Advanced Engineering Mathematics Lecture 54

Green's Theorem: Let R be a closed bounded region in xy-plane whose boundary C consists of finitely many smooth curves. Let M and N be continuous functions of x and y having continuous partial derivatives $\frac{\partial M}{\partial y}$ and $\frac{\partial N}{\partial x}$ in R. Then,

$$\iint_{R} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dx \, dy = \oint_{C} \left(M \, dx + N \, dy \right),$$

where the line integral being taken along the entire boundary C of R such that R is on the left side as one advances in the direction of integration.

Example. Verify Green's theorem in the plane for $\oint_C ((xy+y^2) dx + x^2 dy)$, where C is the closed curve of the region bounded by $y = x^2$ and y = x.

Solution: Given that $M(x, y) = xy + y^2$ and $N(x, y) = x^2$. To verify Green's theorem, we need to show

$$\iint_{R} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dx \, dy = \oint_{C} \left(M \, dx + N \, dy \right).$$

 $\frac{\partial M}{\partial y} = x + 2y, \ \frac{\partial N}{\partial x} = 2x.$ The curve intersect at (0,0) and (1,1). Therefore, the left hand side

$$\iint_{R} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dx \, dy = \int_{x=0}^{1} \int_{y=x}^{x^{2}} (x - 2y) \, dx \, dy$$
$$= \int_{x=0}^{1} (x^{4} - x^{3}) \, dx = -\frac{1}{20}.$$

Y (10) x2=y

Right hand side implies

$$\oint_C (M \, dx + N \, dy) = \oint_C ((xy + y^2) \, dx + x^2 \, dy)$$
$$= \int_{C_1} ((xy + y^2) \, dx + x^2 \, dy) + \int_{C_2} ((xy + y^2) \, dx + x^2 \, dy).$$

Along C_1 : $x^2 = y$ implies $2x \, dx = dy$. Along C_2 : x = y implies dx = dy.

$$\oint_C \left(M \, dx + N \, dy \right) = \int_0^1 \left((x^3 + x^4) \, dx + x^2 \times 2x \, dx \right) + \int_0^1 \left((x^2 + x^2) \, dx + x^2 \, dx \right)$$
$$= \int_0^1 (x^4 + 3x^3 + 3x^2) \, dx = -\frac{1}{20}.$$

Stoke's Theorem: Let S be a piecewise smooth open surface bounded by a piecewise simple closed curve C. Let $\vec{F}(x, y, z)$ be a continuous vector function which has continuous first order partial derivatives in the region of space which contains S in its interior. Then

$$\oint_C \vec{F} \cdot d\vec{r} = \iint_S \vec{\nabla} \times \vec{F} \cdot \hat{n} \, ds = \iint_S \operatorname{curl} \vec{F} \cdot \vec{n} \, ds,$$

where \hat{n} is the outward unit normal on S.

Example. Find the value of $\oint_C \vec{r} \cdot d\vec{r}$, where C is any closed curve bounding a surface S.

Solution:
$$\oint_C \vec{r} \cdot d\vec{r} = \iint_S (\vec{\nabla} \times \vec{r}) \cdot \hat{n} \, ds = \iint_S \vec{0} \cdot \hat{n} \, ds = 0.$$

Example. Verify Stoke's theorem for $\vec{F}(x, y, z) = (2x - y)\hat{i} - yz^2\hat{j} - y^2z\hat{k}$, where S is the upper half surface of the sphere $x^2 + y^2 + z^2 = 1$ and C is its boundary.

Solution: By Stoke's theorem $\oint_C \vec{F} \cdot d\vec{r} = \iint_S \operatorname{curl} \vec{F} \cdot \hat{n} \, ds.$

The boundary C of S is the circle in xy-plane of radius unity and center at origin. Let $x = \cos t$, $y = \sin t$, z = 0, $t \in [0, 2\pi]$.

$$\begin{split} \oint_C \vec{F} \cdot d\vec{r} &= \oint_C \left[(2x - y)\,\hat{i} - yz^2\,\hat{j} - y^2z\,\hat{k} \right] \cdot \left(dx\,\hat{i} + dy\,\hat{j} + dz\,\hat{k} \right) \\ &= \int_C (2x - y)\,dx \\ &= \int_0^{2\pi} (2\cos t - \sin t)(-\sin t)\,dt = \pi. \end{split}$$

$$\vec{\nabla} \times \vec{F} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 2x - y & -yz^2 & -y^2z \end{vmatrix} = \hat{k}$$
$$\iint_S \left(\vec{\nabla} \times \vec{F} \right) \cdot \hat{n} \, ds = \iint_S \hat{k} \cdot \hat{k} \, ds$$
$$= \iint_S ds = \pi.$$