
Advanced Engineering Mathematics
Lecture 5

1 Taylor’s theorem

Theorem 1.1. (Taylor’s Theorem with General Form of Remainder) If a real valued function
defined on [a, b] or [a, a+ h] where a+ h = b be such that
i) fn−1 is continuous on [a, a+ h],
ii) fn exists on (a, a+ h),
then there exists a positive proper fraction θ(0 < θ < 1) such that

f(a+ h) = f(a) + hf ′(a) +
h2

2!
f ′′(a) + · · ·+ hn−1

(n− 1)!
fn−1(n) +Rn,

where Rn = hn(1−θ)n−p

(n−1)!p fn(a+ θh), p being a positive integer ≤ n.

Theorem 1.2. (Taylor’s Theorem with Cauchy Form of Remainder) If a real valued function
defined on [a, b] or [a, a+ h] where a+ h = b be such that
i) fn−1 is continuous on [a, a+ h],
ii) fn exists on (a, a+ h),
then there exists a positive proper fraction θ(0 < θ < 1) such that

f(a+ h) = f(a) + hf ′(a) +
h2

2!
f ′′(a) + · · ·+ hn−1

(n− 1)!
fn−1(n) +Rn,

where Rn = hn(1−θ)n−1

(n−1)! fn(a+ θh) is called the Cauchy’s form of Remainder.

Theorem 1.3. (Taylor’s Theorem with Lagranges Form of Remainder) If a real valued func-
tion defined on [a, b] or [a, a+ h] where a+ h = b be such that
i) fn−1 is continuous on [a, a+ h],
ii) fn exists on (a, a+ h),
then, there exists a positive proper fraction θ(0 < θ < 1) such that

f(a+ h) = f(a) + hf ′(a) +
h2

2!
f ′′(a) + · · ·+ hn−1

(n− 1)!
fn−1(n) +Rn,

where Rn = hn

n! f
n(a+ θh) is called the Lagranges form of Remainder.

Theorem 1.4. (Maclaurin’s Theorem) Let a function f : [0, x] → R be such that
i) fn−1 is continuous on [0, x],
ii) fn exists on (0, x),
then there exists a positive proper fraction θ(0 < θ < 1) such that

f(x) = f(0) + xf ′(0) +
x2

2!
f ′′(0) + · · ·+ xn−1

(n− 1)!
fn−1(0) +

hn(1− θ)n−p

(n− 1)!p
fn(θh),

where p is a positive integer ≤ n.

Hence, f(x) = f(0) +
∑n−1

r=1
xr

r! f
r(0) + hn(1−θ)n−p

(n−1)!p fn(θh).

Example 1.1. Expand the function f(x) = ex about the point x = 0 via Taylor’s theorem
with Lagranges form of remainder.
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Sol. Given f(x) = ex ⇒ f ′(x) = ex = f ′′(x) = f ′′′(x) = · · ·
By Taylor’s theorem, with Lagranges form of remainder,

ex = f(x) = f(0) + xf ′(0) +
x2

2!
f ′′(0) + · · ·+ xn−1

(n− 1)!
fn−1(0) +

xn

n!
fn(θx), 0 < θ < 1

= 1 + x+
x2

2!
+ · · ·+ xn−1

(n− 1)!
+

xn

n!
eθx, 0 < θ < 1

Expansion of a function as an infinite series. A function f(x) which is defined t x = a
and possesses derivative upto nth order at x = a, then it can be expressed as an infinite series
of the form

f(a) + (x− a)f ′(a) +
(x− a)2

2!
f ′′(a) + · · ·+ (x− a)n

n!
fn(a) + · · · ,

if Rn, the remainder of any form, after n terms resulting from Taylor’s expansion of f(x)
about x = a tends to 0 as n → ∞, i.e, limn→∞Rn = 0.
Ifa = 0, then

f(x) = f(0) + xf ′(0) +
x2

2!
f ′′(0) + · · ·+ xn

(n)!
fn(0) + · · ·

is called the expansion of f(x) is Maclaurins infinite series or expansion of f(x) about x = 0.

Example 1.2. Expand ex as an infinite series.

Sol. Let f(x) = ex, then fn(x) = ex. From Maclaurin’s theorem Rn, the remainder after
n terms in Lagrange’s form is xn

n! e
θx, 0 < θ < 1.

Note that 0 < θ < 1 ⇒ 0 < θx < x ⇒ 1 < eθx < ex. Also for all real x, eθx is bounded.
Let un = xn

n! , un+1 =
xn+1

(n+1)! . Then∣∣∣un+1

un

∣∣∣ ⇒ lim
n→∞

∣∣∣un+1

un

∣∣∣ = lim
n→∞

|x|
n+ 1

= 0

⇒ lim
n→∞

un = 0

⇒ lim
n→∞

Rn = 0

Therefore,

f(x) = ex =f(0) + xf ′(0) +
x2

2!
f ′′(0) + · · ·

=1 + x+
x2

2!
+

x3

3!
+ · · ·
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