Adavnced Engineering Mathematics Lecture 60

Poles, Residues

Regular point and Singularities: A point z = a is called a regular point for a complexvalued function f if f is analytic at a. A point z = b is called a singular point or a singularity if f is not analytic at b but every neighborhood of b contains at least one point at which f is analytic.

A singular point b is said to be an isolated singular point if f is analytic in some deleted neighborhood of b. Otherwise, b is non-isolated singular point.

(i) Removable singularity: An isolated singularity at z = a of f is said to be a removable singularity if f if $\lim_{x \to a} f(z)$ exists in \mathbb{C} .

Example. $f(z) = \sin z, z \neq 1$. Then z = 1 is removable singularity and we define the function as

$$f(z) = \begin{cases} \sin z, & z \neq 1\\ \sin 1, & z = 1. \end{cases}$$

- (ii) Pole: An isolated singularity z = a of f is called a pole if $\lim_{z \to a} f(z) = \infty$.
- (iii) Essential singularity: An isolated singularity z = a of f is called an essential singularity for f if $\lim_{z \to a} f(z)$ does not exist in \mathbb{C} .

Theorem 1. If f is analytic for $0 < |z - z_0| < R$ and has a pole of order m at z_0 , then

$$Res(f|z_0) = Res(f:z_0) = \frac{1}{(m-1)!} \frac{d^{m-1}}{dz^{m-1}} (z-z_0)^m f(z)\Big|_{z=z_0}$$
$$= \frac{1}{(m-1)!} \lim_{z \to z_0} \left[\frac{d^{m-1}}{dz^{m-1}} (z-z_0)^m f(z) \right].$$

Theorem 2 (Cauchy Residue Theorem). If f is analytic on and inside a simple closed curve C except at finitely many singular points z_1, z_2, \ldots, z_n then

$$\int_C f(z) \, dz = 2\pi i \sum_{k=1}^n \operatorname{Res} \left(f : z_k \right).$$

Example. Suppose $f(z) = \frac{\sin z}{(z^2-1)^2}$. Determine the order of the pole.

Solution: Here $f(z) = \frac{\sin z}{(z-1)^2(z+1)^2}$. Clearly, z = 1 and z = -1 are the poles of the function f.

Let us consider z = 1:

$$f(z) = \frac{g(z)}{(z-1)^2},$$

where $g(z) = \frac{\sin z}{(z+1)^2}$. Since g is analytic at 1 and $g(1) = \frac{\sin 1}{4} \neq 0$. We can conclude that z = 1 is a pole of order 2. Similarly, we can show that z = -1 is a pole of order 2.

Example. Determine the residue at $z_0 = 1$ of $f(z) = \frac{\sin z}{(z^2-1)^2}$ and $\int_C f(z) dz$, where $C = \{|z-1| = \frac{1}{2}\}$ is the circle radius $\frac{1}{2}$ and center at (1,0) oriented counter clockwise.

Solution: $z_0 = 1$ is a pole of order 2. We can also write $(z-1) f(z) = g(z) = \frac{\sin z}{(z+1)^2}$. Clearly, g is analytic at z = 1 with $g(1) \neq 0$. Then the residue of f at z = 1,

$$Res (f:1) = \frac{1}{(2-1)!} \lim_{z \to 1} \left[\frac{d}{dz} (z-1)^2 f(z) \right]$$
$$= \lim_{z \to 1} \frac{d}{dz} \left[\frac{\sin z}{(z+1)^2} \right]$$
$$= \lim_{z \to 1} \frac{(z+1)^2 \cos z - 2(z+1) \sin z}{(z+1)^4} = \frac{\cos 1 - \sin 1}{4}.$$

Then $\int_C f(z) dz = 2\pi i Res (f:1) = \frac{\pi i}{2} (\cos 1 - \sin 1).$