Advanced Engineering Mathematics Lecture 53

Volume integrals: Suppose V is a volume bounded b surface S. Suppose f(x, y, z) is a scalar function defined on V. Then the volume integral of f(x, y, z) is denoted by

$$I_V = \iiint_V f(x, y, z) \, dv,$$

where $dv = dx \, dy \, dz$. If f is a vector function, say \vec{f} , then $\iiint_V \vec{f} \cdot d\vec{v}$ is an example of volume integral.

Example. Evaluate $\iiint_V f(x, y, z) dv$, where $f(x, y, z) = 45x^2y$ and V is the volume of the closed region bounded by 4x + 2y + z = 8, x = 0, y = 0, and z = 0.

Solution: The region V is the following:

z-varies in the range: $0 \le z \le 8 - 4x - 2y$, *y*-varies in the range: $0 \le y \le 4 - 2x$, *x*-varies in the range: $0 \le x \le 2$.

$$I_V = \iiint_V f(x, y, z) \, dv = \int_{x=0}^2 \int_{y=0}^{4-2x} \int_{z=0}^{8-4x-2y} 45x^2 y \, dx \, dy \, dz$$
$$= 45 \int_{x=0}^2 \int_{y=0}^{4-2x} x^2 y (8-4x-2y) \, dx \, dy$$
$$= 45 \int_{x=0}^2 \frac{x^2}{3} (4-2x)^3 \, dx = 128.$$

Example. Evaluate the volume integral $\iiint_V f(x, y, z) dv$, where f(x, y, z) = xyz and V is the volume of the region bounded by the sphere $x^2 + y^2 + z^2 = 1$ in the first octant.

Solution: The region V is the following:

z-varies in the range: $0 \le z \le \sqrt{1 - x^- y^2}$, *y*-varies in the range: $0 \le y \le \sqrt{1 - x^2}$, *x*-varies in the range: $0 \le x \le 1$.

$$\begin{split} I_V &= \iiint_V f(x,y,z) \, dv = \int_{x=0}^1 \int_{y=0}^{\sqrt{1-x^2}} \int_{z=0}^{\sqrt{1-x^-y^2}} xyz \, dx \, dy \, dz \\ &= \frac{1}{2} \int_{x=0}^1 \int_{y=0}^{\sqrt{1-x^2}} xy(1-x^2-y^2) \, dx \, dy \\ &= \frac{1}{8} \int_{x=0}^1 x(1-x^2)^2 \, dx = \frac{1}{48}. \end{split}$$

Gauss divergence theorem: Suppose V is the volume bounded by a closed piecewise smooth surface S. Let $\vec{f}(x, y, z)$ be a vector function of position which is continuous and has continuous first order partial derivative on V. Then,

$$\iiint_V \operatorname{div} \vec{f} \, ds = \iint_S \vec{f} \cdot \hat{n} \, ds,$$

where \hat{n} is the unit outward drawn normal to S.

Example. If $\vec{f}(x, y, z) = ax \hat{i} + by \hat{j} + cz \hat{k}$, a, b, c are constant, then find the value of $\iint_S \vec{f} \cdot \hat{n} \, ds$, where S is the surface of unit sphere.

Solution: By divergence theorem,

$$\iint_{S} \vec{f} \cdot \hat{n} \, ds = \iiint_{V} \operatorname{div} \vec{f} \, dv$$
$$= \iiint_{V} (a+b+c) \, dv = \frac{4\pi}{3} (a+b+c) \, dv$$