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So,  in  the  last  lecture,  what  we  saw  was  that  if  G  is  a  sub  group  of  Mobius

transformations. That is acting properly discontinuously at least at one point; namely the

reason  of  discontinuity  of  G is  non-empty, in  which  is  exactly  the  case  when  G is

Kleinian group. When you seen that omega of G mod G there is the set of G orbits in

omega g, is it a union of Riemann surfaces. In particularly if omega G is connected then

this is the Riemann surfaces.

So,  why did why were we interested  in  this  we were interested  in  this  because,  we

wanted to show that the upper half plane modulo PSL to 2 z is a Riemann surface. So,

that the natural map from upper half plane to this is a holomorphic map. Now the only

thing that remains to be shown is that PSL to 2 z is Kleinian group. You will have to

show it is a Kleinian group. Now some work has to be done to show that it is a Kleinian

group. And so, in this context will be looking at discrete subgroups, and we will also be

looking at Fuchsian groups.

So, let me begin by making a remark.
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So, capital G be a subgroup of PSL 2 C, this is the Mobius group. This identified as the

Mobius group. And I mean this is the group of Mobius transformations. And of course,

you know these are the automorphisms, these are all the holomorphic automorphisms of

the extended complex plane. Now the first thing I want to; so, here is a here is a lemma,

if G is if G is Kleinian. Then G is either finite or countable.



So, actually our discussion is trying to show actually that a Kleinian group is finite or

countable.  And then you know if it  is finite or countable,  and if you could somehow

deduce from that that it is discrete, which is what we are going to do after this. Then, we

get that Kleinian implies discrete. And if you take PSL 2 z, I am trying to show that PSL

2 z is Kleinian. But what I know what I can immediately see about PSL 2 z that it is

discrete, because it is the image of S L 2 z and S L 2 z is discrete.

So, I will have to say something about the topology on a S L 2 z and PSL 2 z which I will

do, but what I must tell you is that the discussion is trying to connect the Kleinian nature

with discreteness. And that is going to help us to decide when a group is Kleinian under

certain special circumstances, and PSL 2 z will form will fall in this category of special

circumstances. So, and of course, therefore, the only thing that will be left is to see that

PSL 2 z is discrete which is anyway obvious.

So, you see so, the first lemma says that if you have a Kleinian group, then the Kleinian

group as a set it is either finite or countable set. And what is the proof of this?
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The proof of this is well omega of G is non-empty. So, it means that there is at least one

point at which G is acting at least one point in the external complex plane where G is

acting properly discontinuously. And well you know that that point can either be a point

trivial stabilizer, or it can be a point with nontrivial, but of course, finite stabilizer.



And you know if it is a point with finite stabilizer then as we have seen the local picture

it is surrounded by a neighbourhood which is full of points which have trivial stabilizer.

So, in any case I can always pick a point, we have finite a point in the finite complex

plane, point different from the point at infinity, where G acts freely where this stabilizer

is trivial.

So, pick a point z naught belonging to c intersection omega of g, where G z naught is

trivial we can do this. And then my claim is you see, then, look at the orbit map G to G

dot z naught. This orbit map will be it will be a bijection. Because so, this is the map that

sends G to G dot z naught. And you know because there is no nontrivial element of G

which leaves is z naught fixed, which is which is what it means when you say that the

stabilizer is trivial. This map is a injective and by definitions surjective. And therefore,

you get a bijection between g and g dot z naught.

So, this gives a bijection between G and G dot z naught the orbits. So, G dot z naught is

all those elements of this form small g dot z naught where small g is in capital G. So, I

want to show that capital G is finite or countable. Therefore, it is enough to show that

this orbit is finite or countable. Now what I want to say is that, this is obvious, it is

because you see take the take the orbit take the orbit here. Then my claim is that this

orbit is a discrete subset.

So, we claim G dot z naught is a discrete subset. It is a discrete subset of course of C. In

fact, if you want of even of omega of c. It is a discrete subset. And why is it a discrete

subset, because if it is not discrete subset it will have an accumulation point. And if it had

an accumulation point, then what will happen is that you will find a sequence of points in

the orbit coming close to that accumulation point. And then; that means, you will have

you can find points in the orbit which are as close as you want different points in the

orbit, that are as close as you want and that cannot happen because of the fact that the

stabilizer  is  trivial  and  every  element  small  g  of  capital  G,  this  there  is  a  special

neighbourhood of a z naught, which displaces which is completely displaced away from

itself by any nontrivial element of capital G that will get contradicted. So, that should tell

you that G dot z naught, cannot have an accumulation point. So, it  will be a discrete

subset.



So, if you want let me write down the argument for let z 1 be an accumulation point of

the orbit.
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And so, what is going to happen is so, we can find a sequence. Well, let me say g n of z

naught tending to z 1. You can find a sequence of points in the orbit that tends to z 1 with

of course, with g n distinct, because z 1 is an accumulation point. You can after all pick a

system of neighbourhoods of z 1, and you can rad decrease the radius of the system of

neighbourhoods, and in each in each one you can find a point of the orbit and therefore,

you get here you know you get a countable sequence like this of points in the orbit that

tends to z 1.

Now, this is the con this will give you a contradiction. Why because, see this sequence is

Cauchy, after all this sequence converges to z 1 therefore, this sequence is Cauchy. So,

clearly given epsilon greater than 0, there exists an n such that so, let me write, let me

continue here such that well m greater than n greater than n implies that the distance

between g n of z naught and g m of z naught can be made lesser than epsilon. 
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This is just the fact that the sequences is Cauchy, because it is a convergence sequence.

But then you see now look at the point z naught.

Now, this point z naught well that there is a neighbourhood, u sub z naught which is the

neighbourhood that satisfies the condition for proper discontinuity of the action of G at z

naught. What is a condition? The condition is well if you move it if you take the image

of this neighbourhood by any nontrivial element of G, you end up with translate with

does naught intersect this neighbourhood. So, if I move this neighbourhood by let us say,

g n then I will get I will get this neighbourhood here I will get I will get a translate of that

which is g n u z naught. And of course, the point z naught will move to this point which

is g n of z naught. And if I take a well if I take a different g m, g m different from g n

which is which I have already taken here.

Then well I will get another translate which will be g m of u z naught. And of course, z

naught we move to the point g m dot z naught. And these 2 neighbourhoods cannot

intersect that is because g n and g m are distinct.  Because if these 2 neighbourhoods

intersect, then you would have then you would contradict, then you would contradict the

fact the this is this neighbourhood is completely displaced from itself by every nontrivial

element of G, see if you want I can write that down g m u z naught intersection, suppose

g m g n u z naught if this intersection is non-empty. 
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So, what it will imply is that it will imply that g m dot some z prime is equal to g n dot e

z double prime, where z prime and z double prime are in u z naught is what it will imply.

But then you see what this will also imply it will imply that g n inverse g m of z prime

will be z double prime, because after all I can operate by g n inverse on this side being a

group, but then this will imply that g n inverse g m of u z naught intersection u z naught

is non-empty, because these contains z double prime; this contains z double prime, which

is also point here. And a this is this is the contradiction, a contradiction. Why this is a

contradiction? Because g n inverse g m is not the identity, g n inverse g m is a nontrivial,

element of G and every nontrivial element of G is supposed to push displace u z naught

completely away from z naught. So, it is a contradiction. 

Therefore, the diagram is as I have shown, these 2 do not intersect. But if as and this

holds for any n and m. So, if you let n and m to tend to infinity, the distance between g n

z naught and g m z naught cannot be made arbitrarily small which is what this condition

says. So, it is a contradiction. So, well let me write it here clearly.
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G m of u z naught intersection g n of u sub z naught is empty for m naught equal to n. Of

course,  I  am  I  am  assuming  m  is  not  equal  to  n.  This  intersection  is  empty,  and

contradicts if you want this condition well if I call this condition as star it contradicts star

obviously. So, the moral of the story is that G dot z naught is a discrete subset of omega

G. Now I use the following fact. I use the following fact, that if you are looking at if you

are looking at second countable metric space, then in a second countable metric space; A

discrete subset this always finite or countable.  In particular omega G is a subset is a

subset of c, which is or 2 topologically; it is of courses a second countable matric space.

And discrete subset is therefore, finite or countable.

So, the fact that I am using is that in a matric space which second countable. A discrete

subset is you know, going to be finite  or countable.  The answer to the proof of that

statement is very simple, because the matrix space is second countable what you can do

is you can label all the neighbourhoods the you can find a basis for the topology of that

space, by set which can be labelled by let us say natural numbers. And given a discrete

set,  I  can find I  can find the least  such index among this  collection that  is going to

contain only that point. And in this way, I can make this subset of the index set of that

collection. And that will give and that along with the fact that subset of a countable set is

countable or finite will tell you that G dot z naught is either finite or countable.



So, I am using a second countability here right. And of course, you know all Euclidian

spaces are second countable, because for example, if you if are taking complex numbers

you can take you can get a countable basis by looking at all the you look you take the

collection of rational point with the rational coordinates, and for each such point you take

all the balls I mean open disks with rational radii. That if you take the union of all that

that is a union of it a countable union of countable sets and which is again countable. So,

let me write that down. Now since the c is second countable second countable a discrete

set a discrete subset has to be finite or countable. So, that is end of the proof of this.

Because I have shown that the orbit is finite or countable, and the orbit it is bijective to G

and is bijective to G because I have chosen a point with trivial stabilizer.

So, Kleinian group is finite or countable. Now I am, I next want to say I want to say

more I want to say in fact, that a Kleinian group is actually discrete. I want to say that

Kleinian group is actually discrete, but then to say Kleinian group is discrete, I must have

some top some kind of topological structure on this. So, I just want to explain what that

topological structure is very quickly. You see we have M 2 C.

(Refer Slide Time: 21:14)

This is the, this is you see this is just this is just space of 2 by 2 matrices with entries in

complex numbers. And this can be well this can be identified with c to the 4, because

have 4 entries. So, you can identify with, identify it with of the 4-dimensional complex

space right. And well and in M 2 C, if you take G l 2 C if you take G l 2 C then this is the



this is an open subset. See, M 2 C can be given a topologic topological structure even a

metric space structure, because c 4 has all those structure.

So, you can make this in to a topological space, you can make it into a metric space. But

if you take a matrices a b c d with entries a b c d, you just associate it to the 4 tuple a b c

d. So, this is nothing but c 4 in in a disguised way. And what is G l 2 C? These are all

those points these are all those matrices at are invertible; that means, this is the this is the

set of points where the determinant  function is nonzero, but you see the determinant

function is a polynomial function, it is a polynomial function of the coordinates. So, it is

continuous and the set of points where continuous function does not vanish is an open

set.

So, this is an open subset open subset, this is an open subset and these also a inherits sub

space topology and a metric and so on. And in this I can further go down and look at S L

2 C S L 2 C is a closed subset. It is a closed subset here and as in fact, it is a closed

subset there itself, because these are all those matrices with determinant one matrices

with determinant one is you are looking at this 0es of a continuous function. Therefore,

this is a closed set there itself and of course, again this also inherits a topology and a

metric space structure and so on so forth and now how do I get PSL 2 C what I do is I

just go I just go mod the plus or minus identity.
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So, I capital I sub 2 is a 2 by 2 identity matrix, and this plus or minus identity is a of

course, a normal sub group of this group if you want. And mind you these 2 are groups

also and multiplication and the and the multiplication turns out to be also continuous. So,

well  if  I  go mod plus or minus I 2 I get PSL 2 C. So, well  sometimes I  write  S L

subscript 2 C sometimes you can also write S L 2 comma c that should not cause any

confusion.

So, if you go mod plus or minus identity then you get this PSL 2 C, and you see what

you are doing here is you are going modulo a subgroup a normal subgroup. If you can

actually check that this is a covering this is a sheeted covering. Because plus or minus

identity is going act freely on this. And this is a covering and therefore, the moral of the

story is that this will also inherit you know, all the properties of this. So, it will be a

metric space, and it will be you know how stop and so on so forth.

So, the point is that when you look at Mobius transformations, Mobius transformations

are elements here. You can always look you can talk about convergence of the sequences

of Mobius transformations. As points here, and you can also talk about you can you can

also talk about a subset. So, this has a topology. So, if G if I look at a group G a sub of

PSL 2 C it  is  a subgroup of this,  then I  can talk about where I do not even need a

subgroup I  can even have a  subset  here.  And I  can talk about  when the subset  is  a

discrete; because now this has a topology and I know what discrete means it even has a

metric.

So, well so, given this background, it makes sense to talk about a subset of PSL 2 C

being discrete and more so for a subgroup. So, we make a definition that we say a sub

subgroup of PSL 2 C that is a group of Mobius transformations is discrete. If it is discrete

as a in the in the topological space underline PSL 2 C we make that definition.

So, let me let me write that down definition.
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G in PSL 2 C is said to be discrete, if it is a discrete subset of the topological space of the

topological space PSL 2 C. So, in particular I can define what a discrete subgroup of

Mobius transformations is. It is a subset which is discrete and is also a subgroup.

Now, having said this, what am I going to see next I am going to say that, suppose z is a

Kleinian group, then as a subset of the topolo of the of the topological space underline

PSL 2 C, I claim that it is a discrete subset. So, here is a well lemma.
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If G in PSL 2 C is Kleinian, then G is discrete. So, this is stronger than that lemma, this

is stronger than that lemma. Because if I knew G is already discrete then you can believe

that PSL 2 C is second countable. Because for PSL 2 C everything comes from above,

and c 4 is of course, second countable. So, PSL 2 C being second countable, you know

any discrete any discrete subset is of course, finite or countable.

So, this will be implied by this. So, this is the strengthening of that lemma. So, how will

how will one prove this? Proof is well; it  is essentially the same kind of argument. I

assume that G has an accumulation point. And I prove that I get a contradiction to the

action of G being properly discontinuous. So, I assume G is Kleinian I assume G is

Kleinian. Therefore, the actions of G, there are points which at which G acts properly

discontinuously I can get a contradiction to that if G has an accumulation point. So, that

is the proof. So, let me look at it for a moment.

So,  well  suppose  G  is  not  discrete,  suppose  G  is  not  discrete.  Then  G  has  an

accumulation point G small g let me call it as G naught if you want G naught in PSL 2 C.

G is an accumulation point in of course, I am saying it is a discrete subset of this. So, this

is the ambient space this is the biggest space. And if I assume it is not discrete, then I

should have  accumulation  point  there.  So,  what  it  means  is  that.  So,  we can  pick a

distinct sequence g n which is which goes to G naught where g n are all from your g. So,

I can pick up distinct sequence.

Now, you see again if g n tends to G naught, if z is any point, then in particular if I take a

point which is a point in omega of G, a point where G acts properly discontinuously;

then of course, if g n tends to G naught it is not hard to verify the g n z tends to G naught

z.  Now g n z tends to G naught z will  tell  you that g n z is going to be a Cauchy

sequence. But then if g n z is a Cauchy sequence, then I will get a contradiction to the

action of G being properly discontinuous at z. The argument is very similar to this. So,

let me write that down. So, that will tell you therefore, that this cannot happen. 
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So, let  z naught belong to omega of G, then well g n z naught tends to G naught of z

naught, which if you want you call it as z 1 and g n of will be Cauchy. And we are in the

same situation as we were here, you can of course, if you want you can even take well to

be on the safer side take z naught to be a point in the finite complex plane. And if you

want even take z naught to be a point to trivial stabilizer, just like we did there you can

do that and g n z naught will be Cauchy. And this will contradict the fact that G acts

properly discontinuously at z naught. So, as in the previous lemma as in the proof of the

of the previous lemma.

So, that is the proof of this statement right. So, the only thing that has to be checked is

that if g n tends to G naught in the topology here in PSL 2 C you have to check that g n

of z tends to G of G naught of z, for any finite complex numbers z. That should not be

very  difficult  to  check  well.  So  now, this  lemma  tells  me  that  a  Kleinian  group  is

discrete.  Now  I  am looking  for  a  situation,  when  Kleinian  and  a  discrete  group  is

Kleinian. I want a situation when a discrete group is Kleinian, and once I get a condition

for that if I if I can show that PSL 2 C satisfies that condition I am in good shape because

then I know that PSL 2 z is Kleinian which is what I want. So, that u mod PSL 2 z will

become a Riemann surfaces.

Now, unfortunately a discrete group need not be Kleinian. There is a that is a standard

counter example to this; so a remark or well a warning.
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A discrete  group,  subgroup  need  not  be  Kleinian,  a  discrete  subgroup  need  not  be

Kleinian. What is example? You just look at what is called that picard group. So, you see

you take the set of all matrices a b c d, such that a d minus b c is 1. So, this is of course,

going to be in S L 2 C these are all matrices with determinant one. So, it is going to be an

S L 2 C, and I am going to put the additional condition that a b c d are Gaussian integers.

I am going to put the condition that a b and c d are basic there are complex numbers,

whose real and imaginary parts are the usual integers.

So, I will put this extra condition a b c d are Gaussian integers. That is the real and

imaginary  parts  are  usual  integers.  The fact  is  that  you see it  is  very clear  that  it  is

discrete.  Because the entries are all  the real  and imaginary parts  the entries are only

integers. It is very, very clear that this is discrete alright. In fact, if I put the condition that

a b c d are Gaussian integers, in and look at the corresponding subset in M 2. That itself

will be discrete subset of M 2.

So, and this  is a subset of this is just the intersection of that subset with this. So, it

continues to be discrete right, but the problem, but the big deal is that you can show it is

an exercise, and I will not say it is an easy exercise it is it demands a little bit of work.

You can show that this group is not Kleinian, this group is not Kleinian. So, in fact, the

way it is done is that you can show that this group, the orbits of this group you can show

you can find orbits of this group have accumulation points.



So, that is how that is how the proof course, so, it is an exercise also although it is a

slightly harder exercise. So, let me write this let me make it as a remark. So, the image of

this so, I have this quotient which is PSL 2 C. And the quotient the image here is called

the picard group. This is called the picard group. It is all these determinant one 2 by 2

matrices is with entries Gaussian integers up to plus or minus 1 up to sign of course,

going mod go going to be PSL 2 C is just going mod sign plus or minus. So, this the

picard group is not is not Kleinian the picard group is not Kleinian.

So, the problem is therefore, Kleinian and the notion of discreteness in Kleinian nature

kleinianness if you want they are not the same they are not to same, but here comes

something that g n turns out to be good and god given. If you put the additional condition

that the group, preserves a disk or an upper half plane; such groups are called Fuchsian

groups a subgroup of Mobius transformations that preserve a half plain or a disk. They

are  they  are  special  they  are  called  Fuchsian  groups.  And the  beautiful  thing  is  for

Fuchsian groups there is no difference between discreteness and kleinianness, that is the

theorem we are going to prove. So, believe that theorems then you see immediately that

PSL 2 z is Kleinian. Because PSL 2 z is discrete, and PSL 2 z leaves the upper half plane

fixed. So, PSL 2 z is a discrete Fuchsian group, but then it is Kleinian therefore, PSL 2 z

is Kleinian.

So, let me make that definition here definition a subgroup G of Mobius transformations

are called Fuchsian if it leaves invariant or preserves a disk or a half plane. 



(Refer Slide Time: 40:13)

So, standard example is PSL 2 C PSL 2 z is Fuchsian. Because you know it is a subgroup

of PSL 2 r and PSL 2 r is precisely the all the Mobius transformations that leave the

upper half plane fixed. So, this leaves the upper half plane fixed. This leaves the upper

half plane fixed and therefore, it is Fuchsian.

So now let me say that theorem which is going to be a great help to us. So, here is the

theorem.
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Let G be a Fuchsian group. Let G be a Fuchsian group. Assume that G is subgroup of the

holomorphic automorphisms of the unit disk. Delta is equal to unit disk is a set of all z is

that mod z less than 1. So, then the following are equivalent condition conditions are

equivalent. Number 1 G is discrete. Number 2 G acts properly discontinuously at each

point,  each  point  of  unit  disk.  That  is  another  way of  saying it  is  that  omega of  G

contains delta. The third condition G acts properly discontinuously at one point of delta,

at least at one point of delta. Seemingly weaker condition, at some point of delta; this is

the condition that omega of G intersection delta is non-empty. There is at least one point

of delta which is in omega of G. And the forth condition is G is Kleinian.

So, in the in the looking at the statement of this theorem I want at the outside make a few

remarks see if G is a Fuchsian group, it will leave some disk or half plane invariant. Now

if it is, but any disk or half plane can be mapped on to the unit disk; so you can replace G

by a  conjugate  by a  conjugate  with that  map to  get  an  automorphism,  you to get  a

subgroup of automorphisms of the unit disk. And replacing by the subgroup by conjugate

subgroup  is  not  going  to  affect  any  of  these  properties,  discreteness.  You  know,

kleinianness, you know the action been properly discontinuously so on and so forth.

So,  that  is  why without  loss  of  generality  I  have  assumed  that  G is  a  subgroup of

holomorphic automorphism of for the unit disk. And I am proving the statement proving

the theorem for that case. But what I want to saying that there is no loss of generality.

Well,  the other thing is what I want to tell you is 2 implies 3 is trivial,  because 3 is

weaker than 2 3 implies 4 is the definition of Kleinian group. A group is Kleinian if of

course, for G to be Kleinian all I need is omega of G is non-empty. So, if in particular if

omega G is  intersection  delta  is  non-empty then omega G is  non-empty therefore,  3

implies 4 is also directed by definition 4 implies one was the was the lemma that we

proved.

So, the nontrivial part is actually one implies 2, which is what we will focus on. 
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So, proof of one implies 2. So, I am just going to prove that I am assuming that G is

discrete. And I am going to prove that G is going to act properly discontinuously at each

point of delta. Mind you the way I am going to prove it is by contradiction. I am going to

assume that there is a point of delta where G does not act properly discontinuously, and

using that point, and you know special knowledge about the automorphism group how

these automorphism group looks like and Schwarz’s lemma and going to cook up an

accumulation point for G which will contradict one. So, it is a very clever proof, but not

all that complicated.

So, let me do that assume we assume that z naught is a point in delta which is a point in

delta minus omega of G. Rather I should write no there, isn’t enough space here. Let me

write it words we assume that z naught is a point of delta where G does not act properly

discontinuously, and produce an accumulation point for G in automorphism group of

delta a contradiction to 1.

So, what am I going to do? I am going to take a point in the unit disk, where G does not

act  properly  discontinuously.  And  using  that  point  I  am  going  to  cook  up  an

accumulation point for G in here, and that will contradict the fact that G is discrete. So,

well let us let us look at how this is done. So, let me make a few remarks to begin with. 
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See the automorphism group of delta the group of holomorphic automorphism delta what

does it look like, that is something that is probably an exercise you would have done in

first course in complex analysis. Let me recall it is the set of all bilinear transformations

of the form e power i alpha times well I should say z goes to e power i z e power i i alpha

times z minus z prime by 1 minus z prime bar z where alpha is a real number. And z

prime is an element of delta. You see, z prime will go to 0, under this map. This is the

Mobius transformation. This is the Mobius transformations. And it is precisely these and

z prime is the point in the unit disk. And these are precisely all possible automorphisms

of the unit. Disk this is this is a this is an exercise in a first course in complex analysis

you should do it if you have not done it. And it is not difficult to do.

Now, what I am going to do is that well, you see since z naught is a point at which G

does not act properly discontinuously. What it means is that you cannot find that you

cannot find any neighbourhood of z naught, which is completely displaced from itself by

you  know  all  bit  of  finite  number  of  elements  of  G.  So,  I  cannot  find  such  a

neighbourhood alright well. So, from that what I can do is I can cook up a sequence of

distinct points in the orbit of z naught which you know converts to z naught.

So, since G does not act properly discontinuously at z naught, there exists a sequence of

distinct points in the orbit G dot z naught z n tending to z naught. And of course, these z

ns are all in the unit disk. Mind you, z naught is also in the unit disk. I get this because G



is not acting properly discontinuously a at z naught. And then we can we can find a

sequence of distinct elements of g n of G such that g n takes the z n to z naught you can

you can find the sequence of distinct elements which take g n which take the each of

these z ns respectively to z naught.

This is possible because you know after all g n is z n is well you see it is in the orbit of G

z naught. So, it is some g n prime dot z naught. So, that tells me that g n prime inverse

dot z n is z naught and I have to take g n to be equal to well g n prime inverse. So, this is

this  so,  this  is  possible.  And well  the  first  thing  that  one  wants  to  do is  cook up a

sequence of elements here you have seen these z ns the z ns and z not.
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So well, put let A n of z be just you know z minus is z n by 1 minus z n bar z take this.

Then of course, you know for n of course, n greater than or equal to 0 of course, I can

include case n equal to 0. Then then A n of then A n of course, tends to you know a

naught, as n tends to infinity z n tends to z naught. So, A n of z tends to a naught.

Now, consider C n to be you know, you take A n plus 1 inverse composition well g n plus

1 composition g n composition I guess A n may be I will have to put I have to put inverse

here, and I remove the inverse here. So, let me check this it easy to that is right. The

reason why you are doing this is very there is an obvious reason. I want C n to fix the

origin I mean this you adjust this in such a way that C n fixes the origin. And you know,

the thing in between these 2 composition of these 2 they are all in G that is what I want.



So, you see it is it  is quite easy to see that C n. Of course, C n is a composition of

automorphisms of delta.

And therefore, it is certainly an automorphism of delta there is no doubt about that. And

you see if you calculate you see each A n if you take C n of 0 what I will get this I will

get A n plus 1 of g n plus 1 inverse of g n on well A n inverse of 0. 
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Well, let me let me write that. And you see A n takes z n to 0, and it is a you know (Refer

Time: 57:07) Mobius transformations are bijective.

So, A n takes z n to 0. So, n A n inverse of 0 is z n. So, what you will get is this will this

will become A n plus 1, composition g n plus 1 inverse composition well acting on g n of

z n. But g n of z n I have chosen it to be z naught alright. So, this becomes A n plus 1

composition g n plus 1 inverse I mean acting on g n plus 1 inverse of z naught. But you

see g n plus 1 inverse of z naught is z n plus 1. So, what I will get is I will get A n plus 1

of z n plus 1 and that is 0. So, the moral of the story is I am getting an automorphism of

the unit disk, which fixes the origin. Or now I can use Schwarz lemma and say that this

is the rotation. I mean that is the whole point of cooking up this. 
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So, by Schwarz’s by Schwarz’s lemma you see C n of z has to be lambda n of z lambda n

times z where lambda n is a is an element with modulus 1 namely, it is a rotation about

the origin.

The  only  automorphism of  the  unit  disk  which  preserve  the  origin  or  rotations  that

Schwarz’s that is one version of Schwarz’s lemma which we have already used and we

are again using. Now you see this of course, the c ns are all from this c ns I can of

course,  get  hold  of  an  infinite  subsequence.  And therefore,  I  get  in  I  get  in  infinite

subsequence of lambda n’s these are all points on the unit circle and you know that the

unit  circle is  complete  it  is  compact.  So,  I  can extract  from this  a  subsequence that

converges 2 a point on the unit circle. And therefore, without loss of generality I can

assume that the lambda ns tends to lambda naught with mod lambda naught equal to 1.

So, I am using the completeness of the unit circle.

So, since dou the boundary of delta is equal to unit circle is complete we may without

loss of generality assume that, lambda n tends to lambda naught and of course, with mod

lambda naught is one. So now, what I want you to do, is I want you to do look at this

sequence in between if I call this sequences h n. Then my claim is that that will that will

give me a sequence which has an accumulation point, and what is the accumulation point

the accumulation point is just gotten by putting letting n tend to infinity. So, let me write



that  down.  And that  will  give  me the  contradiction  that  I  wanted  and that  that  will

complete the proof.

So,  let  me  write  it  down put  h  n  to  be  the  thing  in  the  middle  g  n  plus  1  inverse

composition g n. 
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This is going to be a sequence in in G. Then you can see that you see h n well, h n is

going to be it is just you know it is A n plus 1. So, I just compute what h n is using this

definition. So, it turns out to be A n plus 1 inverse composition C n composition A n. And

this tends to what this tends to as n tends to infinity, but as n tends to infinity you see a ns

of course, a ns as n tends to infinity n tend to a naught and C n as n tend to infinity n

tends to c naught. So, this tends to a naught inverse composition c naught composition a

naught which is which is the point of which is the point of which is the of course, in

automorphism of holomorphic automorphism of delta.

So, h n tends to this element. And of course, h n does contain and an infinite subsequence

of distinct elements, because all the G ns are all distinct. Because you see all the G ns

were chosen in such a way that g n z n is z naught, alright. And g m z m is also z naught.

So, g n z n is g m z m. And you know z n and z m are distinct therefore, g n and g m have

to be distinct. So, the G ns are all distinct alright. So, what you have found is you have

found, certain subsequence of elements of G which has a limit point in the automorphism



group of delta which is of course, this is again a subgroup of PSL 2 C. So, you have

contradicted the assumption that G is discrete. So, that finishes the proof.

So, let me write that down. So, we can we see that a naught inverse c naught a naught is

an  accumul  is  an  accumulation  point  for  G  in  automorphisms,  the  a  subgroup  of

holomorphic automorphism delta which is the subgroup of course, PSL 2 C. And hence

get a contradiction to the disc assumed discreteness of G. So, that finishes it and as I

have told you, I do not have to prove 2 implies 3 and 3 implies 4 they are trivial  4

implies one was already proved. So, the moral of the story is therefore, that. So, long as

you are looking at a Fuchsian group, there is no different between the discreteness and

kleinianess. And since PSL 2 z is indeed a Fuchsian group, and it is discrete it is Kleinian

therefore, it will act properly discontinuously, and if you take the upper half plane, and

you go modulo that group then the quotient will be Riemann surface. So, that finishes the

proof that you can put a Riemann surface structure on the upper half plane modulo PSL 2

z.

Now, the rest of our discussion will try to show that this Riemann surfaces actually non-

other than the complex plane, with the standard holomorphic structure. So, the original

statement was you mod PSL 2 z is on the one hand bijective to the set of you know

holomorphic isomorphism classes of complex store I that is what we proved. And now

what we have proved is that the set of holomorphic isomorphism classes of complex

store I itself is a Riemann surface as which comes as a ramified quotient of the upper half

plane. And what we now are going to prove is that this Riemann surface is none other

than the complex plane itself.

So, that is what we are going to do next. So, we will stop here.


