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What I am going to try to explain in this lecture is, how the notion of homotopies and the

notion of lifting of paths comes into the picture when we look at covering spaces. So, let

me recall that, there were 2 examples of covering spaces of Riemann surfaces that I gave

you one was.

(Refer Slide Time: 00:57)

So, let me write that here, one was we had omega a complex number 1 0 and then we had

the covering map C to C modulo the group which is the translation by integer multiples



of omega, and I told you that I if you call this map as phi sub omega, I told you that this

is a covering map and.

This quotient is topologically a cylinder and it acquires Riemann surface structure such

that this map becomes holomorphic. And then I told you that if you take a point in the

cylinder  and  take  the  inverse  image,  then  the  inverse  image  turns  out  to  be  set

theoretically the same as this group of translations by integer multiples of omega, which

also is isomorphic to z which turns out to be the fundamental group of the cylinder . So,

what I wanted to say was that when you take this covering space situation, the fiber over

a  point  there  is  the  inverse  image  of  a  point  is  set  theoretically  the  same  as  the

fundamental group of the base space.

And similarly, pi omega inverse let me write that down pi omega inverse the inverse

image  of  a  point  x  is  isomorphic  to  Z  and  which  is  also  isomorphic  to  the  first

fundamental  group  of  if  I  call  this  as  script  C  sub  omega  this  is  the  cylinder  with

Riemann surface structure given in this way. So, this is I 1 C sub omega. So, of course,

this  isomorphism  is  an  isomorphism  as  a  bijection  of  sets  and.  In  fact,  this  is  an

isomorphism of groups because the first fundamental group is z and this also turns out to

be. So, so let me write that down this is this is bijection of sets and this is isomorphism of

groups and in fact, what I wanted to say is that this this is of course, isomorphic also to

this the z dot T sub omega. 

So, this was the group of automorphisms of C which you have to go modulo to get the

Riemann surface structure on the cylinder. So, you see the fundamental group of the

cylinder is occurring in 3 ways or you can see it occur in the covering space this is the

universal covering space because you see the top space is simply connected. So, you see

the fundamental group appearing in 3 ways, one thing is it is bijective to the fundamental

group of the base is bijective to every fiber that is this statement. The fundamental group

of the base is also isomorphic to a subgroup of automorphisms of the covering space.

The universal covering space and that sub group is precisely the subgroup modulo which

you have to go to get the base below the base space below you see. So, you see this is

how the fundamental. So, this involves this tells you 2 things, first thing is the fiber being

identified with the fundamental group is one point, the other point is the fundamental

group below being realized as a subgroup of holomorphic automorphisms of the space



above. These are 2 aspects of covering space theory which are very very important that

we would like to understand. So, I try to explain in this lecture how this happens.

So, let me also recall the other example that the other example is that of the holomorphic

structure on a cylinder on a torus. So, what did we do? We took we took 2 complex

numbers omega 1 omega 2 nonzero complex numbers and of course, we assume that

they are linearly independent over r so; that means, omega 1 by omega 2 is not a real

number; that means, these 2 the vectors represented by these 2 complex numbers are 2

linearly independent vectors. They form a parallelogram of nonzero area and then I told

you that you get a holomorphic structure on the torus.

In the following way namely you simply go modulo the group of translations by integral

multiples integer multiples of these two. So, it was Z dot translation by omega 1 cross Z

translations by omega 2. And in this case also the same thing happened what namely you

take a point x here the inverse image by omega 1 comma omega 2 universe of a point x,

C gave you a grid of points in the complex plane and the grid was just isomorphic to you

know Z cross v which also turns out to be the fundamental group of this complex torus

mind you.

This is a Riemann surface structure on the real torus yes this is homeomorphic to s 1

cross s 1. So, I think I call this 1 can call this T sub omega 1 comma omega 2. So, the

fundamental group of the torus is also Z cross Z. So, this is an isomorphism. So, again

here we have a similar situation namely this is isomorphic to the first fundamental group

of the torus  of  course,  I  can  whenever  I  say first  fundamental  group,  it  is  just  first

fundamental  group as a topological  space I  can forget the Riemann surface structure

mind  you;  because  the  first  fundamental  group  is  defined  only  on  the  underlying

topological space and well.

Again  in  as  in  this  case  you see  that  this  is  a  bijection  of  sets  and  well  this  is  an

isomorphism of groups and in fact, this is isomorphic to Z dot this this this subgroup. So,

again it is a same picture, this is again a holomorphic universal covering for every point

here the inverse image is isomorphic to the fundamental group below as a set, and the

fundamental group of the base can be realized as exactly a certain subgroup namely this

1 subgroup of automophism holomorphic automorphisms of C of the coverings universal



covering space, modulo which you have to go to get this holomorphic structure on the

torus.

So, these are 2 nice examples and they tell you what happens in general. So, we one has

to one would like to understand the following questions. First of all why is it that the

fundamental group of the base shows sup set theoretically as the fiber over each point

that is the first question to answer or to understand? The second question is how is it that

the fundamental group of the base a how is it that it can be realized as a subgroup of

automorphisms of the covering space. So, the key to this understanding is what is called

the covering homotopic theorem which is a fundamental tool in the study of covering

spaces. So, in which is what I am trying I am going to try to explain. So, to begin with,

let me make some definitions.

(Refer Slide Time: 10:13)

So, the first definition is the following. So, let me make a few blanket assumptions, in

the course of our discussion we will need several hypotheses and so, I am going to make

some blanket hypotheses about the kind of spaces that we are going to work with we

may not be using all the hypotheses or maybe we may use some weaker hypothesis in

certain  cases,  but  just  to  make  the  exposition  simple  I  will  make  some  blanket

assumptions assume all topological spaces.

Are the I think I should erase this assume all topological spaces are by that I mean all

topological  spaces  that  we are  when you talk  about.  Number  1  Hausdonff  which  is



essentially that any 2 distinct points can be separated by disjoint open neighbourhoods,

then number 2 arcwise or pathwise connected.

Number 3 of course, if you recall arcwise or pathwise current it means that any 2 points

any 2 distinct points can be collect connected by a continuous image of an interval a

closed interval and then locally arcwice or pathwise connected. A weaker condition than

2 is just assuming connectedness which is weaker. So, if you assume arcwise or pathwise

connected, it implies that it is connected. So, weaker condition for 2 would be connected

and whenever we can assume that I will make a mention of it.  Then a fourth one is

locally simply connected locally simply connected. So, this is the condition that every

point has an open neighbourhood, which has the property that it  is simply connected

namely that any closed path in that neighbourhood can be continuously shrunk to a point.

So, closed path means a continuous image if an interval it starts at one point and ends

back at the same point 1.

Sometimes  refers  to  this  as  a  loop based at  a  point  and the condition  of for  simply

connectedness is that this loop can be continuously shrunk to 0, and that can happen only

if  there are  no holes in that neighbourhood.  So, we put all  these conditions  in  what

follows. So, I will make the first definition the first definition, I want to tell you about

this that of a local homeomorphism. So, a continuous map f from let me say y to let me

just put x toy is called a local homeomorphism.

If for every point x in x there exists an open set; v let me call it as u exist an open set u in

x, x belonging to u such that f restricted to u from u to f of u is a homeomorphism on to

an open subset f of u of y. So, the definition of a local homeomorphism is a continuous

map, such that at every point I am able to find in a neighbourhood which this map maps

homeomorphically on to an open neighbourhood in the target topological space.

So, what is the connection? The you know that every covering map in fact, uh these

covering maps if you remember I explained that they are all open. Because you take any

set here then its inverse image is just translates of a fixed copy of this set above and all

these translates are disjoint if you choose a set below small enough they all be disjoint, if

you choose a set if you do not choose them small enough they will still be a union of

open sets. And the quotient topology will tell you that you know a set here is open if and

only the inverse image is open.



So, if I start with an open set here I take its image there, then you can check that this is

an open then this is an open set here and how why is it an open set? That is precisely

because of the quotient topology because its inverse image will be the all translates of the

original open set I started with here by this group and all these translates are all open. So,

that is the reason by the image of an open set is open same thing happens here. So, let me

repeat that why are these open maps, because I started an open set here, I take its image

there I want to say that that is open.

But by the quotient topology this is open if and only if the inverse image of that is open,

but what is the inverse image? The inverse image is just translate for the original open set

I started with translates by these maps. The union of all such translates and each such

translate is a is an open set and therefore, the inverse image is the union of all such open

sets which are translates and therefore, it is open and therefore, this is an open map and

this happens in general for a covering space.

So, what I want to say is that and of course, you know a covering space has this property,

the property of being a local homeomorphism. Because the covering space definition is

you give me a point, every point below as a neighbourhood such that the inverse image is

a disjoint union of neighbourhoods each of which is homeomorphic to the point to the

neighbourhood below, that miscible neighbourhood below. So, if you look at it, that it

will tell you that every covering space is in fact, a surjective local homeomorphism. So,

example  every  covering  space  I  should  say  every  covering  map  is  surjective  local

homeomorphism.

So, this is an example and, but of course, the covering map is more just it is not just the

surjective local homeomorphism homeomorphism, but its more than that, but why did I

single  this  out?  Because  of  the  following  fact  namely  you  take  a  surjective  local

homeomorphism then it will be an open map ok.

So, lemma a sujejective local homeomorphism is an open map. So, this is very very easy

to prove you can you can convince yourself of this, and as a result what it tells you is that

every covering map is also an open map and by of course, by open mapping you need a

you mean a map, which snaps open sets to open sets and that is what is happening in

these cases. So, what is happening in these cases it is also true gently. Covering map is



always an open mapping it takes open sets to open sets and the reason is because it is a

surjective local homeomorphism.

So, in particular any covering map is open. So, this is a very simple exercise in topology

we can take we can check it. Now having said this, the next thing that I would like to

worry about is I would like to talk about the converse condition. So, suppose I know that

I have a surjective local homeomorphism which is of course, true for a covering map

what more conditions do I have to put to a surjective local homeomorphism so that it

becomes a covering map ok.

So, the surjective local homeomorphism is a weaker condition than a covering map. So,

my question is can you put some more conditions to this so that you can get back the

covering property the property for covering map. So, this is where the lifting property,

the unique lifting the lifting property of maps comes into the picture. So, I will explain

what that is. 
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So, maybe I can use and draw this line here I remove this. So, let me talk about lifting of

maps. So, the situation is the following you see I have a map f from x to y, which I am

purposely writing it vertically and suppose I have a map from z to y let me call this as h.

So given, let me say that given continuous maps h f from x to y, h from z to y. So, these

are continuous maps; a lifting of h to x to x is a map, h tilde from z to x such that h tilde

followed by f s h. So, this is a lifting of a map. So, there is a h tilde of course, when I say



map I mean of course, continuous map we are in the category of topological spaces So, if

you want I should include here continuous I just put cts.

So, what has happened is that this map h has been lifted to a map h tilde and why do we

call this is a lift? Because this followed by this is this that is this condition. So, we say

that h tilde is a lift of the map h. Now there is a very nice lemma. The lemma says that

you  know  if  you  have  a  surjective  local  homeomorphism,  suppose  this  map  f  is  a

surjective  local  homeomorphism and suppose this  set  z is  say connected  and locally

connected which is slightly weaker than you know arcwise connected is locally arcwise

connected. 

So, in that case there is something very nice that is going to happen, it says that if you

have 2 liftings suppose you have 2 liftings and suppose both liftings coincide one point

of z then they coincide everywhere. So, the moral of the story is, if you have a lifting

with a prescribed value at a point of z, then that is unique. Namely if there are 2 liftings

which have the same value at one point of z then they have to be everywhere equal. So,

this property is called the uniqueness of lifting property and this uniqueness of lifting

property happens whenever f is surjective local homeomorphisms.

So, let me state that we say f has T uniqueness of lifting property, if whenever there are 2

liftings let me call them h 1 tilde, h 2 tilde of h such that h 1 tilde of z naught is equal to

h 2 tilde or z naught, then h 1 tilde is equal to h 2 tilde. So, what I am defining is this

uniqueness of lifting property. So, what is this uniqueness of lifting properties property?

It says that if you have 2 liftings h 1 tilde h 2 tilde, namely 2 maps like this which when

composed by f give h.

And of course again when I say maps I always mean continuous maps, and suppose these

2 are going to coincide one point of z then they are going to coincide everywhere right.

So,  the  nice  thing  is  that  a  surjective  local  homomorphism  is  going  to  have  this

uniqueness of list lifting property all right. So, let me write the down, I will just check

the let me just check the hypothesis maybe if one it spends a little bit more time, some of

the hypothesis may can be weaken, but anyway let us not worry too much about that. So,

let me state this lemma.

A surjective local homomorphism has the uniqueness of lifting property. So, in other

words if f from x to y is a surjective local homeomorphism, then it has the uniqueness of



lifting property namely you give me any map from any other topological space to y of

course, when I say any other topological space I am assuming at least that for example, it

is connected and I am assuming all these things.

So, I mean I may not need all of them to get the conclusion, but for safety I am assuming

all  of these conditions.  So, in particular I am assuming that is connected and locally

connected. So, then any map if you give me a map from z to y which has 2 liftings and if

these liftings are same at one point of z, then they have to be same everywhere . So, this

is in particular true of covering spaces because covering spaces are of course, covering

maps are of course, sujective local homeomorphisms. So, this  is in particular  true of

covering maps.

I will tell you why this is important, it is important for the following reason is.
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So, you see suppose from x tilde to x suppose I had a covering space and suppose I take I

to be the unit interval and I take a map from I to x. You know the image of I is going to

be a path in x all right. So, if I draw a diagram then this is my x and I am going to get a

path this path is going to start at alpha of 0 and its going to end at alpha of 1 right now.

Suppose I am able to find. So, you see. So, this point is alpha of 0 and this point is alpha

of 1 and that is this that is the covering space above and let me draw it a little bit more

space so that I can write like this. So, here is my covering space above suppose for this



point here. Suppose I choose a pre image above after all occurred the covering map is

surjective and you know given any point here I can choose a pre image. Then if I am able

to find a lift alpha tilde of this path alpha it is going to be up.

So, this is my path alpha and I am going to get another path here above alpha tilde. The

only thing is that this point is alpha tilde of 0 that point is going to be you know alpha

tilde of 1 and you know under the projection p alpha tilde of 0 will go to alpha 0 and

alpha tilde 1 is going to go to alpha of 1. And suppose I have lifting like this, and then

this lemma will tell me that the lifting is going to be unique in the sense that if I had

another starting at alpha of 0 then I will get starting at alpha tilde of 0 then that is going

to give me another lift here and both the lifts coincide at the point 0 alpha tilde of 0 they

both coincide here they coincide at the point 0 here both maps. So, what I am trying to

say is that If I draw it you can imagine such a situation namely that you know I have

alpha 1 tilde.
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I have also alpha 2 tilde, I have 2 lifts of this map which of course, means that alpha 1

tilde followed by p is alpha and the same is true of alpha 2 tilde also 2 lifts. And suppose

that alpha 1 tilde and alpha 2 tilde have the same starting point. So, this is alpha 2 tilde of

0 this is the same as. So, let me write that here and this is alpha 2 tilde of 1. So, this map

is alpha 2 tilde this path is alpha 2 tilde.



So, you see the path below is alpha and it has been lifted let us say to 2 paths well alpha

1 tilde and alpha 2 tilde. So, but I have assume that you know this starting point is the

same the initial point for both path is the same of course, you know alpha 1 tilde and

alpha 2 tilde at 1 they should lie above alpha of 1, because of this condition these paths

lie over this path. So, if I follow this path by your projection I should get the path below.

So, its clear that alpha 1 tilde of 1 and alpha 2 tilde of 1 the endpoints are certainly points

laying above the end point below, but that is not the point the point is that this the both

the maps alpha 1 and alpha 2 they agree at the point 0, that is what it means to say that

they start from the same.

Point alpha 1 tilde of 0 is equal to alpha 2 tilde of 0 and what does uniqueness of lifting

property; now say it says that these 2 paths have to be the same. So, the moral of the

story is if you have a covering space like situation you take a path below, and for this

path you take the initial point and choose a point above. Then there is a unique if at all

there are paths above that lift of this path there can be only 1. So, you see a path below is

going to give you a unique path above, if you fix the initial point above. So, you see now

you can guess that in some way the fundamental group is going to be involved, because

after all  the fundamental group is connected with closed paths and taking homotopic

classes.

So, this is how it intersects the picture. So, then you know alpha 1 tilde is equal to alpha

2 tilde. So, if given a path below if at all you can lift it, you can lift it only to one path

provided you fix the initial point above. At this point matters you could have fixed some

other initial point and then you were to get some other path, but once you fix the initial

point above lying above the initial point below then there is only one path you can get.

So, we say that you know these uniqueness of path lifting property is true for covering

spaces.

Now, there  is  another  question;  look  at  this  definition  on  the  uniqueness  of  lifting

property, mind is the a uniqueness of lifting properties for any maps not just paths, I

specialized to the case of a path, but its true it is supposed to be defined for any maps all

right.  You see we still  do not know whether given a map you can actually lift  it  for

example, what this condition says is if you get 2 lifts which agree at one point then they

are the same, but it did not it does not guarantee you the existence of a lifting. 



So, where do you get that from? So, it happens for covering spaces. So, in the case of

covering spaces you have the existence of a lifting and then because it is also a local

homeomorphism the  lifting  is  unique.  So,  we say that  the  covering  spaces  have  the

covering maps they have the unique path lifting property. So, to explain that let me draw

a diagram just to. So, let me say the following covering spaces do have the unique path

lifting.

So, what is this unique path lifting property? It unique path lifting property is given path

below you can get a unique path above provided the initial  point of the initial  point

above has been fixed. So, it gives you existence of a lifting and of course, uniqueness of

a lifting follows from this lemma. So, if I draw a diagram. So, I have a diagram like this.

So, I have I have a covering map.

(Refer Slide Time: 37:07)

So, of course, I should actually write.
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Covering maps let me do that of course, you know a when I say it is a property of a map

of course, the source and the target spaces are also involved. So, if I say covering space

of course, it also involves a covering map and if I say covering map also it involves the

source and target spaces. So, sometimes by abuse of language one interchange is this, but

anyway.

So,  the  point  is  you  see  you  take  covering  maps,  they  are  subjective  local

homeomorphisms which are of course, open maps and subjective local homeomorphisms

have this uniqueness of path lifting property of course, uniqueness of lifting provided

you know the lifting at one point is prescribed. I am not just saying that case take any 2

liftings they are the same that is not correct 2 liftings which agree at least 1 point is what

I want. So, here also I am not just saying you take a path below there is a unique path

above know.

A point a path below will give you a unique path above provided you fix a starting point

which has to be a point you fix lying above this point below. So, you have uniqueness of

lifting property and then you have the path lifting property. See a map can have any map

can have a path lifting property which you can define in a very simple way a path below

can be lifted to a path above. So, I can define it for any map; any map can be said to have

a path lifting property if given a path below you can lift it to a path above so well you.



So,  what  I  was trying  to  say is  if  you take  a  covering  map you are going to  get  a

uniqueness of lifting property because of this series self-implications and then I am go I

have also told you I am also telling you here that there is a unique path lifting property

which means that you also have the existence of lifting paths. And these 2 put together

let me put it like this; these 2 put together give you the unique path lifting properly. So,

this is the property that ensures that you know given paths below you can always lift it to

a path above and that path is unique. Of course, whenever I say unique path above the

starting point has to be fixed and the covering maps.

They have this path lifting property how this comes about is by what is called as the

covering homotopy theorem. So, this is the. So, I will write it here covering homotopy

theorem; it is the basic tool to link these ideas and the beautiful thing is I you know I

started with this question you see a covering map is a surjective local homeomorphism

which has a uniqueness of lifting property and I asked you what more should you add to

a surjective local homeomorphism to make it a covering space the answer is as follows.

You  take  a  surjective  local  homeomorphism  which  has  the  path  lifting  property  of

course, if it has a path lifting property it has to be a unique path lifting property because

the surjective local homeomorphism is going to imply uniqueness of lifting. 

So, you add this property of path lifting to surjective local homeomorphism and what

you get is a covering map. So, it is a very beautifully result. So, I will just signify that by

you  know  putting  a  map  like  this  putting  an  arrow  like  this.  A  surjective  local

homeomorphism, which has if the path lifting property has to be covering map; so, this

will tell you in a certain way how covering maps behave. So, you can think of a covering

map also as a surjective local homeomorphism with the path lifting property.

Of course uniqueness of the path lifting uniqueness will come because it is already a

local surjective homeomorphism. So, well now what remains is somehow to explain the

covering homotopy theorem. So, let me do that. So, let me state the covering homotopy

theorem and indicate to you how the inverse image of a point under covering map is

bijective to the fundamental group of the base. So, I need to explain that. So, I will do

that next. So, let me write this down covering homotopic theorem.
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So, my situation is the following. So, this is as you can see this is this is a theorem that

describes  the  property  of  covering  maps  and  what  it  tells  you  is  that  you  can  lift

homotopics. So, let me write down the statement let p from x tilde to x be a covering

space, then it be a covering space let. So, I will first draw a diagram. So, that you know

you can visualize what is happening. So, I have I have x here, I have p, I have I have x

tilde and roughly what I have is. So, let me think, think of the following situation let us

assume that you know there are there is a path here, it starts see a path alpha and suppose

there is another path beta and let us assume that alpha and beta are homotopic fixed end

point homotopic. So, you know. So, there is a family of paths like this. So, this means

that you know. 

So, I have a homotopy which is a map F from I cross I to x such that F of. So, this I is

treated as the let me treat this is a time parameter, which means that you know F of x

comma t is written as F sub t of x. So, and I want f 0 of x to be alpha, F 1 of x to be beta

and whatever I get in in the intermediate paths they will be F sub ts all right and of

course, you know F all these paths start at the same point and they end at the same point

and they all ended the same terminal point. So, I will put that condition as F t of 0 is let

me say x naught and F t of 1 the terminal point is always is it say x 1.

So, I have a I have 2 paths here alpha and beta on x which are homotopic. Now suppose I

fix a point above x naught.
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So, I fix a point let me call this as x naught tilde that is a point above and suppose I have

a path here which lies above over alpha. So, I have a path alpha tilde then the conclusion

of the theorem is that I can lift the whole homotopy to a homotopy of paths above. So, I

will write that down and given. So, let me write this here given a homotopy of paths

from alpha to beta on x which is given by this data and given a lifting of the path alpha

of to alpha tilde. So, let me rub the rest on this board and given a lift a lifting alpha tilde

of alpha to x tilde.
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So, this is the picture this alpha tilde followed by p goes to alpha then we can find a

homotopy G I cross I to x tilde which is a lifting of F which is a lifting of F with G 0 is

equal to alpha tilde where of course, G sub T of x is G of x comma t.

So, when you put t equal to 0 you get G 0 of x and G 0 at of x lies above F 0 of x, which

is alpha and G 0 of x is G 0 is equal to alpha tilde . So, this is. So, what I have written is

actually its special of the covering homotopy theorem. So, this is not the full covering

homeopathy theorem and the full covering homotopy theorem is more general, it is not

just about lifting of maps, it is not just about lifting of homotopys of paths, it is about

lifting of homotopys of maps and you will have to replace this I here by z which is a

compact connected space. So, let me write that down. So, I wrote this particular case

because this is this is a special case of the covering homotopy theorem. So, let me write

this more generally any homotopy. 

So, let me write this as F from Z cross I to x with Z compact and of course, you know 1

has to assume z is connected and locally connected I think in this case connected locally

connected . So, any homotopy F can be lifted to a homotopy F. So, G. So, F is going to

be  like  this,  I  do  it  able  to  lift  it  to  homotopy G this  is  the  homotopy  can  be  any

homotopic can be lifted to a homotopy, but of course, you need to you need to prescribe

the value at a point. So, I should say with G 0 lying over F 0 . 

So, G 0 is its just g of x comma 0 and F 0 is F of x comma 0. So, you see of course, when

I say it can be lifted to homotopy G, with G 0 lying over F 0 this is this is understood

because g followed by p is F. So, its G T will lie over F T for each T in I right so, but the

point is of course, as I told you the this being a covering map this homotopy is a lift of F

and. In fact, you can choose G in a very special way the theorem says that the G can be

chosen in such a way that you know whenever F is stationary, that is F does not depend

on time for a particular value of z, you can choose g also not to depend on time for that

particular value of z.

So, let me write that down in particular in fact we can choose G, G to be stationary

whenever F is; what this means is the following. So, let me write that down here that is.
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If is that is a point of z with F of Z comma t constant in a sub interval of I, then G of z

comma t s also constant for that of course, when I say if Z is a small z belongs to capital

z with the f of that comma t constant in a sub interval of time which means t should

belong to that sub interval for all values of t for this value of z and for all values of T in

that sub interval.  Then the lift  G we also have the same property namely g of the z

comma t will also be constant for that sub interval. So, F of z comma t being stationary

for a particular value of z means that for that particular value of z you vary time it does

not change and the same property will be true of G also.

So, you can see that this is the general segment of the covering amount of a theorem, this

is a special  case that you get when you put z equal to I.  And now this has beautiful

consequences right which I will try to explain.


