intersecting non trivially that is the intersection was not empty.

Then  the  transition  function  the  so  called  transition  function,  so  called  transmission



transition function which I denote by g ij which is first apply phi j inverse and follow it

by phi i.

This transition function is going to be defined it is going to be a homeomorphism from

an open subset of the complex plane to another open subset of the complex plane it is a

homeomorphism and I want this to be holomorphic. And that is, and because its injective

that is also equivalent to requiring that this function is a the holomorphic isomorphism

because an injective holomorphic map is also an holomorphic isomorphism may they

inverse also becomes holomorphic, so is holomorphi.

And well. So, once we are given a collection of charts which cover X and when all these

charts are pairwise compatible then we call this an atlas and we say that X along with

that atlas is now a Riemann surface right. So, a collection of charts U i comma phi i, i

belong to I that are compatible which means pairwise compatible and that cover X is

called an atlas and is set to give a Riemann surface structure on the real surface X.

So, this was our definition of what Riemann surface should be you take a real surface

cover it by charts which are compatible and this collection of compatible charts is called

an atlas and real surface along with this atlas put together is called as a Riemann surface,

you can rather call it a Riemann surface structure on X. 

Well I just want to make this definition a little bit more sophisticated in this lecture in the

following way. So, well after I gave this definition we have seen in the last lecture how

we can give Riemann surface structures on the plane and on the sphere. So, we have seen

we have seen Riemann surface structures on R 2 and S 2 this is a real plane and this is

the real sphere we have we have seen examples of that.

Well and I want to in particular look recall your attention to the to the natural Riemann

surface structure on R 2 that makes it the complex plane, the usual complex plane. So,

you see in particular. So, let me write that in particular recall the following Riemann

surface structure.  So,  I  will  just  abbreviate  Riemann surface to R S, so that  I  avoid

writing it out in all the time and I can save some time.

In particular you recall the following Riemann surface structure on R 2. So, the atlas is

just consisting of a single coordinate chart. And what is the chart? It is just the open set is

the whole of R 2 and the map. So, let me make way for some more space the map phi



from R 2 to C is just the natural identification namely it takes X comma Y to X plus iy

which is z. So, this is a natural map and I am just taking a single chart.

Now, this  chart  of  course,  covers  the  whole  plane  and  it  is  an  atlas  the  collection

consisting of only this chart is an atlas because there is no compatibility condition that

has to be verified. So, by logic if that is a condition that does not need to be verified it is

deemed to be true vacuously true. So, this indeed an atlas and what it does is that it

makes R 2 into the complex plane c. So, we say that the complex plane C is a natural

Riemann surface structure on R 2 and where the notion of holomorphic function is the

usual notion of holomorphic function that we study.
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Now, also let us look at the Riemann surface structure on R 2 given by the following

address. So, here is my atlas my atlas consists of all possible U comma phi restricted to

U where U in R 2 is an open set and phi is a phi restricted to U is the restriction of phi to

U, where phi is defined as I have done it here namely the natural identification.

So, you look at you look at this collection. Of course, you can see that this is a this

contains this because I can take U equal to R 2 and then I have that chart as well, but

then now I have so many charts I can write as many of them as there are open sets in R 2.

And well in principle it is very clear that this is also going to give you just the complex

plane you are not going to get any other Riemann surface structure on R 2 its again the

same complex plane.



So, we really  do not want  to distinguish between this  the Riemann surface structure

given by this complex atlas and the Riemann surface structure given by this complex

atlas we really do not want to do that. And for that we just make the definition a little bit

more  sophisticated.  So,  this  is  the  motivation  for  making  the  definition  more

sophisticated. So, what we do we really do not want to distinguish between these two

Riemann surface structures since they both give they both give C the both of them give

the complex plane. And why is it that we say that they give the same Riemann surface

structure  because  you  take  a  function  on  R  2  define  an  open  subset  of  R  2  its

holomorphic with respect to this structure if and only if its holomorphic with respect to

that  structure  because  holomorphic  with  respect  to  any  of  these  structures  is  just

holomorphic in the usual sense. So, really there is no difference in deciding whether a

function is holomorphic.

So,  you  see  this  goes  in  tune  with  a  philosophy  of  Felix  Klein  the  great  German

geometry who said that the geometry of a space is controlled by the functions you allow

on that space. So, if I look at the holomorphic functions given on the Riemann surface

given by this by this structure they are no different than the holomorphic functions given

by the Riemann surface structure on this by this atlas. So, essentially they should be the

same space that is the motivation.

So, what do we do to what we put into the definition to make sure that we do not really

distinguish between such things? So, we do the following thing what we do is that, you

take two possible atlases which give Riemann surface structures on a given surface and

then you define them to be equivalent if every chart in one atlas is compatible with every

chart in the other you put this equivalent this condition. So, motivated by the above we

proceed as follows. So, definition two atlases on X are said to be equivalent if every

chart of one atlas is compatible with every chart of the other.

So, we define this equivalence or this is basically a definition of equivalence of atlases

complex atlases it is a very simple definition it says every chart of one atlases compatible

with every chart of the other atlas. And you can see that this is clearly an equivalence

relation because this is symmetric about the two charts. And well there is something else

that you can also see you take two such equivalent atlases and take their union then you

will find that that again gives you an equivalent atlas which is bigger than both of them

because an atlas is just a collection of charts which are mutually compatible.



So, if you have two atlases which are equivalent; that means, every chart in this atlas is

equivalent every chart in the other atlas if you put them together you will still get an

address because the condition for an atlas is just compatibility. So, it is very clear that if

you have two atlases you can put them together and you get new atlas. And then now the

Riemann surface structure given by any of these atlases and their union should all be the

same you should not really distinguish between these.

So, the moral of the story is that you should try to change the definition in such a way

that you include in an atlas as many compatible charts as you can. So, we have this

notion of what is called a maximal atlas right. So, if there are two compatible atlases I

can put them together take their union I get a bigger atlas and then in this way I can keep

on enlarging the atlas until it becomes maximum.

Now, a standard argument using Zorn’s lemma in algebra, rather set theory will tell you

that a maximum atlas will always exist. So, this is a Zorn’s lemma argument and that will

tell you that given any atlas I can find a maximal atlas which contains this atlas and it

will also tell you that the maximality will also tell you that this maximal atlas is unique.

And then I am in good shape because I can now define the definition I can now define a

Riemann surface to be one that is a real surface that is equipped with the maximal atlas.

And once I say that then you know there is no difference between the Riemann surface

defined by this and the Riemann surface defined by this because both of them will have

the same maximal atlas. So, that is what I am going to write down now. 
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It is clear that the union of two equivalent atlases is again an atlas an easy Zorn’s lemma

argument can be used to prove the following, prove the following. So, let me call this as

well theorem given an atlas on X that is a unique maximal atlas containing the given one.

So,  the  Zorn lemma argument  is  usually  applied  in  the  following sense  you have  a

partially ordered set and then you verify the condition that every chain in that partially

ordered  set  has  an  upper  bound  and  then  Zorn  lemma  will  guarantee  that  maximal

elements will exist.

So, in this case the set is the set of all possible atlases on X and the partial order, order is

just containment and atlas is said to be lesser than another atlas if every element of this

atlas is also an element of the other atlas, it is by inclusion. And if you give me a chain of

atlases then it is obvious that the biggest one is an upper bound or even if the chain is

infinite I could simply take the union and that will be an upper bound. So, every chain

has an upper bound and now Zorn lemma wills will assure you that maximal elements

exist. So, you can find maximal atlases.

So, because of this theorem I can now define a Riemann surface structure to be one

specified  by a  maximal  atlas,  but  that  is  just  its  of  technical  significance  because  it

allows you to identify these two Riemann surfaces being the same that is the advantage.

But in practice it is not a big deal because when we specify a Riemann surface structure

we are just going to give an atlas and then we are going to assume that the Riemann



surface structure is the one that corresponds to the maximal atlas which contains our

given  atlases.  So,  for  all  practical  purposes  we will  work  with  some atlas  which  is

convenient  for us  it  need not be the maximal  atlas.  But  this  maximal  atlas  is  just  a

condition that I put into the definition of Riemann surface so that I really do not have to

distinguish between the Riemann structure surface structure here and here. So, let me

write that down.
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So, let me just complete this. So, here is a definition a Riemann surface structure on a

real surface X is specified by a maximal atlas. So, here is my revised definition. So, if

you want to define a Riemann surface structure on a real surface you take the one given

by a  maximal  atlas  for  all  practical  purposes  you would  only  take  any atlas  that  is

suitable for our use and then we will say that we are referring to the Riemann surface

structure given by the maximal atlas which contains the one that we have specified.

So, let me repeat the advantage of this definition is that I do not have to distinguish

between  this  Riemann  surface  and  this  Riemann  surface  just  because  they  are  two

different atlases, the surfaces are the same. I mean both of them give the complex plane

and I do not want to there is no point in distinguishing between them.

So, let us get back to these examples that I gave the last class. So, you see our say, I was

trying to give examples of Riemann surface structures and what I had in mind are of

course  the  real  plane  and well  the  sphere  the  real  sphere,  then  I  also  have  in  mind



cylinder and then the torus. So, these are all objects that we these, these are all surfaces

that we can easily think of in R 3. 
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Well, we have already looked at the case of the plane and the sphere. So, let me recall

that case because there is something there that I have to formalize a little more. So, recall

the following theorems on Riemann surface structures on R 2 and S 2. So, that was this

theorem  which  is  called  as  the  uniformisation  theorem  for  simply  connected  non-

compact.  So,  this  is  the  uniformisation  theorem  for  simply  connected  non-compact

Riemann surface, which says the following any simply connected non-compact Riemann

surface has to be isomorphic to exactly one of a C the complex plane, b delta the unit

disk or U the upper half plane.

So, this is the information theorem for simply connected non-compact Riemann surfaces.

Take a Riemann surface which is simply connected, so simply connected means that any

closed loop on the surface which is a continuous image of the interval can be shrunk

continuously to a point. So, that is that just says that there cannot be any holes in the

surface. And you take a simply connected Riemann surface I assume that is also non-

compact and then the uniformization theorem says that it has to be either isomorphic to C

or it has to be isomorphic to delta, delta is unit disk and you know you can always find a

by holomorphic map a mobius transformation in fact, which can map delta to the upper

half plane you can map any disk into any half plane you know that, so yeah. Instead of



delta I could have also said U, U is up upper half plane namely complex numbers with

imaginary part greater than 0. 

Well, this uniformization theorem for simply connected non-compact Riemann surfaces.

And this is this tells you what does it tell  you, it tells  you that if you try to look at

Riemann  surface  structures  on  R  2  because  R  2  is  certainly  non-compact  and  it  is

certainly simply connected. Then on R 2 you can put only two possible Riemann surface

structures one isomorphic to C which is given by the natural identification, then the other

one is  isomorphic to  delta  and that  was example  2 of  the previous lecture.  And the

Riemann mapping theorem ensures that these two are not isomorphic these two are not

equivalent they are not by holomorphic.

So, let me also recall the corresponding uniformization theorem for that applies to the

real sphere. So, well let me first rub this off. 
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So, theorem uniformization for simply connected compact  Riemann surface,  so what

does this say? It says any simply connected compact Riemann surface is isomorphic to

the Riemann sphere which I will denote as p 1 of C, I denoted as p 1 of C for reasons I

will  explain later. And this example of the Riemann,  the this  example of a Riemann

sphere was the example of Riemann surface structure on a S 2 which it was the last

example in the previous lecture and basically the 2 charts were given by taking the 2



open sets to be the sphere minus the north pole, and this sphere minus a south pole and

the coordinate maps were given by the stereographic projection on to the plane.

So, and then you can also mention I do not I hope you have checked it that the transition

function is just given by z going to 1 by z and that is of course, holomorphic when set is

not equal to 0. Of course, you will have to compose one of the stereographic projections

with  the  complex conjugation  to  get  the transition  function  correct.  And from this  I

deduced or rather you can easily  read deduced that  if  I try to put different Riemann

surface structures on S 2 I am not going to succeed I am going to get only 1. All the

Riemann surface structures I try to impose an S 2 I am only going to get 1, no matter

what collector what choice of charts or atlases I use.

Well  these  are  all  these  theorems are  all  are  not  easy  theorems the  proofs  are  little

involved, but eventually we will we will try to prove them in the course. Well the reason

why I recalled these two theorems is to draw our attention to the following thing which I

have to formulas because I said you see. For example, here that any simply connected

non-compact Riemann surface has to be isomorphic to exactly one of the following here

also I say any simply connected compact Riemann surface is isomorphic to the Riemann

surfaces to the Riemann sphere

So, I am here talking about an isomorphism between Riemann surfaces that is something

that I have not really defined, but it is very intuitive and you will see that it is very easy

to define. So, the idea now is I am going to try to define when a map from an open subset

of Riemann surface to another open subset of another Riemann surface is holomorphic.

So, let us go to that. So, let me write this what does isomorphic mean. So, we proceed to

formalize this. So, suppose we had given a function f from U to V, where U is U is an

open subset of X and V is an open subset of Y and X and Y are Riemann surfaces.

Suppose we are given a function from an open subset of one Riemann surface 2 an open

subset of another Riemann surface when we call this holomorphic. So, you see that is the

first thing that I like to define. Once I define this then I can define when a map from X to

Y itself is holomorphic and then I can define when a map from X to Y is an isomorphism

by requiring that it has to be holomorphic and the inverse map also is holomorphic. And

that again of course, it will follow that if its holomorphic and if it is bijective then the

inverse map will be also holomorphic.



So, that is the reason why in order to formalize the notion of isomorphism I have to

formalize this notion of a holomorphic map between open subsets of Riemann surfaces.

And again well how do we do this it is again by using the charts all right. So, so let me

make the definition as follows. So, maybe I  will  draw a diagram it  should not be it

should be easier for you to visualize it with a diagram. So, let me draw one.
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So, here I am, here is one Riemann surface here is my Riemann surface X, well and here

is another Riemann surface say Y, well and I have I have this open set here U in X and its

some other open set here which is say V in Y and well I have this function f and the aim

is I want to say that this function is holomorphic. So, what do I do, well I take any chart

here on this surface which intersects U. So, what I do is that well I take a set here which

is the domain of a chart. So, let me call this chart as U sub i and well there is going to be

a homeomorphism phi i from U i into an open subset of the complex plane. So, let me

write that also let me call this as a phi i of U i let me call this as I do not want to use V.

So, let me call this as well U i prime if I want and this is an open subset open subset of C

and if U i comma phi i is a chart on X that intersects U; that means, U i intersects U and

this is the intersection.

Similarly, I take a chart on V which intersect a chart on Y which intersects V. So, that is

again a pair. So, that is another chart which I will call as V i this is the domain of the

chart and then the chart also consists of a homeomorphism I call this as psi i, I will not I



not the same I well let me use something else j if you want coming from a different index

index set. In fact, I could do away with the if is and js, but anyway since I written it let

me keep them. Well this is again a homeomorphism of V j on to V j prime which is the

image of V j under psi j which is again an open subset of C and this is again a chart

which intersects V domain as chart the chart is basically consisting of two data though.

The first one is the domain of chart the second is the homeomorphism that that makes the

domain look like an open subset of the complex plane.

So, well what I can do is that you see I can do the following thing, this shaded region

here is just U intersection U i and that U intersection U I will go to an open subset,

subset phi, phi i of U intersection U i that is again going to be an open subset of this

because under homeomorphism the image of an open subset is again an open subset and

restricted to that open subset it is still a homeomorphism all right. And similarly if I call

this, this intersection of V j with V as I mean it is V intersection V j and well under the

homeomorphism psi j its going to this open set psi j of V intersection V j that is again an

open set open subset of V j V prime j.

Now, what I can do is I can go from this open set to this open set by using the map f

namely I apply phi i inverse and I land in this intersection then I apply f restricted to that

intersection right and of course, I do assume that the image of that intersection under f

does meet some part of this intersection, so that I can compose. So, I can look at this map

from here to here and this map is just going to be apply phi i inverse then apply f and

then apply psi j assume that f restricted to U intersection U i or rather f of U intersection

U i goes into V intersection V j.

I can assume this here of course; I am assuming the ref is continuous. Well now when I

do this I now get a function from an open subset of the complex plane to another open

subset of the complex plane and well I can easily decide if this function is holomorphic.

So, the point is that even if this condition is not satisfied then do not verify anything

verify this only when this condition is satisfied and all possible charts here U i comma

phi i and all possible charts that V, V j comma psi j do it and if it is going and if this

composition is going to be holomorphic then I declare that f is holomorphic.

So, it is really it looks a little complicated when I say it the first time, but actually I can

say it in a nutshell by saying that well to decide whether a function is holomorphic all I



do is that I write it in terms of local coordinates and check whether it is holomorphic

because the moment I like I write it in terms of local coordinates it means that I am using

the coordinate charts to get a mapping from open subset of C 2 and another open subset

of C and there it is easy to decide when a function is holomorphic.

So, let me write that down ah. So, let me write the following we say that f is holomorphic

of course, the other word that is always used is analytic or analytic if for any charts, chart

U i comma phi i of X any charts and well V j comma psi j of Y such that U i intersection

U is non empty, V j intersection V is non empty, the composition the composition, psi j

circle f circle phi i inverse is holomorphic whenever f of U intersection U i goes into C

intersection V j.
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Here of course, I am assuming the ref is continuous to decide if a map between an open

sub subset of one Riemann surface and an open subset of another Riemann surface is

holomorphic I just have to decide using the local coordinates and then you can see that of

course, this notion of holomorphic map being holomorphic is intrinsic.

So, it is not really going to its not going to be an ambiguous definition and well we are

going to say that to Riemann surfaces are isomorphic if you are able to find a map which

is holomorphic and which has an inverse that is holomorphic and that is in this case also

going to be enough to require that its holomorphic and it is bijected. So, well, so that is



when we call the Riemann surfaces are isomorphic and that is the isomorphism I am

referring to in these two statements. So, that is that is what I wanted to clarify.

Well  now you see  having done this  there  is  one immediate,  there  is  one  immediate

observation that we can make which will help us in the following sense.
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Note that with the above definition. So, this is this remark actually it pertains to a point

raised by one of the students in I think it this was in the one of the previous lectures that

you know that, if you take any chart that is going to give you a function from an open

subset of X to an open subset of C, now you see X is a Riemann surface and C is also a

Riemann  surface  and  basically  we  required  this  chart  on  this  function  only  to  be

homeomorphic, but with this definition it actually becomes holomorphic.

So, it is rather clever the definition of holomorphicity automatically makes the function

of every chart a holomorphic isomorphism. The homeomorphism of any chart defines the

holomorphic isomorphism between U and phi. You think of U, U is an open subset of X,

phi U is an open subset of C and V are in this situation we have a map from an open

subset of X into an open subset of Y. So, Y is now C.

So, the point is that all your coordinate charts all the mappings in your coordinate charts

they are all  holomorphic.  And now this  gives  you another  view of  what  a Riemann

surfaces it is got by gluing together open subsets of the complex plane at the point I want



to make is that a Riemann surface basically is obtained by gluing open subsets of the

complex plane and the gluing is done by the transition functions So, that is the remark

that is what this remark tells us.
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Thus a Riemann surface structure on a real surface X is got by gluing open subsets phi of

U i by the holomorphic transition functions g ij which is given by phi j inverse followed

by phi i. So, this is the point of view that that I would like to emphasize. So, I will stop

here
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