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Welcome to Lecture 62 on Essentials of Topology.

In this lecture, we will also continue the study of the concept of separation ax-

ioms. Begin with what we have seen in the previous lecture. We have already

seen the concept of T0-spaces as well as T1-spaces. Let us have a look at T1-

spaces. What have we seen in the case of T1-spaces? If we take a topological

space (X, T ), let us take two distinct elements x, y ∈ X. Our motive was to

find two open sets; one contains x but not y, and another contains y but not x.

If we take these open sets, something like G and H, is this G intersection H an

empty set, or are G and H disjoint? We have not considered this in the case of

T1-spaces, but we are going to consider it now. So, begin with the definition of

T2-spaces or Hausdorff spaces, which we have already seen during the study of

the notion of compactness. A topological space (X, T ) is Hausdorff if for every

pair of distinct elements x, y ∈ X, there exist two open sets G and H such

that x ∈ G, y ∈ H, and G ∩H = ∅. From the definition, it is clear that every

T2-space is a T1-space, or every Hausdorff space is a T1-space. The question

is, what about its converse? We can see that the converse is not necessarily

true.

Let us take some of the examples.

• Discrete topological spaces are Hausdorff.

• R with standard topology is Hausdorff.

• R with cofinite topology is not Hausdorff.

• Sierpinski space is not Hausdorff.

Note that (R, Tcf ) is a T1-space but not a T2-space, that is a T1-space need not

necessarily be a T2-space. Further, let us take one more example of a Hausdorff

space, i.e, metrizable space. Let (X, Td) be a metrizable space, where d is the

metric. Then for x, y ∈ X, where x ̸= y, d(x, y) > 0. Why not let us take



d(x, y) = r. Also, let us take G = B(x, r/3) and H = B(y, r/3). Then x ∈ G,

y ∈ H, and G ∩H = ∅.

Moving ahead, we have seen one result regarding Hausdorff spaces. The re-

sult was: if the topological space (X, T ) is Hausdorff, then every single point

subset of X is closed. This is similar to the result in T1-spaces. In the case of

T1-spaces, we have justified that the converse of this result is also true. But

the question is, what about in the case of Hausdorff spaces? The answer is

that the converse of this result is not necessarily true. For example, if we are

taking (R, Tcf ), for all x ∈ R, {x} is closed. Why? Because this is a finite set.

But we have already seen that this space is not a Hausdorff space.

Moving ahead, let us see some more results for T2-spaces similar to T1-spaces.

The continuous image of a Hausdorff space is not necessarily Hausdorff. Why?

The answer is, let us take f : (R, Te) → (R, Tcf ) such that f(x) = x, x ∈ R. It
is to be noted that this function is a continuous function. Also, we have seen

that (R, Te) is Hausdorff, while (R, Tcf ) is not a Hausdorff space. Thus, the

continuous image of a Hausdorff space is not necessarily Hausdorff. Still, we

can justify that being Hausdorff is a topological property. How do you justify

it? For the justification, let us take a homeomorphism f : (X, T ) → (Y, T ′)

and (X, T ) as a Hausdorff space. Now, let y1, y2 ∈ Y such that y1 ̸= y2. Note

that f is a homeomorphism. So, we can use the concept of a surjective func-

tion. Thus, by using the surjectivity, we can say that there exist two elements

x1, x2 ∈ X, x1 ̸= x2 such that f(x1) = y1 and f(x2) = y2. So, we can conclude

from here that there exist two open sets, that is, G,H ∈ T , and this is possible

because (X, T ) is Hausdorff such that x1 ∈ G, x2 ∈ H and G ∩ H = ∅. If

x1 ∈ G, we can conclude that f(x1) ∈ f(G). Also, f(x2) ∈ f(H), or we can

say that y1 ∈ f(G) and y2 ∈ f(H). Now, being homeomorphism, f is open,

too. Therefore, what about f(G) and f(H)? These will be members of T ′;

that is, these are T ′-open sets. The question is, whether these are disjoint,

too. The answer is yes because f being injective, f(G ∩ H) = f(G) ∩ f(H),

and therefore f(G) ∩ f(H) = ∅.

Moving ahead, let us see another result: a subspace of a Hausdorff space

is Hausdorff. Similar result, we have stated in the case of T1-spaces, but we

have not proved there. Let us see proof here. In order to justify it, let us take

a Hausdorff topological space (X, T ) and a subset Y ⊆ X. We have to justify
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that (Y, TY ) is Hausdorff. In order to justify that (Y, TY ) is Hausdorff, let us

take two distinct elements y1, y2 ∈ Y . Because Y is a subset of X, y1, y2 ∈ X.

As (X, T ) is Hausdorff, there exist T -open sets G and H such that y1 ∈ G,

y2 ∈ H and G∩H = ∅. From here, we can write that y1 ∈ Y ∩G, y2 ∈ Y ∩H,

and Y ∩ (G ∩ H) = ∅. If we are taking Y ∩ G = G′, and Y ∩ H = H ′, then

y1 ∈ G′, y2 ∈ H ′, and Y ∩ (G ∩H) = G′ ∩H ′ = ∅. It is to be noted that G′

and H ′ are TY -open. Therefore, (Y, T ) is a Hausdorff space.

Moving ahead, let us see the result related to the product topology. Simi-

lar result we have also seen in the case of T1-spaces, but we have not proved

there. The result states that if we are taking two Hausdorff spaces (X1, T1)

and (X2, T2), the product space, that is, X1×X2 with product topology, is also

Hausdorff. In order to prove it, let us take two distinct elements x, y ∈ X1×X2.

So, what are we taking? We are taking x = (x1, x2) ∈ X1 ×X2. Also, we are

taking another element y = (y1, y2) ∈ X1 ×X2. Note that x ̸= y. It is to be

noted that if x ̸= y, it means that either x1 ̸= y1 or x2 ̸= y2. So, we can take

any of the cases. We are assuming that x1 ̸= y1. Now, it is to be noted that

x1, y1 ∈ X1 and (X1, T1) is Hausdorff. So, we can say that there are T1-open

sets; let us take G and H such that x1 ∈ G, y1 ∈ H, and G1 ∩H1 = ∅. Now,
let us use the notion of projection maps. Note that π−1

1 (G) = G ×X2. Also,

π−1
1 (H) = H ×X2? We also know that these are T -open sets. Why? Because

projection maps are continuous. Thus, what we can conclude from here is that

x = (x1, x2) ∈ G × X2, y = (y1, y2) ∈ H × X2. The question is: what about

the intersection, that is, (G × X2) ∩ (H × X2). Note that it will always be

an empty set. Why? Because G and H are disjoint sets. Thus, what have

we justified? We have justified that for two distinct elements of X1 × X2,

there exist two disjoint open sets: G × X2 and H × X2 such that G × X2 is

containing x and H ×X2 is containing y. Hence, the product space is Haus-

dorff. This result can be generalized for arbitrary products of Hausdorff spaces.

Moving ahead, let us see an interesting characterization of Hausdorff spaces.

The characterization is stated here: A topological space (X, T ) is Hausdorff

if and only if the diagonal ∆ = {(x, x) : x ∈ X} is a closed subset of X ×X.

Obviously, X ×X is endowed with the product topology. In order to justify

it, let us assume that the space (X, T ) is Hausdorff. If we want to prove that

the diagonal is a closed subset of X ×X, the best way is, try to show that its

complement (X × X) − ∆ is an open subset of X × X. Now, if we want to
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justify that (X ×X) −∆ is open, let us show that this is a neighborhood of

each of its elements. So, why not let us take an element of this set, that is, let

us take (x, y) ∈ (X ×X)−∆. From here, it is clear that (x, y) /∈ ∆, therefore

x ̸= y. Now, if x ̸= y, what are x and y? These are elements of X. What

is (X, T )? This space is Hausdorff. So, we can conclude that there exist two

open sets; let us take them, G and H, such that x ∈ G, y ∈ H, and G∩H = ∅,
or that (x, y) ∈ G × H and (G × H) ∩ ∆ = ∅. Why? Because G and H are

disjoint. Thus, from here, we can conclude that G×H ⊆ (X ×X)−∆. Also,

(x, y) ∈ G×H. Thus, it is clear that (X×X)−∆ is a neighborhood of (x, y),

that is, it is the neighborhood of each of its elements. Therefore, (X×X)−∆

is an open set. Hence ∆ is a closed set.

Let us prove the converse of this result. For this, let us assume that the

diagonal ∆ = {(x, x) : x ∈ X} is a closed subset of X ×X. In order to prove

that (X, T ) is Hausdorff, let us take two distinct elements x, y ∈ X. Then

(x, y) /∈ ∆, or that (x, y) ∈ (X × X) − ∆. But at the same time, it is to

be noted that ∆ is a closed set. Therefore, (X × X) − ∆ is an open set. If

(X ×X) −∆ is an open set, there exists G × H ⊆ X ×X, open in product

space, such that (x, y) ∈ G ×H ⊆ (X ×X) −∆. From here, we can deduce

that x ∈ G and y ∈ H. It is to be noted that G,H ∈ T . So, we have shown

the existence of open sets: one contains x, and the other contains y. The

question is only to justify whether G ∩H = ∅. This is followed from the fact

that (G×H) ∩∆ = ∅. Therefore, (X, T ) is a Hausdorff space.

Moving ahead, let us see another result. This result can be simply derived

from the previous one. The result is stated as: Let f : (X, T ) → (Y, T ′) be

a continuous function, where (Y, T ′) is a Hausdorff space. Then, the graph

of f is a closed subset of X × Y (endowed with the product topology). Note

that for a function f : X → Y , the graph of f (denoted by g(f)) is given by

g(f) = {(x, f(x)) : x ∈ X}. Our motive is to justify that g(f) is a closed

set. In order to justify that this set is closed, let us use the continuity of

f . Now, let us construct another function g : X × Y → Y × Y such that

g((x, y)) = (f(x), y), for all (x, y) ∈ X × Y . So, what this g is? We can say

that this is nothing but the function f along with the identity function, i.e., f

is sending x to f(x), and we are taking the identity function on Y . Because f

is continuous, we can conclude that g is also continuous. If this is continuous,

let us use the diagonal ∆ = {(y, y); y ∈ Y }, which is a subset of Y × Y . Now,
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g−1(∆) = {(x, y) ∈ X × Y : g((x, y)) ∈ ∆}, or g−1(∆) = {(x, y) ∈ X × Y :

(f(x), y) ∈ ∆} = {(x, y) ∈ X × Y : f(x) = y} = {(x, f(x)) : x ∈ X} = g(f).

Now, the important thing is that g is a continuous function, and what is this

diagonal? This is a closed subset of Y × Y . Therefore, its inverse image is a

closed subset of X × Y . Because g−1(∆) = g(f), therefore, g(f) is a closed

subset of X × Y .

These are the references.

That’s all from this lecture. Thank you.
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