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Welcome to Lecture 11 on Essentials of Topology.

In this lecture, we will study the concept of comparison of topologies. In

the previous lectures, we have seen that there exists a number of topologies on

a given set X. The question is, can we establish some relationship among such

topologies? One of the answers is given in terms of comparison of topologies.

Formally, for two topologies, T1, and T2, on a non-empty set X, we say that

T1 is coarser than T2, or T2 is finer than T1 if each element of T1 is in T2, i.e.,

each T1-open set is a T2-open set, or that, for all G ∈ T1, G ∈ T2. In case T1

is coarser than T2, but equality doesn’t hold, we say that T1 is strictly coarser

than T2, or we can also say that T2 is strictly finer than T1.

Begin with two examples. We are familiar with the indiscrete and discrete

topologies on a set X. As we know, for a given set X, indiscrete topology is

a collection of empty set and X, and it is the smallest topology on X. So, we

can say that this topology will always be coarser than all the topologies on X.

Also, coming to discrete topology, we know that for a given set X, the discrete

topology is nothing but the power set of X, and this is the largest topology.

Being the largest topology on a set X, this will obviously be finer than all the

topologies on a given set X.

Moving ahead, let us take one more example. Assume X = {a, b, c} and

• T1 = {∅, X, {a}},

• T2 = {∅, X, {a}, {b, c}},

• T3 = {∅, X, {a, b}, {a}, {a, c}},

If we are trying to compare the topologies T1, T2, and T3. Then it is clear

from the first and second that T1 is coarser than T2, as the empty set, X, and



singleton set {a}, are all present in T2. Similarly, if we want to compare T1

and T3, we can see that T1 is coarser than T3, because the empty set, X, and

singleton set {a} are also in T3. But the question is, what about T2 and T3?

The problem is that {b, c} is in T2, which is not in T3, and similarly, {a, c} is

in T3, which is not in T2. Meaning is, T2 and T3 are not comparable. Thus,

whenever we have a number of topologies on a set, it may happen that one

topology is coarser/finer than others, and it may also be possible that topolo-

gies cannot be compared.

Let us take some topologies on the set of real numbers. The first one is Eu-

clidean topology, which we have already seen. This topology is strictly coarser

than the lower limit topology and the upper limit topology. The question is

how? It can be justified like, let us take any G ∈ Te. Then, we have seen that

for all x ∈ G, there exist two real numbers, a and b, with a < b, such that

x ∈ (a, b) ⊆ G. Now, if we want to visualize it, this structure will look like:

if this is the real line and this is a subset G ⊆ R. If we are taking x ∈ G,

what can we do? We can find a and b such that x ∈ (a, b) ⊆ G. From here,

we can construct two things. The first one is that x ∈ [x, b) ⊆ G. If this is

happening, we can conclude that G is a member of the lower limit topology.

Also, we can write that x ∈ (a, x] ⊆ G and from here, we can conclude that G

is in the upper limit topology. Therefore, this Euclidean topology is coarser

than the lower limit and the upper limit topologies.

Note that this relationship will be strict. Because we have already seen that if

we are taking the semi-open interval [2, 3), this is a member of the lower limit

topology, but this interval [2, 3) is not in the Euclidean topology. Similarly,

the interval (2, 3], is in the upper limit topology, but the same interval cannot

be a member of Euclidean topology. Therefore, this relation is true.

Moving ahead, there is no comparison between the lower limit topology and

the upper limit topology. This is because the interval [2, 3) is in lower limit

topology, but note that this interval cannot be a member of the upper limit

topology, which we have already discussed. Similarly, if we are taking the

interval (2, 3], this is in the upper limit topology, but the same interval is not

a member of the lower limit topology. Therefore, we conclude that these two

topologies are not comparable.
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Further, on the set of real numbers, again, let us discuss about cofinite topol-

ogy, Euclidean topology, and cocountable topology. Interestingly, cofinite

topology is strictly coarser than both topologies. Let us see it. For exam-

ple, if we are taking any G in this cofinite topology. Then as we know that Gc

is finite, i.e., if we are taking this Gc as a set {x1, x2, ..., xn}, x1, x2, ..., xn ∈ R,
and x1 < x2 < ... < xn. Now, if we are talking about G, which is nothing but

(−∞, x1) ∪ (x1, x2) ∪ ...(xn−1, xn) ∪ (xn,∞). We have already seen that such

intervals are in Euclidean topology. Therefore, we can say that G is a member

of Te, as it is the union of open intervals. But note that we can find some

members in Euclidean topology, for example, this open interval (2, 3). This

open interval is not a member of cofinite topology, because its complement is

not finite.

Moving to the next one, let us discuss cofinite topology and co-countable

topology on R. If we are taking any G in the cofinite topology, then Gc is fi-

nite, or we can also conclude that Gc is countable. Thus, we can say that this

G is a member of co-countable topology. But note that Qc is in co-countable

topology, as its complement will be nothing but Q itself. Therefore, Qc is in

co-countable topology. However, Qc is not a member of the cofinite topology

because the complement of it will be Q, and this is not finite. Therefore, Tcc,

that is, co-countable topology is strictly finer than the cofinite topology Tcf .

Moving ahead, if we are looking for co-countable topology and Euclidean topol-

ogy, both are not comparable, why? The answer is here. If we are taking this

Qc, this is in co-countable topology because its complement is countable. But

note that we have already seen that this is not a member of Euclidean topol-

ogy because for x ∈ Qc we cannot construct open interval (a, b) such that

x ∈ (a, b) ⊆ Qc. Similarly, if we are taking this open interval (2, 3) in the

Euclidean topology. Note that this open interval is not a member of the co-

countable topology because its complement is not countable. Therefore, these

topologies are not comparable. Even co-countable topology and lower limit

topology are not comparable. Also, co-countable topology and upper limit

topology are not comparable. The justification is similar to what we have seen

in the case of co-countable topology and Euclidean topology.

Let us summarize what we have seen till now. So, this D denotes the dis-

crete topology on the set of reals, and I denotes the indiscrete topology on the
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set of real numbers. We have seen that the cofinite topology is coarser than

the Euclidean topology. Also, we already know that the indiscrete topology

is coarser than all the topologies. So, we can say that the Euclidean topology

and the cofinite topology are finer than the indiscrete topology.

Now, coming to the next one, we have also seen co-countable topology, lower

limit topology, and upper limit topology. We have seen that the cofinite topol-

ogy is coarser than co-countable topology, Euclidean topology is coarser than

the lower limit topology, and even Euclidean topology is coarser than the upper

limit topology. Also, co-countable topology, lower limit topology, and upper

limit topology are not comparable. So, there is no relationship among these

three. Finally, as discrete topology is finer than all the topologies, we can say

that co-countable topology, lower limit topology, and upper limit topology are

coarser than the discrete topology.

When we have studied this comparison, that is, when one topology is con-

tained in another, a natural question arises: Can we talk about the union and

intersection of two topologies? Yes, we can talk. Then, the question will be

whether the union of topologies will also be a topology or the intersection of

topologies will also be a topology. In the first case, the answer is negative;

that is, the union of two topologies may not be a topology.

Let us see it through an example. For example, X is a set; this is containing

three elements a, b, and c. Let us take the first topology, T1, as a collection

of the empty set, X, and singleton set {b}. Let us take another topology, T2,

as a collection of the empty set, X and {c}. If we find their union, that is,

T1 ∪T2, it will be a collection of the empty set, X, {b} and {c}. But note that
this one is not a topology on this X, because {b} and {c} are members of this

T1 ∪T2. The question is, what about {b}∪ {c} = {b, c}. This is not a member

of T1 ∪ T2. Therefore, the union of two topologies may not be a topology.

Moving to the next one, the intersection of two topologies on a set is a topology.

Here is no problem. Let us see it. For example, we are having a non-empty

set X with two topologies, T1 and T2. Our motive is to justify that this in-

tersection is also a topology on X. Note that the empty set will always be a

member of this intersection because the empty set is a member of T1, and the

empty set is also a member of T2. Similarly, X is a member of this intersection

4



as X belongs to T1 and X also belongs to T2.

Moving to the next, if we are taking a finite number of members G1, G2, ..., Gn

of T1 ∩ T2. Then what will happen? These G1, G2, ..., Gn are members of T1,

G1, G2, ..., Gn are also members of T2. But note that both are topologies. So,

we can conclude that their intersection is in T1, and G1 ∩G2 ∩ ... ∩Gn is also

in T2. From these two, we can conclude that G1 ∩G2 ∩ ... ∩Gn ∈ T1 ∩ T2.

Finally, let us take an indexed family of sets {Gi : i ∈ I} indexed by I,

where every Gi is in T1 ∩T2. Then, our motive is to justify that ∪{Gi : i ∈ I},
is also a member of T1∩T2. This is similar to what we have seen in the case of

intersections, and it can be seen in a simple way. Because every Gi ∈ T1 ∩ T2,

meaning is, Gi ∈ T1 and Gi ∈ T2, for all i ∈ I. So, from here, we can conclude

that ∪{Gi : i ∈ I}, is in T1, and ∪{Gi : i ∈ I} is also in T2 because T1 and T2

are topologies. From here, we can say that the ∪{Gi : i ∈ I}, is also a member

of T1 ∩ T2. So, we have seen all the requirements for T1 ∩ T2 to be a topology

on X. Therefore, the intersection of two topologies on a set is also a topology.

Even this result can be generalized, which states that for some index set I, if

we are taking i ∈ I, and let Ti be a topology on X. Then, the intersection of

all such topologies is also a topology on X. That is, an arbitrary intersection

of topologies is also a topology on the given set.

These are the references.

That’s all from today’s lecture. Thank you.
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