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Welcome to lecture two of this course on Riemann Surfaces and Algebraic Curves. So, if

you recall what we did in lecture one was to try to give the idea of what Riemann surface



is and in fact, I promised in lecture 1 as 1 of the goals that I will also give some examples

of Riemann surfaces which I could not do. So, I will essentially take it up in this lecture.

So, let me again remind you our idea our idea is the following.

(Refer Slide Time: 01:07)

We want  to  start  with  a  surface  which  we  can  visualize  in  3  dimensions  specific

examples are of course, the sphere or the or the cylinder of course, you see what I mean

by the cylinder is the infinite cylinder extending in both directions the drawn only a finite

part of it here on the board and the torus.

So, these are all examples of surfaces that we can visualize in in in 3 dimensional space

and what is it that we want to do we want to be able to do complex analysis on the

surface. So, a Riemann surface is a structure on such a surface which allows you to do

complex analysis on that surface. So, let me quickly recall.
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If you take if you call the surface as X, then we say that X is equipped with the structure

of a Riemann surface if X is given a collection of charts of complex coordinate charts

complex coordinate charts, which I will denote by pairs u alpha, phi alpha where alpha

runs over an indexing set I, such that the u alpha cover X.

So, u alpha is just an open cover of X and that is the first condition the second condition

is of course, I should mention here that u alpha are open sets or open subsets of X. So,

you each u alpha is an open subset of X and all the u alphas for the various alphas they

cover the surface, which is the same as saying that the union of the u alphas is X that is

the first condition the second condition is that phi alpha is a map from u alpha into the

complex plane for each alpha. Such that this map has to be a topological isomorphism

that is a homeomorphism onto an open subset of the complex plane which we call as v

alpha. So, phi alpha from u alpha to C is a homeomorphism of u alpha onto an open

subset v alpha C and this is to be thought of as trying to give every point in u alpha this

neighbourhood u alpha being parameterized by a neighbourhood on the complex plane.

So, what you are doing is by giving this homeomorphism your you are making every

point in u alpha acquire a complex coordinate, because you take any point in u alpha you

have a point you take the image of that point under phi alpha you get a point of v alpha

and v alpha any point in v alpha has standard complex coordinates. So, this way each of

these coordinate maps every chart consists of 2 data the first datum is an open set and the



second datum is an identification of that open set with an open subset of the complex

plane. So, the second 1 is called as a coordinate map and the whole thing together is

called as a coordinate chart.

So, the essence of this is that every point in u alpha is uniquely identified with the point

in the complex plane by phi alpha and then well the third condition, which is very very

important is that whenever u alpha and u beta intersect, then the 2 charts u alpha comma

phi alpha and u beta comma phi beta the 2 charts they have to be compatible. The charts

u alpha comma phi alpha and u beta comma phi beta have to be compatible.

And what does compatibility mean I would like you to recall from the first lecture that

compatibility is supposed to mean that when you try to define the holomorphicity of a

function on at a point on the Riemann surface you do not want the holomorphicity to

depend on the chart which you use to define which you use to give the definition of form

of holomorph holomorphicity. That is there a property such as holomorphicity must be an

intrinsic property it should not depend on the chart that you use.

And therefore,  if  a point belongs to 2 charts  it  belongs to 2 open sets that  is in the

intersection then a function at that point it is property of being holomorphic should not

depend on the identification phi alpha, which is given on u alpha or on the identification

phi beta which is given on u beta. It should be independent of the identifications the

notion of holomorphicity  should be an intrinsic  property and that is achieved by this

compatibility and what is this compatibility.
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So, let me again draw a diagram to help you to recall. So, here is my u alpha and here is

my u beta and well this is these are 2 open sets on the Riemann surface and we have

from here this map phi alpha which is a homeomorphism on to a certain subset, which I

call as v alpha in the complex plane and there is another homeomorphism v beta, which

identifies u beta with again with an open subset v beta on the complex plane. Of course,

when I draw these subsets need not really look like disks they could be general open sets,

but I am just drawing them as disks. So, that it is easier it is easier for me to draw also

well now the point is that you take this intersection which is u alpha intersection u beta

that is an open subset of u alpha as well as of u beta and this intersection will be mapped

by phi alpha into.

An open set here which I call as v alpha beta that is the image of that is phi alpha of u

alpha intersection u beta. And similarly this open subset u alpha intersection u beta is

mapped on to here an open subset of v beta by phi beta and that open subset I call it as v

beta alpha, which is just phi beta of u alpha intersection u beta and what was the problem

the problem was if I have a function f which is defined on this intersection and taking

complex values and if I have to decide that this function is holomorphic. Then I have 2

ways of saying that the function is holomorphic. Namely, I can say f is holomorphic with

respect to this identification with respect to this chart u alpha and phi alpha.



If  the composite  function from here to here which is  given by first  go by phi alpha

inverse and then apply f. So, this is a composite and of course, here I mean phi alpha

inverse is being applied to this subset v alpha beta. So, I am not writing it there I am just

writing it  just  like this.  So,  that  it  is  the notation does not  become complicated,  but

remember that phi alpha is a homeomorphism of u alpha in to v alpha. So, it is also a

homeomorphism of u alpha intersection u beta into v alpha beta. So, phi alpha inverse

will map v alpha beta into u alpha intersection u beta. 

So, well to say that f is holomorphic with respect to this chart u alpha comma phi alpha is

to say that this map from an open subset by the complex plane to the complex plane this

map this composition is holomorphic. And now I have another definition with respect to

the other chart namely that well I can also have this composition, which is first apply phi

beta  inverse  which  will  take  v  beta  alpha  into  u  alpha  intersection  u  beta  and then

compose it follow it up with f. And I can now say that f is holomorphic with respect to

this identification if f circle phi beta inverse is holomorphic. And what I really do not

want to happen is that it should not be that the f is holomorphic with respect to 1 chart

and not holomorphic with respect to the other chart; that is it should not happen that this

is holomorphic, but this is not holomorphic I do not want such a conflict and that is,

because the idea of holomorphicity of a function should be intrinsic to the function it

should not depend on any external factors. 

So,  it  is  something  like  this  in  linear  algebra  for  example,  if  you  have  a  finite

dimensional vector space you see no matter what your basis is you do not expect the

dimension to change the cardinality of a any 2 bases are the same . So, it should not be

that  that  is  because the dimension of a space is  something that  is  intrinsic  it  should

depend only on the space and not the way you get at it  and that is why we have the

theorem that if you take any 2 bases they have the same cardinality. So, you see this

intrinsic thing in mathematics they should be defined in such a way that is ambiguous is

not ambiguous.

So, holophorphicity is an intrinsic thing and you do not want it to be and ambiguous and

ambiguity will come in the moment you have 2 charts any 2 intersecting charts and a

function defined on the intersection of those 2 charts. So, how did we X get pass this

condition  this  compatibility  is  given by the  following  we require?  So,  I  let  me say

compatibility requires that.
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So, I look at this map namely I go from v alpha v beta alpha and then I go all the way to

v alpha beta. So, I take this map there is a map like this how do I get this map this map is

well first apply phi beta inverse that will take v beta alpha into u alpha into u beta and

then follow it by phi alpha.

And  well  you  can  call  this  as  g  alpha  beta  and  of  course,  this  g  alpha  beta  is  a

homeomorphism  because  phi  beta  inverse  is  a  homeomorphism  and  phi  alpha  is  a

homeomorphism. So, it is a homeomorphism and, but you must understand that all this is

only defined on v beta alpha and it lands in v alpha beta. So, if I had to be very strict here

I have to write phi beta inverse restricted to v beta alpha and then instead of phi alpha I

should write phi alpha restricted to u alpha intersection u beta I am not writing those

restrictions,  because then it will  look very complicated.  So, what is the compatibility

requirement is it is that this g alpha beta is holomorphic this is the condition.

So, the compatibility of any 2 charts that whenever there are 2 charts whose domains

intersect  then the compatibility  condition is that this  this  function that  you can write

down for these 2 charts which is called the transition function should be holomorphic.

So, this g alpha beta is called the transition function and you put this condition that g

alpha beta is holomorphic then it becomes very nice it is it becomes it is also enough to

guarantee  that  g  alpha  beta  is  actually  an  isomorphism  holomorphic  isomorphism

because it is already a homeomorphism. So, it is injective and I told you that an injective



holomorphic  map  is  an  isomorphism  onto  it  is  image  and  the  inverse  map  is  also

holomorphic. So, this g alpha beta is holomorphic will automatically imply that g alpha

beta inverse which you can check is g beta alpha is also holomorphic.

So, you get this also if you reverse roles of alpha and beta you can similarly define g beta

alpha and you will find that g beta alpha is nothing, but g alpha beta inverse and well and

why is it that this compatibility is going to help us it is going to help us because you see

if I take. Now if I look at f circle phi alpha inverse and if I compose it with g alpha beta I

will end up with f circle phi beta inverse you see. So, I have this expression and what

does  this  expression  say  it  says  very  clearly  that  since  this  g  alpha  beta  is  an

isomorphism  it  says  that  this  is  holomorphic  if  and  only  that  is  holomorphic.  And

therefore, the holomorphicity of this is equivalent to the holomorphicity of that and that

is exactly what I want the holomorphicity to if it is holomorphic with respect to 1 chart.

Then I want that it should also be holomorphic with respect to any other chart which

intersects this chart.

So, that condition is the compatibility condition and that compatibility condition ensures

that the holomorphic nature of a function is intrinsic it does not depend on the chart that

is the whole point and that is that is where these. So, called transition functions come in

so shows. So, this equation shows that the holomorphiity of f defined as that of f circle

phi alpha inverse or of f circle phi beta inverse are consistent. So, you define f to be a

holomorphic  that  if  f  circle  phi  alpha  inverse  is  holomorphic  or  you define  f  to  be

holomorphic if f circle will be phi beta inverse is holomorphic; these 3 these 2 definitions

are going to be consistent.  That  is  because the difference is  captured by a transition

function which I have made it which I have required it to be a holomorphic isomorphism

fine. 

So, let me again tell you a very quickly that when you have this this collection of charts

which  consists  of  consists  of  Parawise  compatible  charts.  So,  you  must  notice  that

compatibility has to be checked only when 2 charts intersect. So, for any 2 charts that

intersect.  So,  whenever  any  2  charts  intersect  if  they  are  compatible  and  if  I  have

collection of charts that cover then I say that X is now a Riemann surface, I say that the

surface X has been given the structure of Riemann surface.



Now, this collection of charts this collection of compatible charts has a special name for

it is called an atlas.
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It is called a complex atlas. So, a collection of compatible charts that that covers X is

called a complex atlas for X. And so now, you can see it in a jiffy that the surface X is

endowed with a structure of Riemann surface if you can find for it complex atlas. So, our

definition of Riemann surface structure on a surface on a surface X is just reduced to

finding a an complex atlas for that surface. 

So, now having said this of course, this definition needs to be improved a little bit more

formally. But essentially this is the content of what Riemann surface is. So, I will get into

details in the coming lectures. So, there are certain conditions for example, I must always

assume X to be connected and if I am assuming X to be a surface which is an abstract

surface  then,  I  will  have  to  define  what  an  abstract  surface  is.  So,  what  you  must

understand  is  that  at  the  moment  I  am just  thinking  of  surfaces  which  I  can  really

visualize  in  3  dimensions  and I  am thinking  of  trying  to  make  them into  Riemann

surfaces, but then if I want to take an abstract surface and make it into a Riemann surface

then I will have to first define what an abstract surface is.

So, I  will  have to  define what  a 2.  I  have to make sure that  this  abstract  surface is

something that is 2 dimensional because the surface is always 2 dimensional and then

this will lead me into some technicalities. So, I am such a definition is possible, but I do



not  want to  get  into that  now we will  get  into that  in  the later  lectures.  So,  for the

moment let us take this working definition and try to look at some examples. So, there

are some examples and connected with these examples there are some theorems which

are really striking and which are deep theorems, but already they are quite striking. 

(Refer Slide Time: 21:45)

So, let us look at some examples. So, here is here is example 1 here is example 1 I take X

to be the real plane the X Y plane and well I take the atlas for X to be consisting of just 1

chart. So, you know every chart contains an open set and a map all right and the open set

I take it to be all of X that is I take it to be all of R 2, I take the whole plane and the map

phi mind you has to be a map from u into C and, but u is of course, R 2. So, this map

from R 2 to C what is a map it is a natural map it an identification map and what is that

map it is just taking x comma y to x plus i y. So, this is the natural identification of the

plane of the real plane with the Argand plane.

This is a natural identification and of course, this map is homeomorphism this is this of

course,  a  continuous  and  the  inverse  is  also  continuous  is  the  identity  map.  So,

essentially this is the identity map from R 2 to R 2 the target R 2 being thought of as an

complex the complex plane. So, this is homomorphism of course, and therefore, this pair

u comma phi is a chart and you see it is it covers X because the domain of the chart is

already all of X. So, 1 chart is enough 1 chart is enough and well to say that this is an

atlas I should also check the so called compatibility condition.



But then there is no compatibility condition need that needs to be check here because the

compatibility condition needs to be checked only when you have 2 charts which intersect

and there is only 1 chart. So, there is nothing to check. So, it is vacuously true. So, this

becomes a complex atlas  and what happens is that well  with this  complex atlas  R 2

becomes  a  Riemann  surface.  So,  with  this  complex atlas  are  2 becomes  a  Riemann

surface and what is that Riemann surface it is just the complex plane. So, that. So, we say

that  the  complex  plane  is  Riemann  surface  structure  and  R  2  given  by  the  natural

identification this is  the natural  identification.  So, hence the complex plane C 2 is  a

Riemann surface structure on R 2 given by the standard identification of R 2 with so and

well what is the meaning of a holomorphic function? 

So, a function f on the Riemann surface is going to be a function of 2 variables real

variables  x  and  y,  if  you  call  it  as  f  of  x  comma  y  when  is  it  holomorphic  it  is

holomorphic if you write x plus I y as z and express that function as a function of z it has

to  be  holomorphic.  So,  it  is  a  function  on  R  2  that  is  holomorphic  is  actually  a

holomorphic function in the usual sense. So, the holomorphic functions on X are simply

the holomorphic functions on complex plane.

So, if a want to expand on that, let me rub this side just for the sake of clarity. So, if I

have from so my X is R 2.
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And suppose I have an f a function f into c which is given by f is equal to f of x comma y

for x comma y of point in R 2 when do I say it is holomorphic by my definition of

holomorphicity well I take this this chart, that identifies x comma y with z with z is a x

plus i y and then I have to take this composition. If I take this composition what I will get

is it just trying to write f as a function of z f here is written as a function of x and y and if

I take this composition this composition is to be very strict I should write phi inverse

followed by f.

So, let me rub this out and let me write it very clearly. So, I have phi inverse followed by

f if I write this I get that is nothing, but f written in terms of z that z is x plus i y I am

saying that this f is holomorphic is the same as trying to say that write if as a function of

z and it should be holomorphic. So, it is a usual definition it is a usual definition you do

not get anything new. So, this is a simplest example right you had a question.

Student: (Refer Time: 27:56) c is a (Refer Time: 27:58).

This should be c sorry thanks that should be C C 2 is not the complex plane thank you.

So, well now we can ask the following question. So, you look at this line very carefully it

says well the complex plane C is a Riemann surface structure on R 2. So, look at this a

Riemann surface structure. So, the question comes can I give to R 2 some other Riemann

surface structure, which is different from the usual complex plane structure and that is

what the second example is going to tell you the answer to that is yes. So, let us look at

the second example. So, here is my example. So, again my X is R 2 it is a real plane and

well the atlas for X is again consisting of only 1 chart u comma phi only 1 complex

coordinate chart and where u is of course, X and which is R 2 and phi.

Now, is going to be slightly different phi is going to be from u to c. So, if I take any x

comma y what is it going to go to well here I send x comma y to x plus i y which is z.

So, now, what I am going to do is I am going to send it to z by 1 plus mod z. So, which

means what it means is I am going to send it to x by 1 plus root of x square plus y square

plus i times y by 1 plus root of x square root y square this is what I am going to send it to

you. So, here is my map my map from u to c is the map that sense x comma y to this

complex number right. So, the complex number is z by 1 plus mod z, but z is the usual

exposit. So, I am not sending x comma y to the to z, but do something else now you can



check that this is a homomorphous it is easy to see. So, let me rub of this diagram you

have a question.

Student: Modulus of the function value will be always less than or equal to 1 modulus of

(Refer Time: 30:48).

Exactly.

Student: So, how it will be a homeomorphism.

No mind you a coordinate  map is;  supposed to  be only a  homeomorphism onto the

image, which is an open set.

Student: (Refer Time: 30:59).

So, it should be a when you take a coordinate map it should be from an open subset of

the surface to an open subset of the complex plane which you need not be the whole of

the complex plane . So, now, what I have done is you know what I am trying to do I am

trying to map the whole complex plane onto the unit disk open unit disk.
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You see that is what is happening. So, you see you can see the image of phi is contained

in the unit disk, which is given by the set of all complex numbers z whose modulus is

strictly less than 1 that is because if I take the modulus of this complex number z by 1

plus mod z that is always going to be less than 1.



So, the image of this course in the unit disk and in fact, the and in fact, you can check

you can check that the image of phi is actually the unit disk with inverse with inverse

map phi inverse this is from the disk map to u mind you use R 2 and what is a map it is

just you send z to I think u z by 1 minus so z. So, let me just check it for a moment z by 1

minus mod z. So, this is the map and when I write it like this I mean that you will have to

be you have to change this back into x y so; that means, you should write this as x by 1

minus root of x square plus y square comma y by 1 minus root of x square plus y square.

So this is the inverse map and you can check that this is indeed this is indeed the inverse

map because you see I start with x comma y it goes to z by 1 plus mod z where I take

whereas, as usual I take z equal to x plus iy. Now if I take z plus z by 1 plus mod z it is

here instead of z if I replace z by z by 1 plus mod z then this expression will simplify to z

you can see that. So, z by 1 plus mod z we will therefore, go to z by 1 plus mod z by 1

minus modulus of z by 1 plus mod z if I simplify this I will get. So, this will be z by 1

plus mod z. So, let me put a bracket around it. So, that there is no confusion and here if I

simplify this I will get 1 by 1 plus mod z so that will be equal to z and that is your x

comma y.

So,  it  is  indeed  the  inverse  map.  So,  what  I  have  proved is  that  this  map  phi  is  a

homeomorphism of the whole plane on to the unit disk phi is a homeomorphism of R 2

onto the onto delta. So, well again I am in good shape see I have 1 chart and therefore, it

is  an atlas because I  do not have to worry about the compatibility. So,  I have got a

Riemann surface, now is this Riemann surface is the same as the complex plane it is not,

because why is it not the same as a complex plane because let us try to understand what

is a holomorphic function on this Riemann surface.
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What  is  a  holomorphic  function  on  this  Riemann  surface  structure?  What  is  the

holomorphic function on this Riemann surface structure on this; on this Riemann surface

structure on R 2 what is a holomorphic function. So, let us go back to the definition and

you will be surprised and I am hoping that it will remind you of an important theorem in

in in complex function theory. 
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So, you see you have. So, you know. So, here is my Riemann surface it is R 2 my chart is

from this into the unit disk this is my homeomorphism. So, I put this this symbol to say

that it is a homeomorphism or if that confuses you maybe, but that is now.

Suppose I have a function f a complex valued function when is when is f is holomorphic

if  and  only  if  this  composition  which  is  first  apply  phi  inverse  followed  by  f  is

holomorphic, but what is phi inverse followed by f see f circle phi inverse of z is f of phi

inverse of z, but I have a form of a phi inverse of z it is f of z by 1 minus mod z. So, it is

f of z by 1 minus mod z and well what is this going to be this is going to be and well

none if I want to be. So, what it means is that my f is just now f is just a function of x and

y. So, I will have to write this f of well x by 1 minus root of x square plus y square

comma y by 1 minus root of x square plus y square.

So, I should write f like this. So, you see what has happened the function now is not the

function x comma y going to f of x comma y, because of this chart it has become the

function the x comma y going to f of x by 1 minus root of x square plus y square y by 1

minus root of x square comma x y it is no longer the same function x comma go y going

to f of x comma y. And if this is a holomorphic I want this to be holomorphic I want this

to be holomaorphic. So, you know this is holomorphic in if and only if this function is

holomorphic, but then let us test with f is equal to the identity map identification, which

is just that is that is f of x comma y is equal to x plus I y that is z.

This is just the natural identification map. So, then you see you will get then you will get

f then the condition will be that f of z by 1 minus mod z, it will be simply z by 1 minus

mod z right and then this has to be holomorphic, but it is not f of z going to z by 1 minus

mod z is not holomorphic that is, because you can see that this mod z is square root of z z

bar  and  you  know  that  the  moment  a  z  bar  term  comes  the  function  cannot  be

holomorphic the partial derivative of f with respect to set bar has to be 0. So, z going to z

by 1 minus mod z is not holomorphic. So, what you have done is on R 2 you have put a

Riemann surface structure such that the natural identity map becomes non holomorphic.

So, you see it is a completely differently structure. So, this structure of Riemann surface

of R 2 is not the standard structure it is a new structure and guess what it is nothing, but

it is a Riemann surface structure on the unit disk. After all you are identifying R 2 with

the unit  disk and it  is  the  complex structure  on the unit  disk that  you are transpose



transporting to R 2. So, what you have done is you have made R 2 into a Riemann

surface isomorphic to the unit disk all right, but then you know the unit disk is not equal

into the complex plane that is your famous Riemann mapping theorem it says that any, if

you look at the open simply connected subsets of the complex plane there are only 2

isomorphism classes 1 is the whole plane and anything else is isomorphic to the unit disk

and these 2 are different.

So, what I have done is by this map I have forced the structure of Riemann surface of the

unit disk to be stretched to the whole plane and so it is not this standard structure on the

whole complex plane. So, that is why I am getting another structure on the compet on R

2 which is not the standard structure. So, but it is not. So, let me just complete it. So, this

is a different structure from example 1. So, the remark is that you can still look at the

situation when I mean the situation that is described by the Riemann mapping theorem.

So, let us now go into the next example which is I will trying to make which is trying to

make the sphere into Riemann surface.

So, before I before I do that let me add a remark. So, this is the probably the right point

to add the following remark. So, the remark is a very deep theorem. So, it is called the

theorem it is part of what is called the as the uniformization theorem.

(Refer Slide Time: 41:58)

So, let me state that.  So, uniformization theorem any simply connected non compact

Riemann surface has to be isomorphic to either the unit disk or to the whole complex



plane. So, what this will tell you is that if I try to attempt to put various Riemann surface

structures on the plane I will only succeed in getting 2 which are essentially different 1

will be the whole complex plane itself the standard structure.

The other 1 is the structure that I have written down here you cannot get anything more

well the proof of this theorem is a little deep and essentially it can be in a way reduced to

the Riemann mapping theorem all right, but I am in this course I am trying to I am going

to point out some important theorems at the right time not to be worried about giving the

proof of the theorem immediately, but you just it to tell you what is true for the. So, that

you get  a  feel  of what  is  true.  So,  what  this  if  you believe  this  uniformizing zation

theorem it is not the full uniformization theorem it is still a part of the uinformizatiion

theorem.

So, here what I have said is I have said that the Riemann surface should be connected on

non-compact.  Now of  course,  you know what  connected  means  topologically  that  it

cannot be written as a disjoint union of open sets simply connected of course, means that

any closed loop can be continuously shrunk to a point which means that there are no

holes on the surface and non-compact is also something that you know the condition is

that it should not be closed and bounded if you if you visualize it as a subset of R 3. 

So, well this is the uniformization theorem and if you believe this it is very clear that you

can deduce that you see the the only 2 possible Riemann surface structures that we can

force on the complex plane are 1 or the complex plane itself which is given by example 1

by the standard identification and the second 1 is the Riemann surface structure on the

unit disk these are the only 2 possibilities you cannot get any more.

In other words you try to force any Riemann structure on R 2 it will either by some of it

to see as a Riemann surface are to be isomorphic 2 the unit disk as Riemann surface that

is all you will get. So, it is a deep theorem now let me go to example 3; which is trying to

make this sphere into a Riemann surface. So, make making a sphere sphere into Riemann

surface well.
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So, here I am. So, let me let me draw a diagram. So, that it is it is easier for me to explain

how the charts look like.
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So, I take 3 dimensional space and well I have the unit sphere here in 3 dimensional

space. So, this is the unit sphere I call this the this is my x axis this is my y axis well and

I want call the third 1 as the z axis I call it as a u axis because I want z to be x plus i y

that is I want the x y plane to still represent the complex plane and that is why I am not

calling the third axis is the z axis. So, I am calling the third coordinate as u and well this



is this is the sphere s 2 and of course, you know this is the North Pole n this is the South

Pole and you know the coordinates the North Pole is 0 comma 0 comma 1 South Pole

has coordinates 0 comma 0 comma minus 1 and well to make this to make the sphere

into a Riemann surface. I have to give you an atlas an atlas is therefore, going to be

collection of charts which are parawise compared to be whenever they intersect and what

I am going to do now is give you an atlas consisting of exactly 2 charts and what are the

2 charts 2 charts are as follows. 

So, atlas for X equal to S 2. So, this is my X now is it consists of let me write this u 1

comma phi 1 and u 2 comma phi 2 and let me tell you what you want you to phi 1 phi 2

are well.
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So, u 1 is this sphere minus the North Pole and u 2 is a sphere minus South Pole and the

map phi 1 from u 1 to the complex plane is nothing, but the stereographic projection

from the North Pole. So, this is the stereographic projection from N. And similarly the

map from phi 2 to C is going to be the stereographic projection from the south. So, well

let me quickly recall this u I am sure you have seen this in a first course on complex

analysis how the Riemann sphere is constructed. So, it is well you take any point on the

sphere p and what are the stereographic projection from the North Pole well you just join

this point to the point p you get a straight line and that line is going to go and hit the

complex plane which is the x y plane thought of as a complex plane.



At a certain point let me call this as at a certain point which I call as phi 1 of p that is a

stereographic position for the north and similarly what is the stereographic projection

from a South Pole well you again you take a point Q on the sphere the reimanns sphere

mind you this is given by the algebraic equation x square plus y square plus u square

equal to 1 of course, just to recall.  So, I am taking a point Q with coordinates which

satisfy this equation and well what is the stereographic position I joined the South Pole to

this point and it is going to come up I am going to hit the plane somewhere and I call that

as phi 2 of Q.

 So, you see in other words phi 1 of p is equal to interest point of point of intersection of

NP or PN with X Y plane and similarly phi 2 of p phi 2 of Q is point is a point of

intersection  of  S  Q  with  the  X  Y plane.  So,  these  are  the  standard  stereographic

projections and well you can easily check you have already seen this I suppose in a

course in a course in a complex analysis in the first course in complex analysis that both

stereographic projections are Isomorphisms they are homeomorphisms of the Riemann

sphere  minus  the  pole  onto  the  whole  complex  plane.  So,  these  are  of  course,

homeomorphisms.

So, both u 1 comma phi 1 and u 2 comma phi 2 are certainly charts and u 1 and u 2 of

course, cover the whole sphere. So, you have charts that cover the whole sphere the only

thing that you have to worry about it is to make this really an atlas you have to check that

the compatibility condition course. Well, you can check that the compatibility condition

holds and what is the compatibility condition you take u 1 intersection u 2 and so the

compatibility condition will  come from so, u 1 intersection u 2 will  be the Riemann

sphere minus both the North Pole and the South Pole.
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And you can see that phi 1 of u 1 intersection u 2 is just the complex plane minus the

origin and because phi 1 is going to map the whole sphere except the North Pole on the

complex plane. And if you remove the South Pole then from the image you are removing

the origin and you can see also that phi 2. Similarly of u 1 intersection u 2 is again the

complex plane minus the origin.

So, in both cases the image of this intersection is the. So, called punctured plane the

plane minus the origin and therefore,  you get a transition function from the puncture

plane to itself, and I will have to check that this transition function is holomorphic. And

you can check that the transition function is has a very simple form in this case namely.
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The transition function which we will go from C minus 0 to C minus 0 the transition

function is simply z going to 1 by z you can check that you can I want you to write it

down and check that this is the transition function and this is of course, holomorphic is of

course, which is simply which is of course, holomorphic well as a result of this we have

been able to give a Riemann surface structure on the sphere well coming to think of it

probably you will have to compose either phi 1 or phi 2 with the complex conjugation to

get it right.

So, you have to figure that out writing it down to yourselves and this Riemann surface

structure on the sphere is called the Riemann sphere this is what. So, this this Riemann

surface structure on s 2 is called the Riemann sphere. Well, let me end by giving you

another interesting result see in the first and first and second examples we saw that we

were  able  to  give  2  different  Riemann  surface  structures  on  the  plane  and then  the

uniformization theorem said that these are the only ones possible. 

Now you can ask the same question take the real sphere I have already proved that there

is 1 Riemann surface structure can you give more. So, there is a theorem it is again part

of the uniformization theorem which says that this is not possible you can on this on the

on the real sphere S 2 any structure of Riemann surface that you impose on it will be

isomorphic to this 1.
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So, you have no freedom. So, this is also. So, let me state this uniformization theorem

any simply connected compact Riemann surface has to be isomorphic to the Riemann

sphere. So, it is a beautiful theorem it tells you that you no matter what no matter how

many charts you use and no matter how many manor atlases you try to manufacture on

the real sphere if you put a Riemann surface structure it has to be isomorphic to this 1

you do not have any more freedom.

So, this is a again a deep theorem it is part of the uniformization theorem this and that

statement  put  together  are  called  as  a  first  uniformization  theorem  this  is  for  non-

compact simply connected case and this is for the compact simply connected case and

this really a deep theorem.

So, I will stop with that.
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