Advanced Engineering Mathematics Lecture 7

1 Functions of two or more than one variable

Example 1.1. Let, $f(x,y) = \begin{cases} x \sin \frac{1}{y} + \frac{x^2 - y^2}{x^2 + y^2} & y \neq 0 \\ 0 & y = 0 \end{cases}$ Show that $\lim_{y \to 0} \lim_{x \to 0} f(x,y)$ exists but neither of $\lim_{(x,y) \to (0,0)} f(x,y)$ nor $\lim_{x \to 0} \lim_{y \to 0} f(x,y)$ exists.

Sol. We shall show that $\lim_{(x,y)\to(0,0)} \frac{x^2 - y^2}{x^2 + y^2}$ does not exist. Since $(x,y) \to (0,0)$, let, y = mx be the path.

$$\lim_{(x,y)\to(0,0)} \frac{x^2 - y^2}{x^2 + y^2} = \lim_{(x,y)\to(0,0)} \frac{x^2 - m^2 x^2}{x^2 + m^2 x^2} = \lim_{x\to 0} \frac{1 - m^2}{1 + m^2} = \frac{1 = m^2}{1 + m^2} \quad (x \neq 0)$$

So, the limit is path dependant, i.e., the limit is different for different values of m. Again, $\lim_{y\to 0} \sin \frac{1}{y}$ does not exist, then $\lim_{x\to 0} \lim_{y\to 0} x \sin \frac{1}{y}$ does not exist therefore, $\lim_{x\to 0} \lim_{y\to 0} f(x,y)$ does not exist.

Now,
$$\lim_{x \to 0} x \sin \frac{1}{y} = 0$$
 and $\lim_{x \to a} f(x, y) = -1$, then $\lim_{y \to 0} (0 - 1) = -1$
i.e., $\lim_{y \to 0} \lim_{x \to 0} (x \sin \frac{1}{y} + \frac{x^2 - y^2}{x^2 + y^2}) = -1$

Partial Derivatives for functions of two or more variables. $D \subset \mathbb{R}$ is usual domain of f and let $P(a, b) \in D$ be arbitrary. Let N be an nbd and $Q(a + h, b + k) \in N$. Then if α be an angle that the line joining \vec{PQ} makes with positive x-axis, then the direction cosines of \vec{PQ} are $l = \cos \alpha, m = \sin \alpha$. If $\rho = \sqrt{h^2 + k^2}$. Then $h = \rho \cos \alpha, k = \rho \sin \alpha$ and $\rho \to 0$ as $Q \to P$. Now if,

$$\lim_{\rho \to 0} \frac{f(a + p \cos \alpha, b + p \sin \alpha) - f(a, b)}{\rho} \quad \text{exists.}$$

Then, it is called derivative of f(x, y) at (a, b) in direction of α and it is denoted by $D_{\alpha}f(a, b)$. If $\alpha = 0$, then derivative is denoted by $\frac{\partial f}{\partial x}$ and if $\alpha = \frac{\pi}{2}$, then the derivative is denoted by $\frac{\partial f}{\partial y}$. These derivatives are called partial derivatives.

Continuity of f(x, y). Let $N \subset D \subset \mathbb{R}^2$, where D is the domain of and N is the nbd of a point $(a, b) \in D$. Then f is said to be continuous at (a, b) if $\lim_{(x,y)\to(a,b)} f(x,y) = f(a,b)$. Equivalently, $\forall \varepsilon > 0 \exists \delta > 0$ such that $|f(x,y) - f(a,b)| < \varepsilon$ whenever $|x - a| < \delta$ and $|y - b| < \delta$ or $(x - a)^2 + (y - b)^2 < \delta^2$ or,

 $\lim_{(h,k)\to(0,0)} f(a+h,b+k) = f(a,b) \text{ where } (a+h,b+k) \in D.$

Example 1.2. Verify the continuity of $f(x,y) = \begin{cases} xy \frac{x^2 - y^2}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$ at (0,0).

Sol. Here,

$$|f(x,y) - f(0,0)| = |xy\frac{x^2 - y^2}{x^2 + y^2} - 0| = |xy\frac{x^2 - y^2}{x^2 + y^2}| = |x||y||\frac{x^2 - y^2}{x^2 + y^2}| \le |x||y|| \le \frac{x^2 + y^2}{2} < \varepsilon,$$

if $x^2 + y^2 < \delta^2 (= 2\varepsilon) \Rightarrow f$ is continuous at (0, 0).

Example 1.3. Verify the continuity of $f(x,y) = \begin{cases} x \sin \frac{1}{y} + y \sin \frac{1}{x} & xy \neq 0 \\ 0 & xy = 0 \end{cases}$ at (0,0).

Sol. Here,

$$|f(x,y) - f(0,0)| = |x\sin\frac{1}{y} + y\sin\frac{1}{x} - 0| \le |x||\sin\frac{1}{y} + |y|\sin\frac{1}{x} \le |x| + |y| < \varepsilon$$

if $|x-0| < \delta$, and $|y-0| < \delta(=\frac{\varepsilon}{2}) \Rightarrow f$ is continuous at (0,0).

Example 1.4. Verify the continuity of $f(x, y) = \begin{cases} \frac{xy}{x^2+y^2} & x^2+y^2 \neq 0\\ 0 & x^2+y^2 = 0 \end{cases}$ at (0, 0).

Partial Derivatives (Computations). If $\lim_{h\to 0} \frac{f(x+h,y) - f(x,y)}{h}$ exists, then it is denoted by $\frac{\partial f}{\partial x}$ or f_x similarly, if $\lim_{k\to 0} \frac{f(x,y+k) - f(x,y)}{k}$ exists, then it is denoted by $\frac{\partial f}{\partial y}$ or f_y .

Example 1.5. Let, $f(x, y) = x^2y + 3xy$. Find f_x, f_y .

Sol. $f_x = 2xy + 3y$ and $f_y = x^2 + 3x$.