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So let us continue with our discussion. So, let me remind you where we were at the end

of the last lecture.
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So, we had taken x Riemann surface with covering the complex plane. So, of course, this

implies that . So, if I call the covering as, I am I call the covering map as p from C to X,

since the complex plane is simply connected this is also the universal covering. So, this

implies it is a universal covering, for x and if I fix a point small x in capital X, then you

know that the fundamental group of capital X be it is small x can be identified with the

deck  transformation  group  of  the  covering  .And  the  deck  transformation  group  is  a

subgroup of the holomorphic automorphisms of the universal cover, which in this case is

the complex plane.

And this the automorphisms, the holomophic automorphisms is the complex plane  are

upper  triangular  mobius  transformations,  those  mobius  transformations  which  when

represented  in  matrix  form are  upper  triangular. So,  they will  be given by this  kind

matrices. So, so a d a d equal to one and of course you have to go mod plus or minus the

identity matrix a sub grouped two element sub group ok .

In fact, what happens is that ,the deck the deck transformation group actually lands even

in a smaller subgroup ,then this namely the subgroup of translations that is because you

know you know that any deck transformation cannot have fixed points, unless it is a

identity transformation you cannot have even a single fixed point therefore, if you take a



non trivial deck transformation it should be it should be a mobius transformation, that

goes  from  C  to  C  and  has  no  fixed  point  .And  of  course  as  a  gentle  mobius

transformation it should fix infinity the point at infinity. So, it has to be a translation. So,

the moral of story is there is a subgroups of translations which is which can be written

actually in the form ah 1 b 0 1 b in C this is a subgroup here ok.

And this is actually the this is just the set of translations by complex numbers, where of

course translation by b is just the map that sends z to z plus b .And the image of this will

actually will actually land inside this. So, this image here what you will get is it will this

the image of the subgroup will actually land inside this subgroup ok.

And you know I can further identify this with, I can identify this with complex numbers

by just sending T sub b to b. So, you just sent T sub b to b ,and of course T sub b is being

thought of as the mobius transformation, it is a mobius transformations z going to z plus

b which has this matrix representation given by 1 b 0  1. So,  and this will give you an

isomorphism of groups and of course,  here it  is going to be a group at  addition and

therefore,  first  of  all  the  first  observation  that  one  makes  is  that  pi  1  has  to  be

abelian,because it  the pi 1 is  a subgroup of this group of translations and translations

commute with one another and therefore, this an abelian group and therefore, pi 1 is

abelian.  So,  this  condition  that  X  is  a  Riemann  surface  with  universal  covering  C

automatically forces that there fundamental group of X has to be abelian ok.

So, and well. So, a image of pi 1 of capital X comma small x in C comma plus, let the

image b equal to G, let us call it as G. So, of course,  we get this pi 1  of X has to be

abelian ok.And what else did we see last time, last time we prove that this G which is the

subset of the complex numbers, it is a subgroup under addition ok ,this G is actually as a

set of complex numbers it is discrete . 

So, G is discrete and another thing that we also noticed was that G is a z sub module of

C. That is if a translation if you take an element of G which corresponds to a translation,

then all integer multiples of if you compose a translation. So, many times you are going

to just get another translation which is integer multiples of translation by integer multiple

of the original number. So, what I am saying is T sub b is in G, then T sub n times b is

also in g ,which is just T sub b composed n times ,assuming n is positive of course, if n is

negative then you have to compose T minus b, T sub minus b minus n times ok.And of



course T sub b composed 0 times is to be taken as T sub 0, which is just the identity map

right.
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So,. So, what we G is a discrete is at z module of a C, we have seen this and then I was

give you telling you about this lemma which says that there are only three possibilities

for G, number one of course, is a trivial possibility that G is just the 0 group, the trivial

group that means it consists of only the identity mapping translation by 0 ok

The second thing is G is just integer multiplies of a single non 0 complex number omega

a  non 0  complex number ,and then the third possibility  is the  G is a  integer it  is an

integer linear combination of two complex  numbers ,where  both the complex numbers

are non 0. And their ratio is not a real number that means, here linearly independent as

elements of linearly independent over r  over reals  as elements of the field of complex

numbers ok.

So, these are the only three possibilities and. So, let us take establish this proof . So, the

first thing I want to say is of course, let us assume G is not 0, if G is not equal to 0 ,we

look at the set of all Z in C ,such that mod Z is less than or equal to capital R intersection

G ok, which is non empty for R large enough ok.

So, G is not 0 then G has some element. So, all you have to do is you have to choose

capital R greater than the modulus of that element and then this intersection will continue



in that element. So, that is you can choose R sufficiently large. So, that this is non empty

now, the point is that this intersection will turn out to be finite .The point is that this

intersection will turn out to be finite why is that so, that is because first of all note that G

in C is closed ,ok the set of point G is closed, because you know you get the closure of a

set by adding to the set accumulation points, ok but G has no accumulation points. G is

just a discrete set. So, G is equal to it is closure. So, it is closed. So, the G is a closed set

as it is it has no accumulation points in C, that is what we proved last time ,that is how

we proved G is discrete ok.

And then this set here this is just a disc of a radius less than or equal to R it is a closed

disc. So, it is a closed set, ok it is already this is also a closed set of the compact close

subset of the compact this intersection of two closed sets and therefore, it is closed also.

So, this set the set of all Z in C such that mod Z less than or equal to R, intersection G is

closed, but it is obviously bounded, because it is a subset of this close disc of bounded

radius. So, it is closed and bounded and therefore, you can conclude that it is compact

ok. So, it is also it is also bounded hence compact, therefore it is a compact set ok.

Now, you see take every point see every point of G is an isolated point. So, we can find a

small you know disc surrounding that point, which open disc if you want surrounding

that point that does not contain any other points of G ok. Now you take all those discs

correspondent  to  the  points  in  this  intersection,  that  will  be  an  open  cover  for  this

intersection, but it is compact. So, there must be a finite sub cover and that will force that

this has to be finite ok.
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Since, so let me write that here since G is discrete, consist only of isolated points, this set

of all Z in C such that mod Z less than or equal to R, intersection G is finite it is a finite

set.

In fact, you know that this close disc is compact ok, and you know that if there is a if you

take any infinite subset it should have an accumulation point. So, that will also that is

also another way of saying that this intersection has to be finite ok.

So, it is finite. So, what I can do is I can choose a member here, which is closest to the

origin. It is a finite set of complex numbers and is non empty, and it contains a non 0

complex number ok, because G I assume G is not 0. So, and you know I have chosen R

in a such a way. So, that there is at least one non 0 complex number in this set G.

So,  I  can  choose  a  complex  number  in  this  intersection  such  that  it  has  minimum

modulus and let me call that as omega 1. So, let omega 1 be an element in this set with

mod omega 1 not equal to 0 and mod omega 1 minimum, because it is a finite set I can of

course choose one such element.

Now, omega 1 is an element of G, this implies Z dot omega 1 will also be subset of G ok.

That is because G is a Z sub module of C alright, and of course if Z dot omega 1 is equal

to G we are done, we have come to case two. So, if Z dot omega 1 is equal to G we are



done .So, assume Z dot omega 1 is properly contained in G ok, then I will have to show

that we will be in the third case of the lemma alright.

So, if this is true again we play the same game ,what you do is consider ah, the set again

you take the  set of all  Z in C, such that mod Z is  greater  less than or equal to sum R

prime now, and intersect it with G minus the compliment  of Z dot  omega 1  in G. So,

what is this set this is all those elements of G, which are not an integer multiple of omega

1 ok ,that is what the set is and then I am intersecting it with this close disc ok and since

the other elements of G which are not integer multiples of omega 1, this is a non empty

set and therefore,  if  I  choose R prime sufficiently  large this  intersection will  be non

empty. So, consider the set which is non empty for R prime sufficiently large. 

Ok consider this set, now again the same argument will tell you that this set is also finite,

why because you see the ah what will happen is that you see this is a disc this G is

discrete ok, every subset of a discrete set is continues to be that continues to be discreet

and so this is a discrete set in this closed and bounded disc ok. So, it has to be finite and

of course again the argument will be if it were not finite, then you know every infinite

subset of a compact set like this will contain a an accumulation point, but we know G has

no accumulation points therefore, this has to be again finite set ok, this has to be again a

finite set alright and ah choose omega 2 in this set. So, that you know omega 2 is not 0

and modulus of omega 2 is minimum ok. Now in this set you choose an omega 2, which

means you know it is an element of G which is not an integer multiple of omega 1 ok.

And of course, since there are only finitely many I choose one with minimum orders that

I can do alright of course omega 2 is non 0. Now we are going to now I am going to

show that G is actually Z omega 1 plus Z omega 2 ok, that is what I am going to prove.

So, for the first firstly, we claim that ah omega 2 by omega 1 ok is not a real number ,the

first claim I am making is that omega 2 by omega 1 is not a real number, or if it were

then that would be  exist  an integer n with you know n strictly  less than  omega 2 by

omega 1 strictly less than n plus 1 you can get this.

See if you have a real number then of course, you can it has to lie in some interval ok and

you will have strictly equality here because omega 2 is not an integer multiple of omega

1, omega you cannot have n equal to omega 2 by omega 1, because that will mean omega

2 is n times omega 1 that is not possible ,because omega 2 has been chosen outside of



integer multiples of omega 1, and for the same reason omega 2 by omega 1 cannot also

be equal to n plus 1. So, it is this two are both strictly (Refer Time: 19:52), but this will

immediately give a contradiction.
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That is because you see, what will happen is you know if i write if I consider 1 by mod

omega 1 times modulus of n omega 1 minus omega 2 ,if I calculate this then this will be

modulus of n minus omega 2 by omega  1 ok ,and you see n see of course, n minus

omega 2 by, but omega 2 by omega 1 is greater than n. So, this will be actually be omega

2  by omega 1 minus n ,that is what it will be because omega 2 by omega 1 is a real

number greater than n alright

And of course you see, but any way this is lying in an interval of length 1, therefore this

has to be less than 1. So, this is less than 1. So, what this will tell you it there it will tell

you n omega 1 minus omega 2 is strictly less than mod omega 1. That is what it will tell

you, it will tell you n omega 1 minus omega 2 is strictly less than mod omega 1, but you

see this the this element this belongs to G ok. So, what you have done is you have found

an element of G, whose modulus is less than mod omega 1, but mind you mod omega 1

is chosen with minimum modulus ok mod omega 1 was chosen with minimum modulus.

See does not see once I have once I have chosen mod omega 1 I can still increase R ,I

can let R to code infinity it is not going to change the choice of this mod omega 1. So,

mod omega 1 is kind of smallest it is one with smallest modulus, but you see now I have



got  hold  of  an  element  of  G  with  modulus  lesser  than  mod  omega  1,  that  is  the

contradiction. Ok so contradicts choice of omega 1 ok. So, this contradiction will tell you

that omega 2 by omega 1 cannot be real. So, omega 2 by omega 1 is not a real number. 

So, you get that, now the next thing is the movement omega 2 by omega 1 is not a real

number, it  means that  omega 1 and omega 2 are they form a basis  for the complex

numbers as a vector space over real numbers, because you see they are there is since the

ratio is not real they are linearly independent over R ok, and it is linearly independent

there are two elements and the dimension of the complex numbers as a field over real

numbers is two dimensional. 

So,  the  moment  you  have  a  linearly  independent  set  with  cardinality  equal  to  the

dimension it has to be a basis. So, so this will imply that you know ah omega 1 comma

omega 2 is an R basis for the complex numbers C, as a vector space over R ok, now so

what does that that implies every complex number, can be is a is a unique is ah a unique

linear combination a unique R linear combination of omega 1 and omega 2 ,that is what

basis makes, every element can be expressed as a linear combination of omega 1 omega

2 ,and the coefficients of omega 1 and omega 2 are unique ok.

So, but this happens for every complex numbers. So, it happens for every element of G,

after all G is a sub set of complex numbers. So, this implies if you take a small g and

capital G, then G has to be writable in the form lambda 1 omega 1 plus lambda 2 omega

2 where lambda I are real numbers ok. I should be able to write any element of G in this

form as a real linear combination of omega 1 and omega 2, and the coefficients lambda 1

and lambda 2 are unique, that is because of linear independence of omega 1 and omega 2

ok.

Now, well again lambda 1 and lambda 2 are real numbers. So, I can choose for both

lambda 1 and lambda 2, I choose an integer that is closest to lambda 1, and I choose an

integer that is closest to lambda 2 ok. So, I will write that down choose m 1 comma m 2

integers with modulus of lambda 1 minus  m 1  less than  or equal to half modulus of

lambda 2 minus m 2 less than or equal to half I can do this of course, you see lambda 1 is

a real number it has to lie in some interval. So, it is an interval with integer n points. So,

if it lies to the closer to the left end point you take that as your m 1, if it lies closer to the



right end point you take that as your m 2, in any case you can get m 1 m 2 with this

(Refer Time:25:25) alright.

Then ah and once I do this and you know now I want you to look at G minus m 1 omega

one minus m 2 omega 2, I want you to look at this difference this turns out to be lambda

1 minus  m 1 into omega 1, plus lambda 2  minus  m 2  m 2  into omega 2 ok by our

definition alright.

And now let us compute the modulus of this difference and try to use it for triangle

inequality. 

(Refer Slide Time: 26:18)

So, modulus of G will be modulus of modulus of sorry G minus m 1 omega 1 minus m 2

omega 2 will be modulus of lambda 1 minus m 1 into omega 1, plus lambda 2 minus m 2

into  omega 2 and now if  I  apply the triangle  inequality  this  is  less than or equal  to

modulus of  lambda 1 minus m 1 omega 1,  plus modulus of lambda 2  minus m 2  into

omega 2. I will get this by the triangle inequality mod of a plus b less than or equal to

mod a plus mod b ok.

And what I want to say is that I want to say that this is actually strict inequality ,why is

this a strict inequality because you see ah this is a strict inequality because you see mod

of a plus b is equal to mod a plus mod b for two complex numbers a and b occurs only

when a and b are real multiples of one another there is a co linearity condition for the



three sides of a triangle to that makes the for the that makes a triangle degenerate into a

straight line and then your triangle inequality becomes an equality that is a only case. So,

because this happens only when a is a real multiple of b ok.

So, you know if this does not happen if there is equality it will tell you that you know it

will tell you that the you know if there is an equality here it will tell you this a real

multiple of that, but that then these are real coefficients. So, it will tell you omega 1 is a

real multiple of omega 2, but that contradicts the fact that the ratio omega 2 by omega 1

is not a real number ok. Therefore, this in this triangle inequality this has to be a strict

inequality ok. So, what I can write is that modulus of g minus m 1 omega 1 minus m 2

omega  2 is strictly less than mod lambda 1 minus  omega 1 m 1 lambda 1 minus m 1

times omega 1 plus mod lambda 2 minus m 2 into omega 2, and this is strictly less than

or equal to half mod omega 1 plus half mod omega 2 that is because mod lambda 1

minus m 1 and mod lambda 2 minus m 2 are each less than or equal to half.

Now, you see let us recall how omega 1 and omega 2 were chosen, omega 1 was chosen

to be an element of g with least modulus which is non 0 ok and omega 2 was chosen to

be again of least modulus of course, non 0 modulus among those elements of g which are

not  integer multiples  omega 1 . Now, therefore, I can write that this is less than half

omega 2 plus half omega 2 which is equal to omega 2 ok therefore, you see this quantity

on the I mean this element on the left side g minus m 1 omega 1 minus m 2 omega 2 you

see this cannot be an element of g ,which is not an integer multiple of omega 1 because if

it were then it would have modulus less than mod omega 2 which is against the choice of

ah omega 2 therefore, the conclusion is that this quantity has to be an integer multiple of

omega 1 ok and that will tell you that g is therefore, an a lean integer linear combination

of omega 1 and omega 2.

So,  let  me write that down here ,this is  an  element of G, which has to which has to

belong which has to be an integer multiple of omega 1 ,for if it is not an integer multiple

of omega 1 then it will be an element with modulus less than that of omega 2 which is

against the very choice of omega 2. So, it is an integer multiple of omega 1 that is so, if I

write it down I will get g is equal to g minus m 1 omega 1 minus m 2 omega 2 is actually

say some n times omega 1, and this will tell  you that g is actually m 1  plus n times

omega 1 plus m 2 times omega 2 and in other words what you will get is therefore, g is

an integer multiple of omega 1 and omega 2, and it is an integer linear combination of



omega 1 and omega 2 and therefore, you will get g is actually Z dot omega 1 plus Z dot

omega 2 as we wanted. So, that finishes the proof of this claim that G is just the group of

integer linear combinations of omega 1 and omega 2 ok and of course, you must realise

that this is isomorphic to Z cross Z as a group under addition. So, that finishes the proof

of the claim.

Now, what we have going to do is use this lemma to get all the results that we want. So,

what I will do is ah let me rub this off and look at a each of these cases.

(Refer Slide Time: 32:48)

So, you see remember that our situation was we had C to p ,C to X, p is covering map

this universal covering this was our situation, if ah G is 0 then what happens see if G is 0

that means, pi 1 of x capital X comma small x is 0 ,after all G is the image of pi 1 if you

remember  pi  1  the  fundamental  group  of  the  base  was  identified  with  the  deck

transformation group. The deck transformation group was identified with the subgroup of

translations and the image of the deck transformation group is what we had called as G.

G is isomorphic to pi 1 ok if g is just the image isomorphic image of pi 1. So, if G is 0

then pi 1 is 0, if pi 1 is 0 it means X is simply connected, and you know if X is simply

connected then you know X to X itself the identity mapping it itself is a covering map

and you know by unique by the uniqueness property of universal coverings it will tell

you that X has to be holomorphic to C ok.



So, then X is simply connected. So, X to X identity map is a universal covering, and this

will imply that therefore, you know C to  P is  isomorphic to the  covering given by the

identity map and this will imply that X is holomorphic to C ok so, if G is 0. So, what we

have proved is if we have a if the universal covering of X is C and if the fundamental

group is 0, then that corresponds to this case and then X has to be just C,  these are

simplest case ok

Then of course, you know what I expecting other two cases. So, let me write it down. 
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So, if G is Z dot omega 1 ok, if G is Z dot omega 1, then actually what it means is then pi

1 x comma x is identified with the deck transformation group of this covering and this is

just  Z  times  translation  by  omega  ok,  mind  it  that  is  how  we  identified  a  deck

transformation with a translation .We found that all possible deck transformations can

only be translations ok.

And the complex number omega corresponds to translation by omega. So, this is what it

is. And then what happens we have that we have see let me recall another fact that I told

you last time,see we have to C to P, C to X this is the covering, I told you C to C modulo

the deck transformation group ok of this cover these two can be identified, such that this

diagram  commutes  so.  In  fact,  you  know  I  told  you  that  ah  the  if  you  take  the

fundamental  group of  the  base  space  below that  gets  identified  with  a  subgroup of

automorphisms of the base of the covering space ok that subgroup is nothing, but the



deck transformation group and if you go modulo the deck transformation group what you

will get back in the identified with the base space ok.

So, this can be identified with X, but then you know this is just C modulo Z dot T omega

ok ,and if you remember this was C sub omega in one of our other example, this is the a

Riemann structure surface on the cylinder defined by this non 0 complex number omega.

So, this is Riemann surface structure on a cylinder defined by omega not equal to 0 ok.

So, what you are saying is that if the universal covering of X is C, and if the fundamental

group is  isomorphic  to  Z,  then  we are  in  case  two and your  Riemann  surface  X is

nothing, but a holomorphic structure namely a Riemann surface structure on the real

cylinder ok .So In fact, if you want else a real cylinder on a real cylinder and ah. In fact,

you know i. So, this first tells you that X has be just a Riemann surface structure on a

cylinder, then I gave you if you go back and recall I gave you a theory I am saying that

all these various holomorphic structures that you can get on a real cylinder, if you change

omega they all do not change they are all the same ok.

So, I made that statement also. So, let us try to prove it. So, what I want to say is that if

you change omega here still  this  the various  the various X you are going to get  for

different omega ok ,they are all going to be the same. In fact, I told you that there is one

special representative that is given by the exponential map as a covering map from C to

C  star;  I  told  you  that  was  the  special  representative  for  all  the  Riemann  surface

structures on a real cylinder. So, let us try to prove that. So, first of all I what I want to

say is that. So, I want to first make I want to make a remark, see let us take from C to let

me take the map from C to C star ,which is given by Z going to exponential of 2 pi I Z by

omega ok.

Let us take this map C to C star, Z going to e power 2 pi I Z by omega I can divide by

omega because omega is not 0 alright, now what you can do is that you can easily check

that this is a covering map therefore, it is universal covering ok, and you can check that

the you can check that the deck transformation group is just translation by integers ok,

because that is that is what see the kernel of this map is exactly the integers alright. So,

when integer times omega. So, what I want to say is that. So, let me write that down

check this is a covering map hence the universal covering, because the space above C is

simply connected you check that it is a covering map. For this you just have to study the



properties of the exponential function Z f of Z equal to e power Z, if you study properties

of exponential function you will see that mind you omega is a constant omega is to be

treated as a constant Z is a variable alright.

So, property is a exponential map will tell you that this is a universal covering alright

.Then that is one thing you will get the second thing is you will you can see that the deck

transformation group is  just Z dot  translation by omega,  that is translation  by integer

multiples of omega. So, if Z is an integer multiple of a omega alright ,then you can see

that this is going to be one ok this is going to be one, if Z is n omega I will get e power 2

pi I n that will be 1 alright.

So, what these two things will tell  you is that this is  now that  put together with this

remark will tell you that C modulo Z dot translation by omega is just C star. So, in other

words what it will tell you is that X has to be just holomorphic to C star ok. So, let me

right that down.

(Refer Slide Time: 43:02)

So, thus C to C star by this map can be identified with C to C mod Z dot T sub omega

this  is  the  group  of  integer  translation  by  integer  multiples  of  omega,  this  can  be

identified this is our map well  if you want let me call this as this is p sub omega ok

alright and if I call this map as X alright. So, this is still X and this is a P sub of omega

ok.



So, what these two diagram together will tell you is that this covering C so, it will first

tell  you that  X  is  just  homeo  is  actually  not  only  homeomorphic,  but  it  is  actually

holomorphically  isomorphic to  C star  and it  will  tell  you that  C to X  this  universal

covering is as same as this universal covering C to C star.

So, therefore X is holomorphic I mean by holomorphic holomorphically isomorphic to C

star ok, X is holomorphically isomorphic to C star alright.

In  fact,  that  I  told  you  that  you  can  scale  this  omega  and  just  make  this  map  the

exponential map which is just Z going to e power 2 pi I Z that that is what I gave as the

canonical representative for all in the holomorphic isomerism class for all these Riemann

surfaces. So, let me explain how that happens because there is something there is a little

bit of covering theory that comes into the picture. So, so let me make this claim C p X is

isomorphic as covering spaces to C C star Z going to exponential of 2 pi I Z ok. So, this

is a statement that I made you take all possible Riemann surface structure on a cylinder,

then they are all isomorphic and they are all isomorphic just to C star, that is the theorem

that I stated and now I am saying that even at the covering space level ah not only is not

only  is  X  isomorphic  to  C  star  holomorphically  isomorphic  this  covering  itself  is

isomorphic to the exponential map ok.

So. In fact, I told you that this was this can be taken as a special representative for all

these  ah  holomorphic  structures  on  the  cylinder,  Riemann  surface  structures  on  a

cylinder. So, let us see how this is true. So, for this I am going to do something there is a

little bit of discussion. So, let us again go back to our let us go back to the topological

category let us take a covering let us take a topological space X now. So, do not confuse

this X with our X forget our X for the present. Let us assume that we have a topological

universal  covering  and you fix  this  point  small  x  capital  X then you know that  the

fundamental group of the base space can be identified with it can be identified with the

deck  transformation  group  of  the  universal  cover  ok,  which  is  subgroup  of

automorphisms let me just say homeum I will just put  automorphisms  of the universal

covering space.

Of  course you  know  if  this  is  a  holomorphic  covering  ok,  then  this  should  be

holomorphic  automorphisms  and  everything  will  be  holomorphic,  if  it  is  just  a

topological covering then these are all just homeomorphisms all right and now what I am



going to do is I am going to twist the covering by a by an automorphism of the universal

cover. So, what I am going to do is a following.
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So, what I am going to do is the following choose a phi which is an automorphism of the

universal covering ok, then you see X to X sub univ p this is a covering alright then what

I will do is I put this phi here and I will consider this map which is the composition first

apply phi inverse then apply p ok.

Now, what  will  happen is  that  this  will  also  be  a  covering  map this  will  also  be a

universal  covering  after  all  this  is  an  isomorphism  and  this  is  the  covering  an

isomorphism followed by a covering is also a covering.

So, this is also a covering, but this is again simply connected. So, it is also the universal

covering. So, this is also another avatar of the universal covering alright .Now what will

happen is because of this the fundamental group of X will also be identified here and

there is a difference in these two identifications ,that differences arises because of this

automorphism phi and what that difference is it is actually conjugation by phi. So, that is

what I want it to realise. So, so this will give rise to a diagram like this. So, I have the

fundamental group of capital X base it is small x so i fix a point small x in capital X and

this is identified with the deck transformation group of this covering X univ p X and this

identification is because of this cover ok.



.

Now, this covering will give me another identification. So, what will I will have here is I

will also have deck transformations of the other covering that is X sub univ to now this

covering is p followed by phi inverse. So, that is also an identification like this ok. So,

this  covering  gives  me  identification  of  the  fundamental  group  of  X  with  the  deck

transformation group of this cover, and similarly this covering gives me identification of

X, identification of fundamental group of X with the deck transformation group of this

covering and what is this map this map is just isomorphism that sends any f to you know

phi inverse followed by f followed by p ok.

So,  it  is  varies  clear  see  if  you give  me  a  deck  transformation  here  something  that

permutes the decks here,  how do I get one here I go by phi inverse apply this deck

transformation and then apply phi, that is how this is related. So, what this tells you is

that if you change the universal cover ok by an automorphism of the universal covering

space ok.

The top space the covering space then the deck transformation group will change by a

conjugate where it will change by a conjugate subgroup in the group of automorphisms

of the universal cover. So, what this will tell you is thus deck the deck transformation of

X to a p  p composite  phi inverse X sub univ to X is a conjugate of you see the deck

transformation group of the original cover in T group of automorphisms of the universal

cover ok. So, the in other words you know this is nearly one should say philosophically

reflection of the fact that you see the fundamental group will change by a conjugate if

you change the base point ok.

So, what you do is the same kind of thing happens above, if you change the covering by

an automorphism of the top space then the deck transformation group will change by a

conjugate ok. So, if you remember this it is very easy to actually see that this translation

by the translation by any omega is conjugate to translation by 1, in the full group of

automorphisms of C. So, what I want to say is that translation by omega is conjugate to

translation by 1 in automorphisms of C, which is p delta  2 C,  which is of course you

know the set of all metrics of the form a b these are all just translations, a b 0 c such that

a b 0 d such that a d equal to 1, modulo plus or minus identity 2 identity matrix ok.



And how do you prove this it is very simple. So, let me write that down. So, see you just

solve for you solve for such a transformation ok.

(Refer Slide Time: 54:01)

So, what you do is solve for a b 0 d with a d equal to 1, a b 0 d if you conjugate that with

translation by omega which is given by 1 omega 0 1, and if I put a b 0 d inverse I want to

get 1 1 0 1 which is translation by 1 ok. See you can solve for this you can you can you

will get  a b 0 d to b of a you can it is a simple calculation what you will get is let me

write it down it is just going to be, 1 by root omega b 1 by root omega b 0 root of omega

ok,  where b is any complex number  any such  mind you omega is non 0. So, it has a

square root choose any one square root that is two square roots and you take 1 by root

omega and root omega here ok , now this is clearly determinant one and this a mobius

transformation ok.

So, now let me call this as a let me call this mobius transformation as phi ,let me call phi

to be this mobius transformation then phi is what phi is an automorphism of C is the

universal covering alright. So, now, look at this you have C and you have p and you have

X, and then I apply this phi here I have this automorphism of C and here I get I get the

other covering just like that I get p circle  phi inverse this diagram commutes ok now

(Refer Time:56:05) and this diagram commutes you are going to have an identification of

deck transformation group with the deck transmission of group with this and what it will

tell you see that will tell you that deck transformation group of a C p X is this group this



group if you conjugate it by phi you get that group ok. So, phi. So, let me write that. So, I

will write it as phi circle deck ,circle phi inverse is actually deck transformation of C to

this is p circle phi inverse I will get this and in other words what I will get is phi circle

this is Z dot T omega, is just Z dot T sub 1 ok.

So; that means, that for this covering the your actually going modulo translations by ,,

and if you were going modulo translations a I mean translation by integer multiples of 1,

which is a translation by integers and if you are going modulo translations by integers

then this covering is the same as is isomorphic to the covering Z going to e exponential

of 2 pi I Z. Because this is the map when you are going modulo translations by integer

multiples  of  omega,  if  omega  is  1  then  this  covering  map  will  be  just  Z  going  to

expensive of 2 pi I Z. So, what this will tell you is that this guy is isomorphic  to  the

covering C to C star, this is given by Z going to exponential of 2 pi I Z ok, because here

the deck transformation group is just translation by integer multiples of 1, translation by

integers. So, the moral of the whole story is take any Riemann surface whose universal

cover is C the complex plane and assume that the fundamental group is isomorphic to Z.

Then that covering it iself not only is that Riemann surface isomorphic to C star, but the

covering  it  iself  is  isomorphic  to  this  specific  covering.  So,  this  is  just  unique

representative  for  all  possible  covering  spaces  of  holomorphic  structures  on  a  real

cylinder, Riemann surface structures on a real cylinder ok. So, so that ends it and finally,

let me look at the third case the last and final case namely when G is isomorphic to Z dot

omega 1 plus Z dot omega 2 you know it that in this case we are going to get a complex

torus ok.
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So, if G is Z dot translation by omega 1 plus z dot translation by omega 2, then C p X is

identified is isomorphic to C mod Z dot translation by omega 1 plus z dot translation by

omega 2, which is Riemann surface structure on a torus on a real torus. Ok so, this is the

third case. So, the moral of the story is whenever the universal covering of a Riemann

surface is a complex numbers, then either it is that Riemann surface is either the complex

numbers itself or it is C star and the covering is just given by the exponential map, or it is

a Riemann surface structure on a complex torus ok. And these three cases corresponding

they correspond to the fundamental group of the Riemann surface being 0 or isomorphic

to Z or isomorphic to Z cross Z. 

So, that is the that was a classification theorem that I gave earlier and this is the proof.

So, you can appreciate the elements of topology and covering spaces coming into the

picture yeah. So, I will stop here.


