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So, let us get along with this third lecture in the series on Riemann surfaces and algebraic
curves. So, let us begin by recalling what we wanted a Riemann surface to be. The aim is
first of all I want to make our definition of Riemann surface slightly more sophisticated.

So, you recall that we took a real surface, so we start; we start with the real surface X.

(Refer Slide Time: 01:00)
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So, this is a surface which for the moment is one that we can visualize in three space for
example, the plane or the cylinder or a torus or the sphere these are all surfaces that you

can imagine in R 3 in three space.

And what is it that we wanted to do we wanted to do complex analysis on the surface.
So, we wanted to do complex analysis on the surface on the surface and that essentially
was trying to do the following if you are given an open set on the surface, and if you are
given a function defined on that taking complex values I would like to decide clearly
when I can call this function as holomorphic. So, because complex analysis is all about
studying the properties of holomorphic functions or analytic functions, well in order to
do this I told you that we have to use what are known as charts. So, so this is achieved
this is achieved by using charts U comma phi U i comma phi i if you want where i

belongs to an indexing set such that the U i cower X.

So, basically if you recall phi 1 was a homeomorphism from U 1 into V i which is an open
subset of the complex plane and this was a homeomorphism. So, this was our definition

of chart. And then for example, if I wanted to decide whether if a function defined on U i



is holomorphic all I had to do was to go from Vi to U 1 by taking the inverse map which
is defined because V i is homeomorphism and follow it by my map my function. So, I
get a function from an open subset of the complex plane into the complex plane for

which I can certainly define what holomorphic is which I already know.

So, we could use these charts to define when a function is holomorphic and we of course,
needed to cover every point on the on the surface. So, we needed cover of the surface by
charts. And well there was one problem that we needed to avoid and that is that when we
decide the holomorphics key of a function it should not be something that depended on
the choice of a chart because holomorphicity of a function should be an intrinsic property
of a function and therefore, it should not happen that the function is holomorphic with
respect to one chart and it is not holomorphic with respect to another chart because charts

can intersect.

So, we overcome this problem by requiring that the charts are compatible. So, the second
condition was to ensure that the notion of holomorphicity of a function defined on an
open subset is intrinsic, is intrinsic to the function that is not dependent on the chart on

charts we required that the charts were pairwise compatible.
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And what was this pairwise compatibility? The pairwise compatibility condition was if
that if U 1 and U j were intersecting non trivially that is the intersection was not empty.

Then the transition function the so called transition function, so called transmission



transition function which I denote by g ij which is first apply phi j inverse and follow it

by phi i.

This transition function is going to be defined it is going to be a homeomorphism from
an open subset of the complex plane to another open subset of the complex plane it is a
homeomorphism and I want this to be holomorphic. And that is, and because its injective
that is also equivalent to requiring that this function is a the holomorphic isomorphism
because an injective holomorphic map is also an holomorphic isomorphism may they

inverse also becomes holomorphic, so is holomorphi.

And well. So, once we are given a collection of charts which cover X and when all these
charts are pairwise compatible then we call this an atlas and we say that X along with
that atlas is now a Riemann surface right. So, a collection of charts U i comma phi i, i
belong to I that are compatible which means pairwise compatible and that cover X is

called an atlas and is set to give a Riemann surface structure on the real surface X.

So, this was our definition of what Riemann surface should be you take a real surface
cover it by charts which are compatible and this collection of compatible charts is called
an atlas and real surface along with this atlas put together is called as a Riemann surface,

you can rather call it a Riemann surface structure on X.

Well I just want to make this definition a little bit more sophisticated in this lecture in the
following way. So, well after I gave this definition we have seen in the last lecture how
we can give Riemann surface structures on the plane and on the sphere. So, we have seen
we have seen Riemann surface structures on R 2 and S 2 this is a real plane and this is

the real sphere we have we have seen examples of that.

Well and I want to in particular look recall your attention to the to the natural Riemann
surface structure on R 2 that makes it the complex plane, the usual complex plane. So,
you see in particular. So, let me write that in particular recall the following Riemann
surface structure. So, I will just abbreviate Riemann surface to R S, so that I avoid

writing it out in all the time and I can save some time.

In particular you recall the following Riemann surface structure on R 2. So, the atlas is
just consisting of a single coordinate chart. And what is the chart? It is just the open set is

the whole of R 2 and the map. So, let me make way for some more space the map phi



from R 2 to C is just the natural identification namely it takes X comma Y to X plus iy

which is z. So, this is a natural map and I am just taking a single chart.

Now, this chart of course, covers the whole plane and it is an atlas the collection
consisting of only this chart is an atlas because there is no compatibility condition that
has to be verified. So, by logic if that is a condition that does not need to be verified it is
deemed to be true vacuously true. So, this indeed an atlas and what it does is that it
makes R 2 into the complex plane c. So, we say that the complex plane C is a natural
Riemann surface structure on R 2 and where the notion of holomorphic function is the

usual notion of holomorphic function that we study.
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Now, also let us look at the Riemann surface structure on R 2 given by the following
address. So, here is my atlas my atlas consists of all possible U comma phi restricted to
U where U in R 2 is an open set and phi is a phi restricted to U is the restriction of phi to

U, where phi is defined as I have done it here namely the natural identification.

So, you look at you look at this collection. Of course, you can see that this is a this
contains this because I can take U equal to R 2 and then I have that chart as well, but
then now I have so many charts I can write as many of them as there are open sets in R 2.
And well in principle it is very clear that this is also going to give you just the complex
plane you are not going to get any other Riemann surface structure on R 2 its again the

same complex plane.



So, we really do not want to distinguish between this the Riemann surface structure
given by this complex atlas and the Riemann surface structure given by this complex
atlas we really do not want to do that. And for that we just make the definition a little bit
more sophisticated. So, this is the motivation for making the definition more
sophisticated. So, what we do we really do not want to distinguish between these two
Riemann surface structures since they both give they both give C the both of them give
the complex plane. And why is it that we say that they give the same Riemann surface
structure because you take a function on R 2 define an open subset of R 2 its
holomorphic with respect to this structure if and only if its holomorphic with respect to
that structure because holomorphic with respect to any of these structures is just
holomorphic in the usual sense. So, really there is no difference in deciding whether a

function is holomorphic.

So, you see this goes in tune with a philosophy of Felix Klein the great German
geometry who said that the geometry of a space is controlled by the functions you allow
on that space. So, if I look at the holomorphic functions given on the Riemann surface
given by this by this structure they are no different than the holomorphic functions given
by the Riemann surface structure on this by this atlas. So, essentially they should be the

same space that is the motivation.

So, what do we do to what we put into the definition to make sure that we do not really
distinguish between such things? So, we do the following thing what we do is that, you
take two possible atlases which give Riemann surface structures on a given surface and
then you define them to be equivalent if every chart in one atlas is compatible with every
chart in the other you put this equivalent this condition. So, motivated by the above we
proceed as follows. So, definition two atlases on X are said to be equivalent if every

chart of one atlas is compatible with every chart of the other.

So, we define this equivalence or this is basically a definition of equivalence of atlases
complex atlases it is a very simple definition it says every chart of one atlases compatible
with every chart of the other atlas. And you can see that this is clearly an equivalence
relation because this is symmetric about the two charts. And well there is something else
that you can also see you take two such equivalent atlases and take their union then you
will find that that again gives you an equivalent atlas which is bigger than both of them

because an atlas is just a collection of charts which are mutually compatible.



So, if you have two atlases which are equivalent; that means, every chart in this atlas is
equivalent every chart in the other atlas if you put them together you will still get an
address because the condition for an atlas is just compatibility. So, it is very clear that if
you have two atlases you can put them together and you get new atlas. And then now the
Riemann surface structure given by any of these atlases and their union should all be the

same you should not really distinguish between these.

So, the moral of the story is that you should try to change the definition in such a way
that you include in an atlas as many compatible charts as you can. So, we have this
notion of what is called a maximal atlas right. So, if there are two compatible atlases I
can put them together take their union I get a bigger atlas and then in this way I can keep

on enlarging the atlas until it becomes maximum.

Now, a standard argument using Zorn’s lemma in algebra, rather set theory will tell you
that a maximum atlas will always exist. So, this is a Zorn’s lemma argument and that will
tell you that given any atlas I can find a maximal atlas which contains this atlas and it
will also tell you that the maximality will also tell you that this maximal atlas is unique.
And then I am in good shape because I can now define the definition I can now define a
Riemann surface to be one that is a real surface that is equipped with the maximal atlas.
And once I say that then you know there is no difference between the Riemann surface
defined by this and the Riemann surface defined by this because both of them will have

the same maximal atlas. So, that is what I am going to write down now.
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It is clear that the union of two equivalent atlases is again an atlas an easy Zorn’s lemma
argument can be used to prove the following, prove the following. So, let me call this as

well theorem given an atlas on X that is a unique maximal atlas containing the given one.

So, the Zorn lemma argument is usually applied in the following sense you have a
partially ordered set and then you verify the condition that every chain in that partially
ordered set has an upper bound and then Zorn lemma will guarantee that maximal

elements will exist.

So, in this case the set is the set of all possible atlases on X and the partial order, order is
just containment and atlas is said to be lesser than another atlas if every element of this
atlas is also an element of the other atlas, it is by inclusion. And if you give me a chain of
atlases then it is obvious that the biggest one is an upper bound or even if the chain is
infinite I could simply take the union and that will be an upper bound. So, every chain
has an upper bound and now Zorn lemma wills will assure you that maximal elements

exist. So, you can find maximal atlases.

So, because of this theorem I can now define a Riemann surface structure to be one
specified by a maximal atlas, but that is just its of technical significance because it
allows you to identify these two Riemann surfaces being the same that is the advantage.
But in practice it is not a big deal because when we specify a Riemann surface structure

we are just going to give an atlas and then we are going to assume that the Riemann



surface structure is the one that corresponds to the maximal atlas which contains our
given atlases. So, for all practical purposes we will work with some atlas which is
convenient for us it need not be the maximal atlas. But this maximal atlas is just a
condition that I put into the definition of Riemann surface so that I really do not have to
distinguish between the Riemann structure surface structure here and here. So, let me

write that down.
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So, let me just complete this. So, here is a definition a Riemann surface structure on a
real surface X is specified by a maximal atlas. So, here is my revised definition. So, if
you want to define a Riemann surface structure on a real surface you take the one given
by a maximal atlas for all practical purposes you would only take any atlas that is
suitable for our use and then we will say that we are referring to the Riemann surface

structure given by the maximal atlas which contains the one that we have specified.

So, let me repeat the advantage of this definition is that I do not have to distinguish
between this Riemann surface and this Riemann surface just because they are two
different atlases, the surfaces are the same. I mean both of them give the complex plane

and I do not want to there is no point in distinguishing between them.

So, let us get back to these examples that I gave the last class. So, you see our say, [ was
trying to give examples of Riemann surface structures and what I had in mind are of

course the real plane and well the sphere the real sphere, then I also have in mind



cylinder and then the torus. So, these are all objects that we these, these are all surfaces

that we can easily think of in R 3.

(Refer Slide Time: 25:26)

Well, we have already looked at the case of the plane and the sphere. So, let me recall
that case because there is something there that I have to formalize a little more. So, recall
the following theorems on Riemann surface structures on R 2 and S 2. So, that was this
theorem which is called as the uniformisation theorem for simply connected non-
compact. So, this is the uniformisation theorem for simply connected non-compact
Riemann surface, which says the following any simply connected non-compact Riemann
surface has to be isomorphic to exactly one of a C the complex plane, b delta the unit

disk or U the upper half plane.

So, this is the information theorem for simply connected non-compact Riemann surfaces.
Take a Riemann surface which is simply connected, so simply connected means that any
closed loop on the surface which is a continuous image of the interval can be shrunk
continuously to a point. So, that is that just says that there cannot be any holes in the
surface. And you take a simply connected Riemann surface I assume that is also non-
compact and then the uniformization theorem says that it has to be either isomorphic to C
or it has to be isomorphic to delta, delta is unit disk and you know you can always find a
by holomorphic map a mobius transformation in fact, which can map delta to the upper

half plane you can map any disk into any half plane you know that, so yeah. Instead of



delta I could have also said U, U is up upper half plane namely complex numbers with

imaginary part greater than 0.

Well, this uniformization theorem for simply connected non-compact Riemann surfaces.
And this is this tells you what does it tell you, it tells you that if you try to look at
Riemann surface structures on R 2 because R 2 is certainly non-compact and it is
certainly simply connected. Then on R 2 you can put only two possible Riemann surface
structures one isomorphic to C which is given by the natural identification, then the other
one is isomorphic to delta and that was example 2 of the previous lecture. And the
Riemann mapping theorem ensures that these two are not isomorphic these two are not

equivalent they are not by holomorphic.

So, let me also recall the corresponding uniformization theorem for that applies to the

real sphere. So, well let me first rub this off.

(Refer Slide Time: 30:28)
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So, theorem uniformization for simply connected compact Riemann surface, so what
does this say? It says any simply connected compact Riemann surface is isomorphic to
the Riemann sphere which I will denote as p 1 of C, I denoted as p 1 of C for reasons I
will explain later. And this example of the Riemann, the this example of a Riemann
sphere was the example of Riemann surface structure on a S 2 which it was the last

example in the previous lecture and basically the 2 charts were given by taking the 2



open sets to be the sphere minus the north pole, and this sphere minus a south pole and

the coordinate maps were given by the stereographic projection on to the plane.

So, and then you can also mention I do not I hope you have checked it that the transition
function is just given by z going to 1 by z and that is of course, holomorphic when set is
not equal to 0. Of course, you will have to compose one of the stereographic projections
with the complex conjugation to get the transition function correct. And from this I
deduced or rather you can easily read deduced that if I try to put different Riemann
surface structures on S 2 I am not going to succeed I am going to get only 1. All the
Riemann surface structures I try to impose an S 2 I am only going to get 1, no matter

what collector what choice of charts or atlases I use.

Well these are all these theorems are all are not easy theorems the proofs are little
involved, but eventually we will we will try to prove them in the course. Well the reason
why I recalled these two theorems is to draw our attention to the following thing which I
have to formulas because I said you see. For example, here that any simply connected
non-compact Riemann surface has to be isomorphic to exactly one of the following here
also I say any simply connected compact Riemann surface is isomorphic to the Riemann

surfaces to the Riemann sphere

So, I am here talking about an isomorphism between Riemann surfaces that is something
that I have not really defined, but it is very intuitive and you will see that it is very easy
to define. So, the idea now is I am going to try to define when a map from an open subset

of Riemann surface to another open subset of another Riemann surface is holomorphic.

So, let us go to that. So, let me write this what does isomorphic mean. So, we proceed to
formalize this. So, suppose we had given a function f from U to V, where U is U is an
open subset of X and V is an open subset of Y and X and Y are Riemann surfaces.
Suppose we are given a function from an open subset of one Riemann surface 2 an open
subset of another Riemann surface when we call this holomorphic. So, you see that is the
first thing that I like to define. Once I define this then I can define when a map from X to
Y itself is holomorphic and then I can define when a map from X to Y is an isomorphism
by requiring that it has to be holomorphic and the inverse map also is holomorphic. And
that again of course, it will follow that if its holomorphic and if it is bijective then the

inverse map will be also holomorphic.



So, that is the reason why in order to formalize the notion of isomorphism I have to
formalize this notion of a holomorphic map between open subsets of Riemann surfaces.
And again well how do we do this it is again by using the charts all right. So, so let me
make the definition as follows. So, maybe I will draw a diagram it should not be it

should be easier for you to visualize it with a diagram. So, let me draw one.

(Refer Slide Time: 36:03)

So, here I am, here is one Riemann surface here is my Riemann surface X, well and here
is another Riemann surface say Y, well and I have I have this open set here U in X and its
some other open set here which is say V in Y and well I have this function f and the aim
is I want to say that this function is holomorphic. So, what do I do, well I take any chart
here on this surface which intersects U. So, what I do is that well I take a set here which
is the domain of a chart. So, let me call this chart as U sub i and well there is going to be
a homeomorphism phi i from U 1 into an open subset of the complex plane. So, let me
write that also let me call this as a phi i of U i let me call this as I do not want to use V.
So, let me call this as well U 1 prime if [ want and this is an open subset open subset of C
and if U i comma phi i is a chart on X that intersects U; that means, U i intersects U and

this is the intersection.

Similarly, I take a chart on V which intersect a chart on Y which intersects V. So, that is
again a pair. So, that is another chart which I will call as V i this is the domain of the

chart and then the chart also consists of a homeomorphism I call this as psi i, I will not I



not the same I well let me use something else j if you want coming from a different index
index set. In fact, I could do away with the if is and js, but anyway since I written it let
me keep them. Well this is again a homeomorphism of V j on to V j prime which is the
image of V j under psi j which is again an open subset of C and this is again a chart
which intersects V domain as chart the chart is basically consisting of two data though.
The first one is the domain of chart the second is the homeomorphism that that makes the

domain look like an open subset of the complex plane.

So, well what I can do is that you see I can do the following thing, this shaded region
here is just U intersection U i and that U intersection U I will go to an open subset,
subset phi, phi i of U intersection U i that is again going to be an open subset of this
because under homeomorphism the image of an open subset is again an open subset and
restricted to that open subset it is still a homeomorphism all right. And similarly if I call
this, this intersection of V j with V as [ mean it is V intersection V j and well under the
homeomorphism psi j its going to this open set psi j of V intersection V j that is again an

open set open subset of V j V prime j.

Now, what I can do is I can go from this open set to this open set by using the map f
namely I apply phi i inverse and I land in this intersection then I apply f restricted to that
intersection right and of course, I do assume that the image of that intersection under f
does meet some part of this intersection, so that I can compose. So, I can look at this map
from here to here and this map is just going to be apply phi i inverse then apply f and
then apply psi j assume that f restricted to U intersection U 1 or rather f of U intersection

U i goes into V intersection V j.

I can assume this here of course; I am assuming the ref is continuous. Well now when I
do this I now get a function from an open subset of the complex plane to another open
subset of the complex plane and well I can easily decide if this function is holomorphic.
So, the point is that even if this condition is not satisfied then do not verify anything
verify this only when this condition is satisfied and all possible charts here U i comma
phi 1 and all possible charts that V, V j comma psi j do it and if it is going and if this

composition is going to be holomorphic then I declare that f is holomorphic.

So, it is really it looks a little complicated when I say it the first time, but actually I can

say it in a nutshell by saying that well to decide whether a function is holomorphic all I



do is that I write it in terms of local coordinates and check whether it is holomorphic
because the moment I like I write it in terms of local coordinates it means that I am using
the coordinate charts to get a mapping from open subset of C 2 and another open subset

of C and there it is easy to decide when a function is holomorphic.

So, let me write that down ah. So, let me write the following we say that f is holomorphic
of course, the other word that is always used is analytic or analytic if for any charts, chart
U i comma phi i of X any charts and well V j comma psi j of Y such that U i intersection
U is non empty, V j intersection V is non empty, the composition the composition, psi j
circle f circle phi i1 inverse is holomorphic whenever f of U intersection U i goes into C

intersection V j.

(Refer Slide Time: 43:10)

Here of course, I am assuming the ref is continuous to decide if a map between an open
sub subset of one Riemann surface and an open subset of another Riemann surface is
holomorphic I just have to decide using the local coordinates and then you can see that of

course, this notion of holomorphic map being holomorphic is intrinsic.

So, it is not really going to its not going to be an ambiguous definition and well we are
going to say that to Riemann surfaces are isomorphic if you are able to find a map which
is holomorphic and which has an inverse that is holomorphic and that is in this case also

going to be enough to require that its holomorphic and it is bijected. So, well, so that is



when we call the Riemann surfaces are isomorphic and that is the isomorphism I am

referring to in these two statements. So, that is that is what [ wanted to clarify.

Well now you see having done this there is one immediate, there is one immediate

observation that we can make which will help us in the following sense.

(Refer Slide Time: 45:50)
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Note that with the above definition. So, this is this remark actually it pertains to a point
raised by one of the students in I think it this was in the one of the previous lectures that
you know that, if you take any chart that is going to give you a function from an open
subset of X to an open subset of C, now you see X is a Riemann surface and C is also a
Riemann surface and basically we required this chart on this function only to be

homeomorphic, but with this definition it actually becomes holomorphic.

So, it is rather clever the definition of holomorphicity automatically makes the function
of every chart a holomorphic isomorphism. The homeomorphism of any chart defines the
holomorphic isomorphism between U and phi. You think of U, U is an open subset of X,
phi U is an open subset of C and V are in this situation we have a map from an open

subset of X into an open subset of Y. So, Y is now C.

So, the point is that all your coordinate charts all the mappings in your coordinate charts
they are all holomorphic. And now this gives you another view of what a Riemann

surfaces it is got by gluing together open subsets of the complex plane at the point I want



to make is that a Riemann surface basically is obtained by gluing open subsets of the
complex plane and the gluing is done by the transition functions So, that is the remark

that is what this remark tells us.

(Refer Slide Time: 48:35)

Thus a Riemann surface structure on a real surface X is got by gluing open subsets phi of
U 1 by the holomorphic transition functions g ij which is given by phi j inverse followed
by phi i. So, this is the point of view that that I would like to emphasize. So, I will stop

here

(Refer Slide Time: 49:43)

Some Defintions and Results from Topology. Read up the
following topics from a standard textbook on Topology. You
may consult for example the book by John L. Kelley titled
General Topology and the book by George F. Simmons titled
An Introduction to Topology and Modern Analysis.

a) Regular and Normal Spaces. Recall that a topological space
is called Hausdorff if any two distinct points can be separated
by disjoint open neighborhoods. Hausdorffness is also denoted
by T; and is stronger than T; for which every point is a closed
subset. A topological space is called regular if given a point
and a closed subset not containing that point, there are open
disjoint subsets, one containing the given point and the other
the closed subset. In other words, a point and a closed subset
not containing that point can be separated by disjoint open
neighborhoods. A topological space is called T if it is 7; and
regular. A topological space is called normal if any two disjoint
closed subsets can be separated by disjcint open

i%) neighborhoods. A topological space is called Ty if it is T; and
- normal. o
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b) Paracompact Spaces. Recall that a topological space is
called compact if every open covering has a finite subcovering.
Paracompactness is a more general condition, defined as
follows. A topological space is called paracompact if it is
Hausdorff and given any open covering [{, there is an open
covering V' each of whose open sets is a subset of one of the
open sets of l{ and further such that every point has an open
neighbarhood which intersects only finitely many open sets of
V. Prove that a paracompact space is regular, hence T3. Also
prove that a paracompact space is normal; hence it is Ty.

¢} Locally-compact Spaces. Local-compactness is a local
version of compactness. A topological space is called
locally-compact if every point has an open neighborhood whose
closure is compact. Prove the following: a compact space is
locally-compact; a discrete space is locally-compact and a
closed subspace of a locally-compact space is locally-compact.

(Refer Slide Time: 49:49)

d) Second Countable Spaces. A topological space is called
second-countable (or said to satisfy the second axiom of
countability) if its topology has a countable base. In other
words, there is a countable collection of open sets such that
any open set is a union of sets from this collection. Prove that
a topological space that is locally-compact, Hausdorff and
second-countable is paracompact.

e) Metrizable Spaces. A topological space is called metrizable if
its underlying set of points can be given a metric so that the
topology induced by the metric is the same as the given
topology. A second-countable T, topological space is
metrizable; this is called the Urysohn Metrization Theorem.
Read up a procf of this important theorem from basic
Topology.
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B Technicalities on Manifolds. A good reference for the
material below is Chapter 1 of the book titled Foundations of
Differentiable Manifolds and Lie Groups by Frank W. Warner,
published by Scott, Foresman and Co., 1971, or by Springer
under Graduate Texts in Mathematics GTM @4, 1983.

3)

Locally-Euclidean or Topological Manifolds. A topological
space X is called a locally-Euclidean or topological manifold of
dimension (a positive integer) d, if X is connected, Hausdorff,
second-countable and has an open covering consisting of
topological coordinate charts, i.e., pairs consisting of an open
set (called a coordinate neighborhood) and a homeomorphism
of that open set onto an open subset of B¢ (called a
coordinate map).

Note that the transition functions in this case are
homeomorphisms and we do not require any other extra
compatibility condition. We say therefore that the topological
coordinate charts of the covering form an atlas.
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b)

We may define equivalence of atlases (explained later in detail)
and say that the topological manifold structure is the one
corresponding to the unique maximal atlas that contains the
given atlas. A map of locally-Euclidean manifolds is just a
continuous map.

The (Real) dimension of a Topological Manifold. It is
important to know that the dimension d in the above
definition is uniquely determined. For no nonempty open
subset of I* can be homemomorphic to any nonempty open
subset of B™ for m #* n. This crucial theorem, known as
Brouwer's Invariance of Domain can be deduced from the
statement that a continuous injective map from an open
subset of B and taking values in E” has to be a
homeomorphism onto its image which will be an open subset
of B”. For details and a proof, see for example Sec.7 of Chap.4
of the book titled Lectures on Algebraic Topology by Albrecht
Dold, Second Edition, Classics in Mathematics, Springer, 1980.
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c) Paracompactness, Regularity, Normality and Metrizability
of Topological Manifolds. Since each point of a topological
manifold has a coordinate neighborhood homeomorphic to an
open subset of B9, it is locally-compact. Therefore, by the
results from topology recalled earlier, it follows that a
topelogical manifold is paracompact, regular, normal and
metrizable.

d) Topological Manifolds are pathwise connected. Recall the
notions of connectedness and pathwise connectedness for
topelogical spaces from the slides at the end of Lecture 2. We
say that a topological space is locally pathwise connected if
every open neighborhood of every point contains an open
neighborhood that is pathwise connected. Check that a
connected and locally pathwise connected topological space is
pathwise connected. Since B is locally pathwise connected, it
follows that any topological manifold is both connected (by
definition) and locally pathwise connected, hence pathwise

gy connected.
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e) Formal definition of a Riemann Surface. A Riemann
surface is a topological manifold of (real) dimension 2 such
that the transition functions are holomorphic (we consider R?
as the complex plane). It follows from the above that a
Riemann surface is paracompact, regular, normal, metrizable
and pathwise connected.
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H Equivalence of Atlases. Two atlases are called equivalent iff
every chart of one atlas is compatible with every chart of the
other atlas (of course compatibility has to be checked only
when the open sets of the charts have a nonempty
intersection).

a) Show that this is an equivalence relation on the collection of
all possible atlases.

b) Show that two atlases are equivalent iff their union is again an
atlas.

@ Existence and Uniqueness of Maximal Atlases. Recall
Zorn's “Lemma" which says that in a nonempty partially
ordered set in which every chain has an upper bound, maximal
elements will exist. (A chain is the same as a totally ordered
subset). You may consult Serge Lang's book titled Algebra,
Appendix 2, Section 2, either the 3rd Edition by

-:i:)Addison—Wesley 1993 or the Revised 3rd Edition by Springer

under Graduate Texts in Mathematics GTM 211, 2002.
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Recall that Zorn's Lemma is equivalent to the Axiom of
Choice as well as to the Well-Ordering Principle. Use Zorn's
Lemma to prove the existence and uniqueness of a maximal
atlas containing a given atlas by carrying out the following
verifications.

a) Given an atlas .4, consider the collection T of all atlases that
are equivalent to A, Then I is nonempty (why?) and we put
the partial order 5 < C iff every chart of the atlas 5 is a chart
of the atlas C. Verify this is indeed a partial order.

b) If B,C € L, show that 5UC & L. You may need to use the
following fact: to check that a map on an open set of the
complex plane is holomorphic, it is enough to check that it is
holomorphic when restricted to each member of an open
covering of that set. Now let C = {By e Z:Ac A #0} bea
chain i.e., a totally ordered subset of L. Show that the union
of all the elements of C is again an element of ¥ and is an
upper bound for C. Apply Zorn's Lemma to conclude that T
has a maximal element.
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c) Show that ¥ has a unique maximal element. This maximal
element is called the maximal atlas containing .A.

d) Show that two atlases are equivalent iff they are contained in
the same maximal atlas.

e) Can we simply take the union of all members of ¥ to get the
maximal atlas? (Will this lead to a Russel's Paradox kind of
situation, necessitating the use of Zorn's Lemma?)
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A Coordinate functions of an atlas are holomorphic. Let
(U,¢: U—+C) be a chart of an atlas. Show that ¢ is a
holomorphic map from the Riemann surface defined by the
atlas to the natural Riemann surface structure on C.

Extensions of the usual theorems in Complex Analysis.

a) A complex valued function f from an open subset U of a
Riemann surface is said to have respectively a removable
singluarity, pole or essential singularity at a point x < U iff the
point ¢'(x) of the open subset ¢'(U’) coming from a chart
(U',4) with x € U' is respectively a removable singularity,
pole or essential singluarity for f o ¢! defined on the open set
&(U N U"). Show that this definition is independent of the
choice of the chart (U, ¢') with x € U'. We say that f is
meromorphic on U if it is either holomorphic or has a pole at
any given point of U.
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Verify the following results that you must have come across in
a course in Complex Analysis (Functions of one Complex
Variable).

i) The set of zeros (respectively poles) of a nonzero
meromerphic function on a connected open subset is discrete,
You may have to use the fact, stated at the beginning of these
notes, that the topological space underlying a Riemann
surface is paracompact.

ii} A nonzero meromorphic function on a connected compact
Riemann surface has only a finite number of zeros and poles.

ili) (ldentity Theorem.) If two meromorphic functions on a given
connected open set coincide on a subset that has a limit point
in the given open set, then they are equal on the given open
set. You may have to use the fact, stated at the beginning of
these notes, that connectedness and path-connectedness are
equivalent for an open subset of the topological space
underlying a Riemann surface,
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b) (Maximum Modulus Theorem.) If the modulus of a
holomorphic function f on an open connected subset is
bounded by its modulus at a point of that set, then £ reduces
to a constant.

c) Deduce from the previous statement that there are no

nonconstant holomorphic functions on a compact Riemann

surface.

Show that a bounded function holomorphic on the complex

plane extends to a holomorphic function on the Riemann

sphere and deduce Liouville's theorem. You may have to use

Riemann’s Removable Singularity Theorem and the notion of a

function being analytic (or) holomorphic at infinity.

d

—
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Glueing Topological Spaces / Manifolds / Riemann
Surfaces. Let {V; : 7 < [} be a family of topological spaces
(the V; need not be distinct for distinct values of /). For
i,j €1 let hj: Vi — Vj; be a homeomorphism (topological
isomorphism, i.e., continuous bijective open mapping) from an
open subset Vj of V; to an open subset Vj; of V;, satisfying:

¢ h; = Identity Map for any i € [;
¢ hy= h;] for any i, € I;
o hy(Vin Vi) = VN Vi and by o by = hy on Vi Vi for any

i

i,j kel
Show that there is a topological space X, with open subsets
U; and homeomorphisms ¢; . U; — V; such that:

¢ the U; cover X;
o $i(Uiny;) =V;and
o hj=d;od; " on Vi for any i, j.
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We say that X is obtained by glueing the V; along the Vj;
using the transition functions g; ‘= h,}-‘l. The reason for this
is as follows. The pairs (U;, ¢;) can be thought of as “charts”
and then the corresponding transition functions will indeed be
given by the gj.

It can be checked that the data consisting of the resulting X
along with the charts (U;, ¢;) give a “universal object” in a
suitable category and hence are determined uniquely up to a
unique isomorphism. To make sense of this last statement,
read up the notion of universal object from Section 11 of
Chapter 1 of Serge Lang's book Algebra published by Springer
as GTM 211, Revised Third Edition, 2002.
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a) Local and Global Properties after Glueing. Local
topological properties satisfied by every V; will continue to be
satisfied by X, whereas the corresponding statement is not
true for global properties. For example, if each of the V; is
locally pathwise connected or locally compact, then the same
will be true of X. On the other hand, global properties like
being Hausdorff, regular, paracompact, normal, metrizable,
connected, second countable and so on even if satisfied by
each V; will not carry over to X. We will have to check if these
hold for a given glueing. In particular we may deduce the
following statements.

Glueing Open Subsets of B¢ to get a Topological
Manifold. Glueing cpen (even connected) subsets of B¥ need
not result in a topological manifold, so we need to check that
the resulting topological space is Hausdorff, second countable
and connected. If this is so, then the glueing has indeed
produced a topological manifold.

b)

~—
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c) Glueing Open Subsets of the Complex plane to get a
Riemann surface. We may glue open subsets of the complex
plane with the additional condition that the transition
functions are holomerphic. If the resulting topological space is
Hausdorff, second countable and connected, the result is a
Riemann surface. For now the charts (U;, ¢;) are indeed local
complex coordinates. This justifies the last remark of Lecture
3, which says that a Riemann surface is obtained by
holomorphically glueing open subsets of the complex plane
using holomorphic transition functions along smaller open
subsets. In the same vein, we may say that a topological
manifold is obtained by (homeomorphically or topologically)
glueing open subsets of B¢ using homeomorphic transition
functions along smaller open subsets. The ubiquity and beauty
of the glueing process is that it could produce spaces with new
global properties. For example, suitably glueing n+ 1 copies of
E* (respectively C") produces n-dimensional projective space
which is compact, a property that none of the original spaces
possessed!
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d) The Topological Manifold / Riemann Surface structure
induced on an open subset. Check that an open connected
subset of a topological manifold (respectively a Riemann
surface) automatically becomes a topological manifold
(respectively a Riemann surface). All you have to do is to
“restrict the atlas to the given open subset” .

e} Glueing Open Subsets of Topological Manifolds /
Riemann Surfaces. If we glue open subsets of topological
manifolds and the resulting topological space is connected,
Hausdorff and second countable, then the resulting space is
again a topological manifold. Similarly if we glue open subsets
of Riemann surfaces using holomorphic transition functions
and the resulting topological space is connected, Hausdorff and
second countable, then the resulting space is again a Riemann
surface.




