Advanced Engineering Mathematics Lecture 54

Green's Theorem: Let R be a closed bounded region in xy -plane whose boundary C consists of finitely many smooth curves. Let M and N be continuous functions of x and y having continuous partial derivatives $\frac{\partial M}{\partial y}$ and $\frac{\partial N}{\partial x}$ in R. Then,

$$
\iint_{R} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dx dy = \oint_{C} \left(M dx + N dy \right),
$$

where the line integral being taken along the entire boundary C of R such that R is on the left side as one advances in the direction of integration.

Example. Verify Green's theorem in the plane for q $\mathcal C$ $((xy + y^2) dx + x^2 dy)$, where C is the closed curve of the region bounded by $y = x^2$ and $y = x$.

Solution: Given that $M(x, y) = xy + y^2$ and $N(x, y) = x^2$. To verify Green's theorem, we need to show

$$
\iint_{R} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dx dy = \oint_{C} \left(M dx + N dy \right).
$$

 $\frac{\partial M}{\partial y} = x + 2y, \frac{\partial N}{\partial x} = 2x$. The curve intersect at $(0,0)$ and $(1, 1)$. Therefore, the left hand side

$$
\iint_{R} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dx dy = \int_{x=0}^{1} \int_{y=x}^{x^{2}} (x - 2y) dx dy
$$

$$
= \int_{x=0}^{1} (x^{4} - x^{3}) dx = -\frac{1}{20}.
$$

Right hand side implies

$$
\oint_C (M dx + N dy) = \oint_C ((xy + y^2) dx + x^2 dy)
$$
\n
$$
= \int_{C_1} ((xy + y^2) dx + x^2 dy) + \int_{C_2} ((xy + y^2) dx + x^2 dy).
$$

Along C_1 : $x^2 = y$ implies $2x dx = dy$. Along C_2 : $x = y$ implies $dx = dy$.

$$
\oint_C (M dx + N dy) = \int_0^1 ((x^3 + x^4) dx + x^2 \times 2x dx) + \int_0^1 ((x^2 + x^2) dx + x^2 dx)
$$
\n
$$
= \int_0^1 (x^4 + 3x^3 + 3x^2) dx = -\frac{1}{20}.
$$

Stoke's Theorem: Let S be a piecewise smooth open surface bounded by a piecewise simple closed curve C. Let $\vec{F}(x, y, z)$ be a continuous vector function which has continuous first order partial derivatives in the region of space which contains S in its interior. Then

$$
\oint_C \vec{F} \cdot d\vec{r} = \iint_S \vec{\nabla} \times \vec{F} \cdot \hat{n} \, ds = \iint_S \operatorname{curl} \vec{F} \cdot \vec{n} \, ds,
$$

where \hat{n} is the outward unit normal on S .

Example. Find the value of φ $\mathcal{C}_{0}^{(n)}$ $\vec{r} \cdot d\vec{r}$, where C is any closed curve bounding a surface S.

Solution:
$$
\oint_C \vec{r} \cdot d\vec{r} = \iint_S (\vec{\nabla} \times \vec{r}) \cdot \hat{n} \, ds = \iint_S \vec{0} \cdot \hat{n} \, ds = 0.
$$

Example. Verify Stoke's theorem for $\vec{F}(x, y, z) = (2x - y)\hat{i} - yz^2\hat{j} - y^2z\hat{k}$, where S is the upper half surface of the sphere $x^2 + y^2 + z^2 = 1$ and C is its boundary.

Solution: By Stoke's theorem q C $\vec{F} \cdot d\vec{r} = \iint$ S curl $\vec{F} \cdot \hat{n} ds$.

The boundary C of S is the circle in xy -plane of radius unity and center at origin. Let $x = \cos t, y = \sin t, z = 0, t \in [0, 2\pi].$

$$
\oint_C \vec{F} \cdot d\vec{r} = \oint_C \left[(2x - y)\hat{i} - yz^2 \hat{j} - y^2 z \hat{k} \right] \cdot (dx \hat{i} + dy \hat{j} + dz \hat{k})
$$
\n
$$
= \int_C (2x - y) dx
$$
\n
$$
= \int_0^{2\pi} (2\cos t - \sin t)(-\sin t) dt = \pi.
$$

$$
\vec{\nabla} \times \vec{F} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 2x - y & -yz^2 & -y^2 z \end{vmatrix} = \hat{k}
$$

$$
\iint_S (\vec{\nabla} \times \vec{F}) \cdot \hat{n} \, ds = \iint_S \hat{k} \cdot \hat{k} \, ds
$$

$$
= \iint_S ds = \pi.
$$