Adavnced Engineering Mathematics Lecture 56

Complex Analysis

- 1. Bounded set: A set S is said to be bounded if for any $z \in S \subset \mathbb{C}$ there exists K > 0 such that $|z| \leq K$.
- 2. Domain: A domain S is an open connected set.
- 3. Neighborhood of a point: The neighborhood of a point $z_0 \in \mathbb{C}$ in the complex plane is the set of all points $z \in \mathbb{C}$ such that $|z z_0| < \epsilon$, where $\epsilon > 0$ is arbitrary small.

 $Nbd(z_0) = \{ z \in \mathbb{C} : |z - z_0| < \epsilon, \, \epsilon > 0 \text{ is arbitrary small} \}.$

4. Deleted neighborhood of a point: A deleted neighborhood of $z_0 \in \mathbb{C}$ is defined by

$$Dnhd(z_0) = Nbd(z_0) \setminus \{z_0\}$$

= { $z \in \mathbb{C} : |z - z_0| < \epsilon$ } \ { z_0 }.

- 5. Interior points: A point $z_0 \in \mathbb{C}$ is said to be interior point of a set S if there exists an ϵ -neighborhood of z_0 such that $Nbd(z_0) \subset S$.
- 6. Exterior points: If every neighborhood of a point $z_0 \in \mathbb{C}$ contains points not belong to S, then z_0 is called exterior points.
- 7. Boundary points: If z_0 is neither interior nor exterior point, then it is called a boundary point.
- 8. Open set: A set S is said to be open if it contains only interior points.

<u>Ex 1.</u> $|z| < \ell$, <u>Ex 2.</u> $S = (1, 2) \rightarrow \text{open set.}$

9. Closed set: A set S is said to be closed if it contains all its interior and boundary points.

 $\underline{\operatorname{Ex} 1.} |z| \leq \ell, \underline{\operatorname{Ex} 2.} S = [1, 2] \rightarrow \text{closed set}, \underline{\operatorname{Ex} 3.} S = \{z \in \mathbb{C} : |z - 1| \leq 5\}.$

- 10. Function of a complex variable: To each value of a complex variable $z \in \mathbb{C}$ if there corresponds one or more than one value of a complex variable ω , then we say ω is a complex function of z, i.e., $\omega = f(z)$.
- 11. Limit of a complex function: We say a number $\ell \in \mathbb{C}$ is a limit of a complex function f(z) as z tends to $a \in \mathbb{C}$ and write $\lim_{z \to a} f(z) = \ell$, if for every $\epsilon > 0$ there exists a $\delta > 0$ such that

 $|f(z) - \ell| < \epsilon$, whenever $|z - a| < \delta$.

12. Continuous function: A complex function f(z) is said to be continuous at z = a if for every $\epsilon > 0$ there exists a $\delta > 0$ such that

$$|f(z) - f(a)| < \epsilon$$
, whenever $|z - a| < \delta$.

13. Derivative of a complex function: If a function f(z) is single valued in a domain D, then the derivative of f at z = a in D is denoted by f'(a) and it is defined by

$$f'(a) = \lim_{z \to a} \frac{f(z) - f(a)}{z - a},$$

provided the limit exists.

14. Analytic function: Consider a single valued complex function f(z) on a domain D. The function f(z) is said to be analytic at z = a if there exists a neighborhood of a such that f'(z) exists for all $z \in Nbd(a)$, i.e., f'(z) exists for all $z \in S = \{z \in \mathbb{C} : |z-a| < \delta\}$. Differentiation at z = a does not implies analytic at z = a. Analytic at z = a implies differentiation at z = a.