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Welcome to Lecture 53 on Essentials of Topology.

In this lecture, we will discuss the concept of compactness of subsets of R
along with subsets of Rn. Begin with what we have already seen if we are tak-

ing Euclidean topology on the set of real numbers, and if we are taking open

intervals or semi-open intervals, we have seen a family of such intervals. These

intervals are not compact. We have seen that the closed and bounded interval

[a, b] is compact. We have not yet seen proof of it. So, here, we will show that

[a, b] is compact. What specifically will we show? First, we will show that the

closed interval [0, 1] is compact. As we know, two closed intervals are home-

omorphic. Therefore, [0, 1] is homeomorphic to [a, b], and if [0, 1] is compact,

then [a, b] will be compact. Thus, we will show that [0, 1] is a compact subset

of R, where R is endowed with the standard topology or Euclidean topology.

Here, our proof will be based on the concept of connectedness. Let us see the

proof of this result.

As we have to show that [0, 1] is a compact subset of R. Let us begin with an

open cover of [0, 1]. So, what are we taking? Let us take this C = {Gi : i ∈ I}
as an open cover of [0, 1]. If this is an open cover of [0, 1], what does it mean?

It means that [0, 1] ⊆ ∪{Gi : i ∈ I}. Now, if we are taking any element of

this closed interval, let us take x ∈ [0, 1]. So, what will happen? There exists

some Gi in this cover, that is, C, such that x ∈ Gi, but it is to be noted what

this Gi is. This is open, and if this is open, what will happen? There exists

an interval; let us take that interval as Ix. It is to be noted that this interval

is open in this subspace, that is, closed interval [0, 1], such that x ∈ Ix ⊆ Gi.

Having this information with us, let us construct a subset of [0, 1]. So, what

are we going to construct? We are going to construct a subset S ⊆ [0, 1], and

this subset will help us to use the concept of connectedness. So, what this

subset S is? Actually, S is as under:

S = {z ∈ [0, 1] : [0, z] can be covered by a finite number of sets Ix}.



It means that if z ∈ S, [0, z] ⊆ Ix1∪Ix2∪...∪Ixk
, for some elements x1, x2, ..., xk.

It is to be noted that S ̸= ∅. Why? Because at least 0 will always be an

element of this S. Note that this 0 belongs to this singleton set {0}, which
is nothing but [0, 0]. So, S cannot be empty. Now, let us take an element

x ∈ S and also take y ∈ Ix. Let us see what will happen. It is to be noted

that this y is an element of Ix. What is Ix? This is an interval containing x.

It means that x and y both are members of Ix. Also, we are assuming that

x ≤ y. Because x and y are members of Ix, we can conclude that [x, y] ⊆ Ix.

As we are taking x ∈ S and if x ∈ S, it means that [0, x] ⊆ Ix1 ∪ Ix2 ∪ ...∪ Ixk
,

for some elements x1, x2, ..., xk. Now, if we are looking for [0, y], what we can

write from here is that this [0, y] ⊆ Ix1 ∪ Ix2 ∪ ...∪ Ixk
∪ Ix. It means that [0, y]

is covered by a finite number of sets of the form, that is, Ixi
, and if this is the

case, we can conclude that y ∈ S. That is, if we are taking x ∈ S, then this

Ix ⊆ S. From here, we can conclude that Ix ∩ S = Ix. The question is, if x is

not an element of S, can we deduce that Ix ∩ S will always be an empty set?

It is a simple one, and just think about it.

If these are the cases, what can we do? Let us write S = {Ix : x ∈ S}, and we

can also write the complement of this set S as [0, 1]−S = {Ix : x ̸∈ S}. Thus,
S is clopen in [0, 1]. But it is to be noted here, what S is? S is non-empty.

But we know that intervals are always connected, so [0, 1] is connected. If this

interval is connected, and S is a clopen subset of [0, 1], which is non-empty,

what can we conclude? We can conclude that S = [0, 1]. Now, if S = [0, 1], we

can say that [0, 1] is contained in the sets or union of sets of this form, that is,

[0, 1] ⊆ Ix1∪Ix2∪ ...∪Ixn . But as we have seen, these Ixi
are contained in some

Gi, so what we can write from here is that this [0, 1] ⊆ Gi1 ∪ Gi2 ∪ ... ∪ Gin .

So, what have we obtained? We obtained C ′ = {Gi1 , Gi2 , ..., Gin}, this is a

subcover of C. Thus, what have we shown? We have shown that if we are

beginning with an arbitrary open cover of this closed interval [0, 1], that open

cover has a finite subcover, and hence this set, that is, the closed interval [0, 1],

is a compact subset of R.

Moving ahead, and now what can we justify? We can justify that this closed

interval [a, b] is a compact subset of R, where R is endowed with the stan-

dard topology. This is because of the reason which we have already dis-

cussed that [0, 1] is homeomorphic to [a, b]. By using the compactness of [a, b],
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what can we deduce? We can deduce that if we are taking closed intervals

[a1, b1], [a2, b2], ..., [an, bn], that is, we are taking a finite number of closed and

bounded intervals in R, then their product, that is, [a1, b1]× ....× [an, bn], this

is a compact subset of Rn. How is this possible? What have we shown? We

have shown that the intervals [a1, b1], [a2, b2], ..., [an, bn] are compact. What

have we studied? We have studied that the finite product of compact subsets

is compact. Therefore, [a1, b1]× ....× [an, bn] is compact.

Moving ahead, let us discuss the compactness of an arbitrary subset of R;
that is, if we are taking a subset A ⊆ R, what will be the nature of it? So,

what is the statement that is given here that every compact subset of R is

bounded? In order to justify it, let us take A ⊆ R. This is given that this A is

compact. What we have to justify. We have to show that this A is bounded.

We will prove the result by contradiction. For this, let us assume that A is

unbounded. Now, use the compactness of A, and for using it, let us take a

collection, that is, C = {(−n, n) : n ∈ N}. This is an open cover of A. If this is

an open cover and A is compact, what can we write by using the compactness

of A? We can write A ⊆ (−n1, n1)∪ (−n2, n2)∪ ...∪ (−nk, nk). But it is to be

noted that we have taken A as an unbounded set. So, there exists an m ∈ A,

and what is this m? m is greater than the maximum of these n1, n2, .., nk.

Meaning is, the cover C has no finite subcover because m cannot be an ele-

ment of (−n1, n2)∪ (−n2, n2)∪ ...∪ (−nk, nk). So, this is a contradiction, and

therefore, this assumption is wrong, and hence, every compact subset of R is

bounded.

Moving ahead, let us see the proof of the well-known Heine-Borel theorem,

which states that every closed and bounded subset of R is compact. The proof

is simple. For it, let us take A ⊆ R, given that it is closed and bounded. Now,

if A is bounded, what can we conclude? We can conclude that this A will

be contained in some closed interval [a, b]. Also, if A ⊆ [a, b]; again, just see

this is given that this A is closed and we have already studied that [a, b] is

compact. So, what is here? This A will be compact. Why? We have already

studied the fact that a closed or a closed subspace of a compact topological

space is compact. Thus, every closed and bounded subset of R is compact.

Moving ahead, let us see the converse of the Heine-Borel theorem, which can

also be proved easily. What is the converse of the Heine-Borel theorem? That
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is, every compact subset of R is closed and bounded. In order to prove it,

let A ⊆ R be compact. We have to show that this is closed and bounded.

One thing is to be noted here: R is with Euclidean topology. We have al-

ready studied that this space is Hausdorff. Note that if this is Hausdorff,

what relationship do we have with us now? This R is Hausdorff, and this A is

compact. So, finally, what do we have with us? We have a compact subspace

of a Hausdorff space. Can we conclude from here that this A will always be

closed? The answer is yes, because we have already studied that a compact

subset of a Hausdorff space is closed. Therefore, A is closed. What we have to

show now is that A is bounded. Note that we have already proved that every

compact subset of R is bounded. Therefore, this A is bounded, too. Hence,

every compact subset of R is closed as well as bounded.

Now, let us see the compactness of a subset A ⊆ Rn. So, let us take Rn

with standard topology, that is, the Euclidean topology, along with the stan-

dard metric, that is, Euclidean metric. Then, A ⊆ Rn is compact if and

only if it is closed and bounded. In order to prove this theorem, we require

two results: the first one is that we have already seen that the real line with

Euclidean topology, this is Hausdorff, and it can be shown that Rn with the

Euclidean topology, is also Hausdorff. Secondly, if we are having a metric

space (X, d), let us take a subset A ⊆ X; the question is when we say that

this A is bounded. The answer is, we say that A is bounded if there exists

some real number m > 0 such that d(x, y) ≤ m, for all x, y ∈ A. With these

two results, let us try to prove this theorem.

Now, what we are going to do is first assume that A is compact, and now

we have to show that this is closed and bounded. What we can do is just

see. What this A is? A is a subset of Rn. We know that Rn is Haus-

dorff and what A is? Note that A is compact. So, using the logic which

we have used when we proved the converse of Heine Borel theorem, we can

conclude that A is closed. Now, what do we have to show? We have to

show that this A is bounded. In order to justify it, let us take an open cover

C = {B(0, n) : n ∈ N} of A. If this is an open cover of A, use the compactness

of A. Because A is compact, we can conclude that C will have a finite subcover;

that is, A ⊆ B(0, n1) ∪ B(0, n2) ∪ ... ∪ B(0, nk). Now, let us see the nature

of open balls here, these are centered at the origin with different radii, and

that radius is a natural number. So, we can conclude from here that if we are
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taking a natural number m, which is the maximum of these n1, n2, ..., nk, then

A ⊆ B(0,m), from here we can conclude that if we are taking any x, y ∈ A,

what will be the d(x, y) < 2m. Thus, A is bounded.

Moving ahead, let us see the converse of this theorem. In order to prove the

converse, what are we assuming? We are assuming that this A is closed as well

as bounded, and our motive is to prove that it is compact. In order to prove it,

let us take an element. So, what are we taking? We are taking an element in

A. Let us take this (a1, a2, ..., an) ∈ A. It is to be noted that this A is bounded.

So, if we are using the boundedness of A, what does it mean? It means that

for all x, y ∈ A there exists a real number m > 0 such that d(x, y) < m.

Now, we are constructing a set P , which is the Cartesian product of closed

intervals, that is P = [a1−m, a1+m]× [a2−m, a2+m]× ...× [an−m, an+m].

Now, if we want to visualize the Cartesian product of two closed intervals in

R2, let us see how it will look like. For example, this is our A, and we are

taking an element (a1, a2) here. What we can do is that this will be included

in this rectangle, that is, this is a1 −m, and this is a1 +m. Similarly, this is

nothing but a2 −m, this is a2 +m. So, what will happen from here? We can

conclude that A will always be contained in P , and if this A ⊆ P , what P

is? P is nothing but the Cartesian product of closed intervals and what the

closed intervals are? These are compact. So, what exactly is P? P is nothing

but the product of compact spaces, and we know that the finite product of

compact topological spaces is compact. Therefore, this P is compact. Now,

what we have with us. We have this A, which is a subset of P . Note that

this is given that A is closed, and we have shown that this P is compact.

Now, we use the result, which is well known to us, that a closed subspace

of a compact topological space is compact. Therefore, this A is compact.

This is the proof of the converse part of this theorem. Hence, we have finally

shown that a subset A of Rn is compact if and only if it is closed and bounded.

These are the references.

That’s all from this lecture. Thank you.
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