
An Introduction to Riemann Surfaces and Algebraic Curves: Complex 1
-dimensional Tori and Elliptic Curves

Dr. Thiruvalloor Eesanaipaadi Venkata Balaji
Department of Mathematics

Indian Institute of Technology, Madras

Lecture - 20
Characterizing Moebius Transformations with Two Fixed Points

(Refer Slide Time: 00:10)

(Refer Slide Time: 00:16)



(Refer Slide Time: 00:21)

Let us continue with our discussion about Moebius Transformations.
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So, we see yesterday, I was trying to tell you are rather in the last lecture, I was trying to

tell you that a Moebius transformation is that going to a z plus b by c z plus d with the

condition a d minus b c equal to 1 is called parabolic; parabolic if a plus d a plus d the

whole squared which is actually trace squared of the matrix a b c d is the trace squared is

equal to 4. So, this matrix a b c d is a representative of this Moebius transformation in sl

2 of course, the other representative is minus a minus b minus c minus d. And if you take



the trace it will the trace squared it will be the condition that it is 4 is will give you the

condition that it is parabolic. In fact, I what I proved yesterday I mean the last lecture

was its parabolic if and only this is equal to 4 if and only it is conjugate to a translation.

So, this is what I proved yesterday.

So, in particular and of course, let me recall. So, may; I should; maybe I should modify

this should not say its parabolic is parabolic is parabolic if and only if this condition

holds and of course, parabolic means only one fixed point in in c union infinity. So,

Moebius transformation you know if it is not the identity, if it is identity it fix every

point, if it is not the identity it can it will have at least on fixed point and maximum it can

have 2 fixed points. And the case when it has only one fixed point is the case which is

called parabolic all right and the point I wanted to say is that this parabolicity condition

translates to condition on the trace squared that trace square has to be 4.

So, you can see that the way this is going the classification of Moebius transformation is

being done in 2 ways by thinking along 2 directions one is by looking at the number of

fixed points the other thing is by looking at trace square. So, let me define; let me look at

the  other  cases  let  me  look  at  the  other  cases.  So,  suppose;  suppose  a  Moebius

transformation is nontrivial; it is not the identity transformation and has 2 fixed points.

So, the case when it is one fixed point is called parabolic the case when. So, what is left

out is the case when there are 2 fixed points. So, this is the non-parabolic case.

Now, what does how do we classify Moebius transformations which have 2 fixed points.

So, the key to is; this is again the looking at the values of trace squared. So, suppose the

Moebius transformation the Moebius transformation is is given by z going to a z plus b

by c z plus d as usual with a d minus b c equal to 1. So, again the point is to look at the

values of trace squared of the representing matrix in s l 2. So, you see we say; we say; it

is a loxodromic if the trace squared a b c d which is a plus b the whole square does it

does not. 

So, this is the complex number mind you a b c d are complex numbers all right and in

general when I calculate the a plus b the whole square I get a complex number what I

want it to be I want it to be a complex number which is not a real number line from 0 to

4. So, this belongs to set of all e z in c such that is that. So, I should say e z is e z naught



a  real  number  in  with  0  is  not  equal  to  z  less  than  and  equal  to  4.  So,  this  is  the

condition,.
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So, you know if I try to draw a diagram I have the whole complex plane and then I have

this line segment here from 0 to 4; I have this line segment all right if. So, this is the line

segment here and if your trace if you calculate trace squared and does not that value does

not lie on this line segment that is it lies outside the compliment of this line segment then

it is called loxodromic; it is called loxodromic all right notice that if trace squared. So,

what is left out is the case when trace squared is real and lies between 0 to 4 that is what

it left out. So, that gives you 2 other cases.

So, let me write this down its called. So, let me first say elliptic if trace squared which is

a plus d the whole squared is real and it lies between 0 and it strictly less than 4 of

course, you know trace squared equal to 4 is parabolic. So, this point is parabolic. So, I

am looking at here I am looking at values of trace square which is a plus d the whole

square. So, when it is 4 its parabolic if it is from 0 to four, but not equal to 4, then it is

called elliptic and of course, if it is real and its value is greater than 4 then it is of course,

loxodromic, but its given a given a special name it is called hyperbolic. So, hyperbolic if

trace square a b c d is a plus d the whole square is real and a plus d the whole square id

greater than 4. So, you see this this region its elliptic not inclusive of the point four, but

everything from 0 up to something less than 4 up to all value less than 4 its elliptic and



then from beyond 4 onwards. So, from here onwards it is elliptic I mean it is hyperbolic.

So, this is the; these are the definitions.

And  you  can  see  that  all  these  definitions  are  I  mean  the  definitions  are  mutually

exclusive except  for the fact  that  hyperbolic  transformation is  a  very special  type of

loxodromic transformation and. So, you have elliptic. So, if trace squared is real then

trace squared has to lye if it is lies between 0 and 4 then it is elliptic if it is equal to 4th

parabolic if its greater than 4 its hyperbolic and any other value if it  takes then it is

loxodromic. So, these are the important definitions. So, the points that these definitions

come from looking at this quantity namely the trace squared of a matrix representative of

your Moebius transformation in s l 2.

So, what do you must understand is this this this quantity the trace squared seems to do

the job of you know trying to classify by them. So, let us study in detail what these cases

are. So, well  I already told you what parabolic transformations are they are the once

which have only one fixed point  and they are essentially  translations,  but you know

Moebius general Moebius transformation consist of various thing I mean you can break

it down into translations rotations and scalings and of course, you can also break it down

into inversions. So, you can factor it out.

So, we have the parabolic case corresponds to the translations all right the other cases

come here. So, let us let us right analyze this. So, let me look at let me look at a Moebius

transformation of this type. So, let e z going to a z plus b by c e z plus d let me call this

as a. So, this is a of e z be a Moebius transformation with 2 fixed points let us take a

Moebius transformation with 2 fixed points or let me even begin by taking with it will

have if you assume that this is not the idea in transformation; it will have at least one

fixed point. So, let me first take that case let this be a Moebius transformation with fixed

point e z naught let us say. So, and assume and assume a of z is not a of z is not there is

not the identity transformation. So, rather let me see a is not trivial, a is not trivial means

a is not the identity transformation right. So, it has at least one fixed point and it could

have 2 fixed points.

Now, you see the first thing I want to claim is that if e z naught is infinity, then c has to

be 0. So, let me write that down.
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If e z naught is equal to infinity then a claim that c is equal to 0, why is that true because

if c is not equal to 0 then I can make the denominator vanish by putting z equal to minus

d by c; ok and if I put z equal to minus d by c the denominator vanishes therefore, this

quantity will become infinity. So, that is how the point at infinity is also included in the

with along with the operations on the complex numbers;  if  you remember any finite

complex number divided by 0; it is taken as infinity. So, if I put z equal to minus d by c,

then minus d by c is a finite complex number; it is not infinity and it goes to infinity. 

So, this goes to this goes to infinity now, but you know all your Moebius transformations

are bijective and by holomorphic maps of the extended complex plane onto itself c union

infinity onto itself therefore, if minus d by c a finite complex number goes to infinity,

then infinity is not a fixed point because of injectivity. So, c has to be 0. So, what it

means is that the matrix the matrix form the matrix then becomes you know a b 0 d and.

In fact, these are precisely the Moebius transformations which are auto morphisms of the

complex  plane  those  though  what  are  the  Moebius  transformations  which  are  auto

morphisms of the complex plane they are all those Moebius transformations which keep

to point at the infinity fixed and for keeping the point at infinity fixed this is the upper

triangular matrix form that you will get.

So, this Moebius transformations of this type they form auto morphisms the holomorphic

auto morphisms of c and we use to denote that as p delta 2 comma c; so fine. Now,



suppose. So, you know if z naught is infinity, then it is already in that form, but suppose

z naught is not equal to is not the point at infinity suppose z naught is not the point at

infinity. So, here by the way I will make that remark later. So, if z naught is not the point

at  infinity,  if  z  naught  is  not  the  point  at  infinity,  then  we  can  find  a  Moebius

transformation b with b of z naught is equal to infinity, you can do this you can move z

naught infinity you can move z naught infinity; for example, you could have taken b of z

to be simply 1 by z minus z naught if you take b offset is equal to 1 by z minus z naught

then z naught will  go to infinity. So, it  is a Moebius transformation that we move z

naught to infinity.

And you see mind you the matrix representation is you know 0 1 1 minus z naught and if

you want a matrix representative in s l 2 c, I want determinant to be 1. So, what you

should do is you should you can change sign everywhere. So, you I put minus minus

here  and  I  will  put  plus  here.  So,  this  is  a  matrix  of  representative  does  that  help;

probably, now it is still minus 1. So, maybe I will have to take z naught minus n right, I

will have to take minus z plus z naught if I take minus z plus z naught, then it should

work. So, it is going to be 0 1 minus 1 z. This is now in s l 2, right; so just to keep track

of the matrix substitute right, fine. So, the point is why I am doing that is because you

know if you want a matrix representative you must make sure that it is a representative in

s l 2. So, you must adjust it. So, that the determinant is 1 ok.

So, if I put z equal to z naught b of z naught is going to be infinity now watch if I take

BAB inverse if I take this BAB inverse if I take this Moebius transformation namely I

conjugate A by the Moebius transformation B,, then this Moebius transformation will

have infinity as a fixed point will have as a fixed point. So, you will get that is and that is

because you know BAB inverse of infinity B takes z naught infinity. So, b inverse way

of infinity will be z naught. So, I will get BA of z naught, but z naught is a fixed point of

A. So, A z naught is a is just z naught. So, this is just be z naught and B z naught is like

actually infinity. So, you see BAB inverse of infinity is infinity moral of the story is if

you have a fixed set point at z naught I can always conjugate it. 

So,  that  the new transformation  after  conjugation has fixed point at  infinity. So,  this

means that if I write BAB inverse its matrix of if I write it out then the matrix form has

to be it should look like this. So, you see BA matrix representative so. In fact, let me

write this. So, BAB inverse is of the form is of the form e z going to let me use a prime e



z  plus  b prime by 0 z  plus  d prime because I  already told  that  whenever  the  for  a

Moebius transformation if e z is a fixed point then this member this entry has to vanish.

So, it will look like this.

Now you see. So, that is this is what this is just z going to a prime by d prime e z plus b

prime by d prime and notice that d; d is not 0 because then you know ad minus b c is one

and since c is 0 ad is 1. So d is not 0, mind you. So, dividing by d here or dividing by d

prime here is allowed there is no problem there. So, now you see that you know if you

put  further  the  condition  that  A has  only  one  fixed  point  suppose  I  put  the  further

condition that a has only one fixed point; that means, a is parabolic then I claim a prime

is equal to d prime and it is a translation ok.
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If further a is parabolic, then in the case z naught equal to infinity which is here a must

be equal to d and you know why this is true because you know since as I explained in the

last lecture a minus d the whole squared is a plus d the whole squared minus 4 a d all

right and well a plus b if it is parabolic a plus b the whole squared is 4 and a d a times ad

minus bc is is going to be 1, but c is 0. So, ad is one. So, this is. So, you see this is going

to be 4 minus four. So,  it  is  going to  be 0.  So,  a will  be equal  to d and so,  a  is  a

translation it is a translation namely e z going to a z plus b by d which is just the same as

e z plus b by a.  So, actually  in this  case you can see it  you do not have to do any

conjugation.



All  right,  if  a  is  parabolic  and  infinity  is  the  only  fixed  point,  then  it  is  already  a

translation all right if in the case. So, in the case when e z naught is not equal to infinity

then you choose b like this we choose be like this BAB inverse continues to be parabolic

with infinity a fixed point infinity  the fixed point because you see the property of a

Moebius transformation being parabolic or elliptic or loxodromic or hyperbolics is not

going to change when you conjugate it that is because that property is defined by looking

at  the  value  of  trace  squared  of  this  matrix  and you know the  trace  of  a  matrix  is

invariant under conjugation that is you take a matrix you pre multiply it by an invertible

matrix and post multiply it by its inverse the inverse of the pre-multiplied matrix then the

trace continues to be the same. So, if I take any of any Moebius transformation with any

of these properties and if I conjugate it I will continue to get a Moebius transformation

with the same properties, if I conjugate a loxodromic transformation, I will again get a

loxodromic transformation if I conjugate an elliptic transformation, I will again get an

elliptic transformation and so on.

So, since I  have assumed A is  parabolic  BAB inverse continues  to be parabolic  and

infinity is a fixed point. So, you are in this case. So, BAB inverse is a translation. So, this

gives you the proof of this another proof of this statement that I was giving you in the

last lecture that you know for a parabolic for transformation to be parabolic it should be

conjugate to a translation. So, the last time I gave you a; I was looking at a different

proof because I wanted to show to you that if you try to solve for b. So that be a b

inverse is a translation say even translation by 1 it poses the condition that the trace

square should be 4.

So, this is another direct way of seeing that right now. So, this is the this is a situation

when there is only one fixed point, but let us assume that there is another fixed point

suppose a is not parabolic. So, then it will have another fixed point, then it has another

fixed point say e z one. So, e z 1 is another fixed point for a so; that means, you know we

are now in these remaining cases. So, a has to be either;  it  has to be loxodromic or

elliptic or hyperbolic and we want to see what kind of form a has.

So, you see if it has another fixed point say e z 1 you will see that well in either of these

cases I can always find a b such that infinity is a fixed is the first fixed point. So, again

choose b as before. So, that BAB inverse has infinity has the first fixed point first fixed

point that I can do and mainly of course, if I mean in this case I have to choose b to be



identity because I do not have to conjugate a talk I do not have to conjugate if I am in

this case if already the first fixed point is infinity I do not have to conjugate; I can take b

equal to identity.

If the first fixed point is not infinity then I have to conjugate. So, that the first fixed point

becomes infinity. So, if I take BAB inverse infinity will be the first fixed point, but now

the second fixed point is changed to b of z 1 the second fixed point fixed point this b of z

1 that is because you see if I calculate BAB inverse of b of z 1 I will get BA of z 1 which

is b of z one. So, I will get that this is a fixed point that is obvious all right now what I

am see I have already moved by a conjugation I have moved one fixed point to the point

at infinity and you know what I am going to do you can you can guess this I am trying to

the other fixed point is not the point at infinity it is a different fixed point and you know I

will again do some do a conjugation move it to 0.

So, I try to bring a to a form of a Moebius transformation which has 2 fixed points

namely 0 and infinity. So, that is what I am going to do. So, for that to make this fixed

point to go to 0 I just have to translate by minus of this. So, let see the let us see of z they

just z minus b of z 1 z minus b of z 1. So, this is translation by minus be of z 1.
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So,  what  happens  is  if  I  take  CB;  AB  inverse,  C  inverse,  if  I  take  this  Moebius

transformation all right which is which is incidentally also the same as CB A CB inverse

if you want these are the same CB inverse is B inverse C inverse.



If I take this Moebius transformation then you will see its 2 fixed points are going to be 0

and infinity mind you c here c as matrix is you know its translation by minus z minus b

of z 1. So, it is going to be one minus B of z 1 0 one which is already in s l 2 this is a

translation by minus B of z 1 and what is c inverse the inverse of a translation is just

translation by the negative of the vector that you originally translated with. So, c inverse

as a matrix is just going to be one plus b of z 1 of 0 one this is what seen what is going to

be the inverse of translation is just another translation right.

So, if I take this then I will get 2 fixed point 0 at infinity. So, you see CB ACB inverse

has the form is it going to lambda z if infinity you see if infinity is a fixed point already

cis 0 and it is and it becomes the your Moebius transformation becomes A by D times z

plus b by D e z going to A by D a by d e z plus b by d all right that is what this means e z

going to a by d z that is B by D it comes to this form all right if infinity is a fixed point.

And now if I say that 0 is also a fixed point this this constant term cannot come because

0 has to go to 0; that means, b has to b 0 and if b is 0 then it is just going to be e z into

some complex number and that complex number I you can one can go I am calling it as

lambda.  So, the moral  of the story is  you take a Moebius transformation  that  is  not

parabolic  then  you  can  always  do  a  conjugation  and  bring  it  to  this  form now the

question is you can you can guess what I am trying to get at I am trying to see what

properties of lambda will make it you know loxodromic or elliptic or hyperbolic that is

the point and it turns out that nice prop there are very simple conditions on lambda that

can tell you whether this is you know one of those types. 

So, let us look at those situations. So, you know the matrix representative of is that going

to lambda z is well you know it will be square root lambda 0 0 1 by square root lambda

see if I write lambda e z just as a matrix I will simply get lambda 0 0 one if I write

lambda if I write e z going to Az plus B by Cz plus d as a matrix a b c d then e z going to

lambda  z  the  matrix  if  I  write  as  a  matrix  it  will  be  just  lambda  0  0  one,  but  the

determinant of that matrix is lambda, it is not an sl 2 c representative because I i am look

I am only looking at sl 2 c representatives for my calculations especially when I am

when I do this trace business. So, the 2 make it an element of sl 2 ci take a representative

like this of course, I can also put minus I can take minus root lambda minus 1 by root

lambda and mind you root lambda is 1 square root of lambda there are 2 in general there



are 2 square roots of lambda and I take anyone square root and use the same square root

here in both cases.

And mind you note that lambda is not 0 its not one because you know if lambda is 0,

then that is not a Moebius transformation it is just the 0 map, it is not a Moebius transfer

and if lambda is 1 then this is identity if CB ACB inverse is the identity. So, I think the

inverse has been wrongly put it should be put outside if you conjugate a matrix and you

get identity then that matrix itself has to be identity, because you can unconjugated and

on the right side because you have identity it will continue to be identity.

So, this is not being the identity will tell you that lambda is not equal to 1 a not equal to

identity implies lambda not equal to 1. So, you see the lambda value is lambda equal to 0

and 1 are forbidden lambda can only have values other than 0 and 1. So, you see when I

gave this definition of. So, I have rubbed it the loxodromic condition. So, let me write it

here let me rewrite it here loxodromic if trace square a b c d which is a plus d the whole

square is in c is a complex number not a real number in this interval. So, this see I am

considering this as subset of real numbers ok.

So, if the trace squared does not take a value on this segment, then that is my definition

of loxodromic all right of course, trace squared is not 4 because there are 2 fixed points

and it is not parabolic. So, in all these let us look at these 2 cases you see in these 2 cases

you see the trace squared is real and the loxodromic case the loxodromic case with which

is  not  hyperbolic,  because  hyperbolic  also  implies  loxodromic  the  loxodromic  non

hyperbolic cases the case when your trace is that is a condition when the trace does not

lie in the segment. So, what I am going to the; I am going to first look at the condition

that trace squared is real.

So, you see trace squared a is real if and only if you know trace squared is the same as

trace squared of this trace squared of for CB ACB inverse is real, but CB ACB inverse

the matrix is this and what is the trace its root lambda plus 1 by root lambda that is a

trace and this trace squared will be root lambda plus 1 by root lambda the whole square.

So, that is root lambda plus 1 by root lambda the whole squared is real this is what you

will get I mean this is the condition you will put if you want to study something that is

elliptic or hyperbolic all right so, but what is this well this is just I expanded this lambda

plus 1 by lambda plus 2 this is real ok.



So, well let us investigate the situation. So, let me rub this off. So, I will keep I will keep

this part I will keep this part as it is all right and I will continue here because I would like

to you to keep these definition in mind. So, you see. So, of course, lambda plus 1 by

lambda plus 2 is real if and only if lambda plus 1 by lambda is real ok.
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So, that is lambda plus 1 by lambda is real all right and what is the condition this this

happens if lambda plus 1 by lambda is equal to lambda bar plus 1 by lambda bar you

know a complex number is real if and only if it is equal to is conjugate and then I can

collect terms I will get lambda minus lambda bar is equal to 1 by lambda bar minus 1 by

lambda which is again lambda minus lambda bar by lambda lambda bar and you know

lambda lambda bar is just mod lambda the whole squared if I cross multiply I will get

lambda minus lambda bar into mod lambda the whole squared minus 1 is equal to 0, I

will get this condition if I collect terms lambda lambda bar is mod lambda the whole

squared. 

So, when will trace square A plus D B real trace square A plus D will be real I mean a

square  of  a  which  is  a  plus  b  the  whole  squared  will  be  real  if  and  only  if  this

transformation that I have got gotten after conjugation which is essentially is that going

to lambda z the lambda satisfies this property either lambda is equal to lambda bar which

means lambda is real or mod lambda is 1. So, let me write that down. So, you get these

you get these 2 conditions of lambda.



Let us investigate these conditions suppose mod lambda is 1 we will show that mod

lambda is 1 is the case when it is elliptic why is that true well you see. So, you know

lambda you write lambda as you know mod lambda e power I argument of lambda and

well 0 is less than argument of lambda is less than 2 pi. So, you have the argument

should vary over an interval of length 2 pi all right and of course, I exclude 2 pi and I

include 0. Now you see notice that argument lambda e equal to 0 is not allowed because

you know if argument lambda is equal to 0 all right then I will get lambda equal to mod

lambda.

So, I will get lambda equal to 1, but lambda equal to 1 is not allowed. So, argument

lambda is equal to 0 implies lambda equal to 1. So, you see 0 should be strictly less than

argument of lambda strictly less than 2 pi. So, what happens? So, let me write this as. So,

lambda is e power I theta where theta is argument of lambda. So, I am in this case and

look at look at that quantity trace squared A is just e power I theta plus 1 by e power I

theta plus 2.

So, it is going to be this is cost by formula this formula this is you know this is cos theta

plus I sin theta is cos theta minus I sin theta. So, I will get 2 I will get 2 cos theta minus 2

plus 2 and you see this quantity you know cos theta is bounded by 1. So, the first thing I

need to say. So, I just want to say that this is in any case this is less than or equal to 4,

this is less than or equal to 4 and mind you. So, I want to make the statement that this

quantity is going to lie between 0 and 4 it cannot be if equal to 4.

So, you see if this is equal to 4 then you know cos theta has to be one, but cos theta will

not assume the value one so. In fact, less strictly less than 4 and I claim that this quantity

is actually positive is greater than equal to 0 this quantity is greater than or equal to 0

because you know why is that so; that is because I think that is also quite obvious I mean

you know cos theta at the minimum can become minus 1 and in that case, I will get 0 cos

theta is always greater than minus 1 greater than or equal to minus 1 and I am adding 2, I

am multiplying it by 2. So, 2 cos he has greater than equal to minus 2 and if I add 2 it is

always greater than equal to 0. So, this implies that you know 0 less than or equal to

trace squared a strictly less than 4 and I will tell you that a is elliptic that is the that is a

condition and mind you what it will actually tell you is that this is elliptic, but then I told

you by after conjugation the ellipticity does not change.



So, the original transformation that you started with is also elliptic. So, the moral of the

story is you take a non parabolic transformation you conjugate it. So, that it becomes z

equal to lambda z a z. So, it becomes z go going to lambda z and if mod lambda is 1 then

it will be elliptic and the converse also holds if this is elliptic, then mod lambda has to be

1.
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So, how does one see that? So, let me write that down conversely; if a is elliptic then

mod lambda is 1 if a is elliptic I claim mod lambda is 1 why because you see because of

the following reason for a elliptic means you see 0 less than or equal to lambda plus 1 by

lambda plus 2 less than or let us strictly less than 4 all right that is what it means it means

this is real lambda plus 1 by lambda is real. So, if it is elliptic what is the definition for

elliptic a plus c the whole square is real and a plus c the whole square turns out to be this

this is real. So, lambda plus 1 by lambda is real and its value lies between 0 and 4 0

included 4 excluded this is the condition for it  being elliptic  now from this you can

conclude that mod lambda is 1 and how does one show that I think it is going obvious.

So, you know what will happen lambda plus 1 by lambda real would mean that you

know either lambda is equal to lambda bar or mod lambda is 1 of course, we are trying to

prove mod lambda is 1. So, what we will have to do is you have to exclude the case

when lambda is real; suppose lambda is real. So, this is the case you have to study. So,

we will show this it cannot happen we will show it cannot happen why because you see



you take the function f of x is equal to x plus 1 by x plus 2 take this function then of

course, x not equal to 0 then you will see that is derivative is you know one minus 1 by x

square and therefore, critical points or turning points of the graph of the function are

going to be are x equal to plus or minus 1 I have to equate this to 0.

And  the  second  derivative  or  the  function  is  going  to  be  2  by  x  cube  the  second

derivative at plus 1 is positive. So, at plus 1 I have minimum. So, f of plus 1 is minimum

for x positive and the f f if I take the second derivative at minus 1 then I get a negative

value. So, I will get f of minus 1 is maximum for x negative and what are the values. So,

you see. So, x positive implies f of x is always greater than f of 1 greater than or equal to

f of 1 and f of 1 is 4 and so, x positive x not equal to 1 will imply f of x greater than 4

and x negative will imply f of x is less than or equal to f of minus 1 which is 0. So, x

negative x not equal to minus 1 will imply that f of x is strictly less than 0. So, this is a

very simple calculus computation, but it is very helpful to us.

So, you see if now you see if lambda is a is real then there are 2 cases lambda can be

either positive or negative all right all right and well my situation is that. So, what is

given here is that if lies between 0 and four. So, if I instead of x if I plug in lambda if I

take f of lambda then f of lambda is either greater than 4 or it is less than 0 if lambda is

real what is the upshot of this if x is real the expression x plus 1 by x plus 2 is either

greater than 4 or it is less than 0 provided x is not allowed to take the values plus or

minus 1; so that will give you a contradiction to this case that. So, lambda cannot be real.

So, the lambda cannot be real and lambda cannot be real the other case will be that

lambda has to be one mod lambda has to be 1. So, what we get is that the transformation

is elliptic if and only if after conjugation to make it into the form that going to lambda z

mod mod lambda is equal to 1. 

So, mod lambda equal to 1 is a condition for it to be elliptic all right incidentally there is

the other case when lambda itself is real that also has been taken care of here if you

watch  carefully.  So,  let  me  put  this  in  a  box  I  mean  this  is  A is  a  rather  simple

computation, but it is very helpful. So, you see let me go back here and look at let me

look at the other cases. So, suppose A is not elliptic, ok.
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Suppose A is not elliptic, but you see lambda, but trace squared A is real. Suppose A is

notelliptic and suppose trace squared a is real. So, then mod lambda is not equal to 1

because a is not elliptic because you have proved just now that mod lambda being one is

exactly the case when a is elliptic. So, mod lambda not equal to 1 will imply that lambda

is real you will get the case that lambda is real. Now you see if lambda is real you look at

you look at this the situation.

So, I have to say something .So, there are 2 cases either lambda is positive or lambda is

negative if lambda is positive all right then you know trace squared a is just lambda plus

1 by lambda plus 2 that is greater than 4 here if x is greater than 0 and x is not equal to 1

then x plus 1 by x plus 2 is greater than 4. So, trace squared a becomes greater than 4 and

that is the condition for a to be hyperbolic which means A is hyperbolic conversely if you

a is hyperbolic all right then I claim that the condition is lambda is greater than 0.

Conversely a hyperbolic implies lambda greater than 0; you get that. So, and why is that

true because you see if a is hyperbolic all right then the condition is trace squared is real

and  trace  squared  is  real  will  mean  either  lambda  is  or  mod  lambda  is  1,  but  a  is

hyperbolic and. So, mod lambda cannot be one because then if mod lambda is 1 A is

elliptic. So, lambda has to be real and if lambda has to be real and we have this condition

hyperbolic static condition that lambda plus 1 by lambda plus 2 is greater than 4 then



lambda has to be positive because if lambda is negative lambda plus 1 by lambda plus 2

is negative.

So, the condition that A is hyperbolic is controlled by this lambda being real and positive.

So, is that going to lambda is that should have the property that lambda is real positive

that is the condition for A to be hyperbolic. So, we get that. So, I i have this the other

case lambda less than 0 lambda is negative we have seen that we have seen here that

lambda plus 1 by lambda plus 2 is less than 0 and therefore, you are in the loxodromic

case. So, if lambda is less than 0 trace squared A is negative. So, A is loxodromic. So, the

upshot of this whole discussion is the following lambda mod lambda equal to 1 if and

only if a is elliptic; lambda real lambda positive if and only if A is hyperbolic and mod

lambda not equal to 1 if and only if a is loxodromic.

So, these 3 simple conditions will allow you to distinguish between elliptic hyperbolic

and loxodromic transformations and somehow we have arrived at these conditions by

start looking at the trace squared which was originally used to define these things.

So, we will continue in the next lecture.


