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Welcome to Lecture 31 on Essentials of Topology.

In this lecture too, we will continue the study of continuous functions. In the

previous lectures, we have seen the construction of some continuous functions,

such as the constant function, inclusion function, and restricted function. In

this lecture, we will also study the construction of some continuous functions.

In the previous lecture, we have already seen that the projection maps π1 and

π2 from product space, that is, X1 × X2 with the product topology to topo-

logical spaces (X1, T1) and (X2, T2) are continuous.

A natural question is, if we are having a topological space, let us take (A, T ′),

and we are having two topological spaces (X1, T1) and (X2, T2). If we are

having a continuous function f1 : A → X1 and another continuous function

f2 : A → X2, can we construct a continuous function from (A, T ′) to the

product space? The answer is yes, and we can do it. Then, the question will

be, how will this continuous function f depend on functions f1 and f2? The

answer is given in the form of this theorem. The statement is: Let f1 : A → X1

and f2 : A → X2 be functions. Further, let f : A → X1 × X2 be a function

such that f(a) = (f1(a), f2(a)), a ∈ A. Then f is continuous iff f1 and f2 are

continuous.

Now, begin with let us take this A is equipped with a topology T ′, X1 is

with topology T1, and X2 is with topology T2. Also, let us take the product

topology on X1 × X2 be denoted by T . Now, assume that this f is contin-

uous. Our motive is to prove that f1 and f2 are continuous. We already

have a continuous function f : A → X1 × X2. Also, we have projection

maps π1 : X1 × X2 → X1 and π2 : X1 × X2 → X2. Now, for a ∈ A,

(π1 ◦ f)(a) = π1(f(a)) = π1(f1(a), f2(a)) = f1(a). Thus π1 ◦ f = f1. Simi-

larly, π2 ◦ f = f2. Thus f1 and f2 are compositions of projection maps along

with a continuous function f . But note that the projection maps are already

continuous, and it is also given to us that f is continuous. Therefore, we can



conclude that f1 and f2 are continuous functions.

Let us see the converse part of this result. Assume that f1 and f2 are contin-

uous. Our motive is to prove that f is continuous. In order to prove that this

f is continuous, let us use the characterization of continuity in terms of basis,

that is if we are taking some basis element for the product topology and prove

that its inverse image is open, that is, T ′-open, then this function f is a con-

tinuous function. For product topology, we already know that a basis element

will be of the form G1 ×G2, where G1 ∈ T1 and G2 ∈ T2. Now, if we are com-

puting f−1(G1×G2), what exactly will it be? We can see that this is precisely

f−1
1 (G1)∩f−1

2 (G2). It is a set-theoretic concept that can be justified easily. Let

us see it; for example, if a ∈ f−1(G1×G2), it means that f(a) ∈ G1×G2. But

note that f(a) = (f1(a), f2(a)) ∈ G1 × G2. From here, we can conclude that

f1(a) ∈ G1 and this f2(a) ∈ G2, or from here, we can say that a ∈ f−1
1 (G1)

and also a ∈ f−1
2 (G2), or a ∈ f−1

1 (G1) ∩ f−1
2 (G2). Thus, f−1(G1 × G2) ⊆

f−1
1 (G1)∩ f−1

2 (G2). Similarly, f−1
1 (G1)∩ f−1

2 (G2) ⊆ f−1(G1 ×G2). Therefore,

we can conclude that f−1(G1×G2) = f−1
1 (G1)∩f−1

2 (G2). Now, this is already

given to us that f1 and f2 are continuous functions. Note that what these

functions are? f1 is a function from (A, T ′) to (X1, T1), and what about f2?

f2 is a function from (A, T ′) to (X2, T2). Now, if we are taking any G1 ∈ T1,

what about f−1
1 (G1)? Note that f−1

1 (G1) is a member of T ′. Similarly, if we

are taking any G2 ∈ T2, what about this f−1
2 (G2), that is also a member of

T ′. Thus, what we have? f−1
1 (G1) ∈ T ′, and f−1

2 (G2) ∈ T ′, where G1 ∈ T1

and G2 ∈ T2, or that, this f−1
1 (G1) ∩ f−1

2 (G2) ∈ T ′, that is the inverse im-

age of this G1×G2 under f is a T ′-open set. Hence, f is a continuous function.

Moving ahead, let us see the construction of some real-valued continuous func-

tions. If f, g : X → R are continuous functions. Then f + g, f − g, f.g and

f/g, (g(x) ̸= 0,∀x ∈ X) are continuous. We know that the function f + g is

defined as (f + g)(x) = f(x) + g(x). Also, (f − g)(x) = f(x) − g(x). Sim-

ilarly, (f.g)(x) = f(x).g(x), and (f/g)(x) = f(x)/g(x), provided g(x) is not

equal to zero, for all x ∈ X. If we want to justify the continuity of these

functions, let us take, for example, the addition of the functions. We have

two functions f, g : X → R with us. Now, using our previous result, what

can we conclude that we can construct a continuous function h : X → R× R
such that h(x) = (f(x), g(x)), x ∈ X. Now, we can define another function

+ : R × R → R, which sends (f(x), g(x)) to f(x) + g(x). Thus, what have
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we seen? We have seen that this f + g is nothing but a composition of this

addition function along with a new function that we have constructed, that is,

h. Note from calculus that + : R × R → R is a continuous function, and by

using our construction, that is, construction of h, h itself is a continuous func-

tion. Therefore, f + g is continuous. Similarly, one can discuss the continuity

of f − g, f.g and f/g.

Moving to the next concept, this is known as Pasting Lemma, and provides

an interesting way to construct a continuous function by using two given con-

tinuous functions with some conditions. The statement of this lemma is given

here: Let (X, T ) and (Y, T ′) be two topological spaces and X = A∪B, where

A and B are closed sets in X. Further, let f : A → Y and g : B → Y be

continuous functions; and f(x) = g(x), for all x ∈ A∩B. Then the functions

f and g combine to give a continuous function h : X → Y defined as under:

h(x) =

f(x), if x ∈ A

g(x), if x ∈ B.

Before proving this lemma, let us see an example. Let f : (−∞, 0] → R such

that f(x) = −x, for all x ∈ (−∞, 0] and g : [0,∞) → R such that g(x) = x, for

all x ∈ [0,∞). Now, let A = (−∞, 0] and B = [0,∞). It is to be noted here

that we have assumed that R is equipped with Euclidean topology, and the

topology on A is a relative topology with respect to Euclidean topology and

the same concepts with B. Then the required conditions for Pasting Lemma

are satisfied. Let us see one by one. It is clear from the definition of A as well

as B, that A ∪ B = R, A and B are closed sets. Note that both f and g are

continuous. Also, A∩B = {0}, and f(0) = g(0). Now, by Pasting lemma, we

can construct a function h : R → R such that

h(x) =

−x, if x ∈ (−∞, 0]

x, if x ∈ [0,∞]

is continuous. In the assumptions, one thing is clear: first will always be re-

quired because, with the help of domains of f and g, we are defining a new

function h, whose domain is X. Also, the continuity of f and g will be required

to justify the continuity of h. The question is, what are the requirements for

closedness of A and B, and equality of f(x) and g(x) at A ∩B?

Let us see through these examples. In the first example, we are taking a
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function f : (−∞, 0] → R such that f(x) = x − 2, for all x ∈ (−∞, 0] and

g : [0,∞) → R such that g(x) = x + 2, for all x ∈ [0,∞). Note that here

A = (−∞, 0], B = [0,∞), A∪B = R, there is no problem with the continuity,

and even A and B are closed sets. But what is the problem? If we are looking

for A ∩ B, A ∩ B = {0}. Note that f(0) = −2 and g(0) = 2. So, if we are

defining h : R → R such that

h(x) =

x− 2, if x ∈ (−∞, 0]

x+ 2, if x ∈ [0,∞)

by using the Pasting lemma, h is not a function. So, it justifies that we always

require the condition that at the points of intersection, f as well as g, should

be identical.

Moving ahead, if we make a minor change in the previous example. Let f :

(−∞, 0) → R such that f(x) = x− 2, for all x ∈ (−∞, 0) and g : [0,∞) → R
such that g(x) = x + 2, for all x ∈ [0,∞). Note that here A = (−∞, 0),

B = [0,∞), A ∪B = R, there is no problem with the continuity, and because

A ∩ B is an empty set, trivially f(x) = g(x), for all x ∈ A ∩ B. Where is the

problem? The problem is that this A is not a closed set. Still, by using the

Pasting lemma, if we construct a function h : R → R such that

h(x) =

x− 2, if x ∈ (−∞, 0)

x+ 2, if x ∈ [0,∞).

Then h is not a continuous function. Why? The answer is simple. If we are

taking an open set, let us take G = (1, 3), and if we are computing h−1(G).

Then, h−1(G) = {x ∈ R : h(x) ∈ G} = [0, 1). Note that [0, 1) is not open in

the Euclidean topology, therefore this h is not a continuous function.

Let us take one more example, where A and B both are not closed sets. Let

f : Q → R such that f(x) = 1, for all x ∈ Q and g : Qc → R such that

g(x) = −1, for all x ∈ Qc. Here, A = Q, B = Qc. If we are using the Pasting

lemma, then h : R → R such that

h(x) =

1, if x ∈ Q

−1, if x ∈ Qc.

Note that this h cannot be a continuous function, and here, the nature of A

and B plays the key role because these are not closed sets. This h is not

4



continuous because if we are taking G = (0, 2), then h−1(G) = Q, which is not

a member of the Euclidean topology, or this is not open, that’s why this is not

continuous. So, what we have seen through these examples is the importance

of the assumptions that we have considered in the statement of the Pasting

lemma.

Finally, let us see the proof of Pasting lemma. Note that the function are

f : (A, TA) → (Y, T ′), and g : (B, TB) → (Y, T ′). What do we have to jus-

tify? We have to prove that h : (X, T ) → (Y, T ′) is continuous. As this is

already given that A and B are closed sets, let us use the characterization

of continuity in terms of closed sets. So, what exactly will we take? Let us

take F as a T ′-closed set. If we are taking F as a T ′-closed set, our mo-

tive will be to show that h−1(F ) is T -closed. In order to justify that h−1(F )

is T -closed, let us see how to express this h−1(F ) in terms of f as well as

g. Note that this F is a subset of Y . By using simple set theory, we can

justify that h−1(F ) = f−1(F ) ∪ g−1(F ). If we want to see it, let us take

any x ∈ h−1(F ). Then what will happen? We can write that h(x) ∈ F .

Now, if x ∈ A, this h(x) = f(x), and therefore f(x) ∈ F , or from here,

x ∈ f−1(F ). Similarly, if x ∈ B, h(x) = g(x), and as h(x) ∈ F , g(x) ∈ F ,

or x ∈ g−1(F ). Finally, we can conclude that x ∈ f−1(F ) ∪ g−1(F ). That is

h−1(F ) ⊆ f−1(F ) ∪ g−1(F ). Now, if we are taking any x ∈ f−1(F ) ∪ g−1(F ),

meaning is that either f(x) ∈ F or this g(x) ∈ F , and from here we can con-

clude that h(x) ∈ F or x ∈ h−1(F ), that is this f−1(F ) ∪ g−1(F ) ⊆ h−1(F ).

Thus, for all F ⊆ Y , h−1(F ) = f−1(F ) ∪ g−1(F ).

Now, we have to justify that h−1(F ) is T -closed and, in our hand, we already

have h−1(F ) = f−1(F )∪ g−1(F ). Now, let us analyze the nature of f−1(F ) as

well as g−1(F ). Note that F is T ′-closed. If F is T ′-closed, by continuity of

f , f−1(F ) is TA-closed, and if this is TA-closed, this f
−1(F ) can be written as

A ∩ F ′, where F ′ is T -closed. But it is to be noted here that this is already

given that A is T -closed. Thus A∩F ′ is T -closed, or f−1(F ) is T -closed. Also,

as g is a continuous function, we can justify that g−1(F ) is T -closed. Now, if

f−1(F ) and g−1(F ) are T -closed, we can conclude that h−1(F ) is T -closed, as

it is a finite union of closed sets. So, what have we justified? We have shown

that if we are taking a T ′-closed set, its inverse image under h is a closed set

with respect to the topology T . Therefore, the function h, which was defined

in terms of f and g, is continuous; that’s proof of Pasting lemma.
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These are the references.

That’s all from this lecture. Thank you.
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