Adavnced Engineering Mathematics Lecture 60

Poles, Residues

Regular point and Singularities: A point $z = a$ is called a regular point for a complexvalued function f if f is analytic at a. A point $z = b$ is called a singular point or a singularity if f is not analytic at b but every neighborhood of b contains at least one point at which f is analytic.

A singular point b is said to be an isolated singular point if f is analytic in some deleted neighborhood of b. Otherwise, b is non-isolated singular point.

(i) Removable singularity: An isolated singularity at $z = a$ of f is said to be a removable singularity if f if $\lim_{z\to a} f(z)$ exists in \mathbb{C} .

Example. $f(z) = \sin z$, $z \neq 1$. Then $z = 1$ is removable singularity and we define the function as

$$
f(z) = \begin{cases} \sin z, & z \neq 1 \\ \sin 1, & z = 1. \end{cases}
$$

- (ii) Pole: An isolated singularity $z = a$ of f is called a pole if $\lim_{z \to a} f(z) = \infty$.
- (iii) Essential singularity: An isolated singularity $z = a$ of f is called an essential singularity for f if $\lim_{z \to a} f(z)$ does not exist in \mathbb{C} .

Theorem 1. If f is analytic for $0 < |z - z_0| < R$ and has a pole of order m at z_0 , then

$$
Res (f|z_0) = Res (f : z_0) = \frac{1}{(m-1)!} \frac{d^{m-1}}{dz^{m-1}} (z - z_0)^m f(z)|_{z=z_0}
$$

$$
= \frac{1}{(m-1)!} \lim_{z \to z_0} \left[\frac{d^{m-1}}{dz^{m-1}} (z - z_0)^m f(z) \right].
$$

Theorem 2 (Cauchy Residue Theorem). If f is analytic on and inside a simple closed curve C except at finitely many singular points z_1, z_2, \ldots, z_n then

$$
\int_C f(z) dz = 2\pi i \sum_{k=1}^n Res(f: z_k).
$$

Example. Suppose $f(z) = \frac{\sin z}{(z^2-1)^2}$. Determine the order of the pole.

Solution: Here $f(z) = \frac{\sin z}{(z-1)^2(z+1)^2}$. Clearly, $z = 1$ and $z = -1$ are the poles of the function f .

Let us consider $z=1$:

$$
f(z) = \frac{g(z)}{(z-1)^2},
$$

where $g(z) = \frac{\sin z}{(z+1)^2}$. Since g is analytic at 1 amd $g(1) = \frac{\sin 1}{4} \neq 0$. We can conclude that $z = 1$ is a pole of order 2. Similarly, we can show that $z = -1$ is a pole of order 2.

Example. Determine the residue at $z_0 = 1$ of $f(z) = \frac{\sin z}{(z^2-1)^2}$ and \int_C $f(z) dz$, where $C = \{|z-1| = \frac{1}{2}\}$ $\frac{1}{2}$ is the circle radius $\frac{1}{2}$ and center at $(1,0)$ oriented counter clockwise.

Solution: $z_0 = 1$ is a pole of order 2. We can also write $(z-1) f(z) = g(z) = \frac{\sin z}{(z+1)^2}$. Clearly, g is analytic at $z = 1$ with $g(1) \neq 0$. Then the residue of f at $z = 1$,

$$
Res (f:1) = \frac{1}{(2-1)!} \lim_{z \to 1} \left[\frac{d}{dz} (z-1)^2 f(z) \right]
$$

=
$$
\lim_{z \to 1} \frac{d}{dz} \left[\frac{\sin z}{(z+1)^2} \right]
$$

=
$$
\lim_{z \to 1} \frac{(z+1)^2 \cos z - 2(z+1) \sin z}{(z+1)^4} = \frac{\cos 1 - \sin 1}{4}.
$$

Then $\mathcal{C}_{0}^{(n)}$ $f(z) dz = 2\pi i Res (f : 1) = \frac{\pi i}{2} (\cos 1 - \sin 1).$