Advanced Engineering Mathematics
Lecture 5

1 Taylor’s theorem

Theorem 1.1. (Taylor’s Theorem with General Form of Remainder) If a real valued function
defined on [a,b] or [a,a + h] where a +h = b be such that

i) 71 is continuous on [a,a + h),

it) f exists on (a,a + h),

then there exists a positive proper fraction 0(0 < 0 < 1) such that
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where R, = ((170)]‘"”(@ + 0h), p being a positive integer < n.

Theorem 1.2. (Taylor’s Theorem with Cauchy Form of Remainder) If a real valued function
defined on [a,b] or [a,a+ h] where a +h =b be such that

i) 71 is continuous on [a,a + h),

ii) f™ exists on (a,a+ h),

then there exists a positive proper fraction 0(0 < 6 < 1) such that
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where R, = ((179)]””(& + 60h) is called the Cauchy’s form of Remainder.

Theorem 1.3. (Taylor’s Theorem with Lagranges Form of Remainder) If a real valued func-
tion defined on [a,b] or [a,a + h] where a + h = b be such that

i) 71 is continuous on [a,a + h],

it) f" exists on (a,a + h),

then, there exists a positive proper fraction (0 < 6 < 1) such that
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where R, = %f”(a + 0h) is called the Lagranges form of Remainder.
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Theorem 1.4. (Maclaurin’s Theorem) Let a function f : [0,z] — R be such that
i) "=t is continuous on [0, ],

it) f exists on (0,x),

then there exists a positive proper fraction 6(0 < 6 < 1) such that
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where p is a positive integer < n.

Hence, f(z) = f(0) + 72! £/7(0) + M 0=P=" 7 (0h).

Example 1.1. Expand the function f(z) = e® about the point x = 0 via Taylor’s theorem
with Lagranges form of remainder.



Sol. Given f(z) =€ = fl(z)=¢e" = f"(x) = f"(x)="--
By Taylor’s theorem, with Lagranges form of remainder,
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Expansion of a function as an infinite series. A function f(z) which is defined t x = a
and possesses derivative upto nth order at x = a, then it can be expressed as an infinite series
of the form
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if R, the remainder of any form, after n terms resulting from Taylor’s expansion of f(x)
about z = a tends to 0 as n — oo, i.e, lim,_,o, R, = 0.
Ifa = 0, then
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is called the expansion of f(x) is Maclaurins infinite series or expansion of f(x) about z = 0.
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Example 1.2. Expand e* as an infinite series.

Sol. Let f(x) = e®, then f"(z) = e®. From Maclaurin’s theorem R,,, the remainder after

n terms in Lagrange’s form is %eex, 0<0<1.

Note that 0 < < 1= 0<fz <z = 1< e <e®. Also for all real z, e’ is bounded.

n n+1
Let up = 77, upy1 = h Then
Un+1 . Up41 . x
‘ " o Jim [ = lim =] =0
Up, n—oo | Uy n—oon + 1

= lim u, =0
n—oo

= lim R, =0

n—oo

Therefore,
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