Advanced Engineering Mathematics Lecture 5

1 Taylor's theorem

Theorem 1.1. (Taylor's Theorem with General Form of Remainder) If a real valued function defined on [a,b] or [a,a+h] where a+h=b be such that i) f^{n-1} is continuous on [a,a+h],

ii) f^n exists on (a, a + h),

then there exists a positive proper fraction $\theta(0 < \theta < 1)$ such that

$$f(a+h) = f(a) + hf'(a) + \frac{h^2}{2!}f''(a) + \dots + \frac{h^{n-1}}{(n-1)!}f^{n-1}(n) + R_n$$

where $R_n = \frac{h^n(1-\theta)^{n-p}}{(n-1)!p} f^n(a+\theta h)$, p being a positive integer $\leq n$.

Theorem 1.2. (Taylor's Theorem with Cauchy Form of Remainder) If a real valued function defined on [a,b] or [a,a+h] where a+h=b be such that i) f^{n-1} is continuous on [a,a+h],

ii) f^n exists on (a, a + h),

then there exists a positive proper fraction $\theta(0 < \theta < 1)$ such that

$$f(a+h) = f(a) + hf'(a) + \frac{h^2}{2!}f''(a) + \dots + \frac{h^{n-1}}{(n-1)!}f^{n-1}(n) + R_n$$

where $R_n = \frac{h^n(1-\theta)^{n-1}}{(n-1)!} f^n(a+\theta h)$ is called the Cauchy's form of Remainder.

Theorem 1.3. (Taylor's Theorem with Lagranges Form of Remainder) If a real valued function defined on [a,b] or [a,a+h] where a+h=b be such that i) f^{n-1} is continuous on [a,a+h],

ii) f^n exists on (a, a + h),

then, there exists a positive proper fraction $\theta(0 < \theta < 1)$ such that

$$f(a+h) = f(a) + hf'(a) + \frac{h^2}{2!}f''(a) + \dots + \frac{h^{n-1}}{(n-1)!}f^{n-1}(n) + R_n$$

where $R_n = \frac{h^n}{n!} f^n(a + \theta h)$ is called the Lagranges form of Remainder.

Theorem 1.4. (Maclaurin's Theorem) Let a function $f : [0, x] \to \mathbb{R}$ be such that i) f^{n-1} is continuous on [0, x], ii) f^n emists on (0, x).

ii) f^n exists on (0, x),

then there exists a positive proper fraction $\theta(0 < \theta < 1)$ such that

$$f(x) = f(0) + xf'(0) + \frac{x^2}{2!}f''(0) + \dots + \frac{x^{n-1}}{(n-1)!}f^{n-1}(0) + \frac{h^n(1-\theta)^{n-p}}{(n-1)!p}f^n(\theta h),$$

where p is a positive integer $\leq n$.

Hence, $f(x) = f(0) + \sum_{r=1}^{n-1} \frac{x^r}{r!} f^r(0) + \frac{h^n (1-\theta)^{n-p}}{(n-1)!p} f^n(\theta h).$

Example 1.1. Expand the function $f(x) = e^x$ about the point x = 0 via Taylor's theorem with Lagranges form of remainder.

Sol. Given $f(x) = e^x \Rightarrow f'(x) = e^x = f''(x) = f'''(x) = \cdots$ By Taylor's theorem, with Lagranges form of remainder,

$$e^{x} = f(x) = f(0) + xf'(0) + \frac{x^{2}}{2!}f''(0) + \dots + \frac{x^{n-1}}{(n-1)!}f^{n-1}(0) + \frac{x^{n}}{n!}f^{n}(\theta x), \quad 0 < \theta < 1$$
$$= 1 + x + \frac{x^{2}}{2!} + \dots + \frac{x^{n-1}}{(n-1)!} + \frac{x^{n}}{n!}e^{\theta x}, \quad 0 < \theta < 1$$

Expansion of a function as an infinite series. A function f(x) which is defined t x = a and possesses derivative up to *n*th order at x = a, then it can be expressed as an infinite series of the form

$$f(a) + (x-a)f'(a) + \frac{(x-a)^2}{2!}f''(a) + \dots + \frac{(x-a)^n}{n!}f^n(a) + \dots,$$

if R_n , the remainder of any form, after *n* terms resulting from Taylor's expansion of f(x) about x = a tends to 0 as $n \to \infty$, i.e., $\lim_{n\to\infty} R_n = 0$. If a = 0, then

$$f(x) = f(0) + xf'(0) + \frac{x^2}{2!}f''(0) + \dots + \frac{x^n}{(n)!}f^n(0) + \dots$$

is called the expansion of f(x) is Maclaurins infinite series or expansion of f(x) about x = 0.

Example 1.2. Expand e^x as an infinite series.

Sol. Let $f(x) = e^x$, then $f^n(x) = e^x$. From Maclaurin's theorem R_n , the remainder after n terms in Lagrange's form is $\frac{x^n}{n!}e^{\theta x}$, $0 < \theta < 1$. Note that $0 < \theta < 1 \Rightarrow 0 < \theta x < x \Rightarrow 1 < e^{\theta x} < e^x$. Also for all real x, $e^{\theta x}$ is bounded. Let $u_n = \frac{x^n}{n!}$, $u_{n+1} = \frac{x^{n+1}}{(n+1)!}$. Then

$$\left|\frac{u_{n+1}}{u_n}\right| \Rightarrow \lim_{n \to \infty} \left|\frac{u_{n+1}}{u_n}\right| = \lim_{n \to \infty} \frac{|x|}{n+1} = 0$$
$$\Rightarrow \lim_{n \to \infty} u_n = 0$$
$$\Rightarrow \lim_{n \to \infty} R_n = 0$$

Therefore,

$$f(x) = e^{x} = f(0) + xf'(0) + \frac{x^{2}}{2!}f''(0) + \cdots$$
$$= 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots$$