Advanced Engineering Mathematics Lecture 48

Unit tangent vector: Let s be the arc length and \hat{t} be the unit tangent vector. Then $\frac{d\vec{r}}{ds} = \hat{t}$ and the equation of the tangent line will be

$$(\vec{R} - \vec{r}) \times \hat{t} = \vec{0}.$$

Unit principle normal vector: As the length of \hat{t} is constant, its derivative $\frac{d\hat{t}}{ds}$, if not zero, must be perpendicular to \hat{t} . Therefore, it will be normal to the curve at the point P. A directed line through P in the direction of $\frac{d\hat{t}}{ds}$ is called principle normal vector to the curve C at the point P. If \hat{n} is the unit vector in the direction of principle normal vector, then we may write

$$\frac{d\hat{t}}{ds} = \kappa \hat{n}$$

where κ is a non-negative scalar and \hat{n} is the unit principle normal. κ is the called curvature of the curve at the point P.

Unit binormal vector: We introduce an another unit normal vector \hat{b} defined by $\hat{b} = \hat{t} \times \hat{n}$, where \hat{b} , \hat{t} , and \hat{n} forms a right-handed system of orthogonal vectors. A directed line through P in the direction of \hat{b} is called binormal to the curve at the point P. We may call \hat{b} as unit binormal at P.

Torsion: We have defined $\hat{b} = \hat{t} \times \hat{n}$ and since \hat{b} is a unit vector, $\frac{d\hat{b}}{ds}$, if not zero, must be perpendicular to \hat{b} , then

$$b = \hat{t} \times \hat{n}$$

$$\frac{d\hat{b}}{ds} = \frac{d\hat{t}}{ds} \times \hat{n} + \hat{t} \times \frac{d\hat{n}}{ds}$$

$$= \kappa \hat{n} \times \hat{n} + \hat{t} \times \frac{d\hat{n}}{ds}$$

$$\frac{d\hat{b}}{ds} = \hat{t} \times \frac{d\hat{n}}{ds}.$$

Then $\frac{d\hat{b}}{ds}$ is perpendicular to \hat{t} . But it is also perpendicular to \hat{b} . Therefore, it must be parallel to \hat{n} . Then

$$\frac{d\hat{b}}{ds} = -\tau\hat{n},$$

where τ is a scalar, is called torsion of the curve at the point *P*. The minus sign is taken because when τ is positive, $\frac{d\hat{b}}{ds}$ has the direction of $-\hat{n}$ and *P* moves along with positive direction.

Again,

$$\hat{n} = \hat{b} \times \hat{t}$$

$$\frac{d\hat{n}}{ds} = \frac{d\hat{b}}{ds} \times \hat{t} + \hat{b} \times \frac{d\hat{t}}{ds}$$

$$= -\tau \hat{n} \times \hat{t} + \hat{b} \times \kappa \hat{n}$$

$$= \tau \hat{b} - \kappa \hat{t}.$$

Summarizing the relations we have

(i) $\hat{b} = \hat{t} \times \hat{n}$, $\hat{n} = \hat{b} \times \hat{t}$, $\hat{t} = \hat{n} \times \hat{b}$.

(ii) Serret-Frenet Formula: $\frac{d\hat{t}}{ds} = \kappa \hat{n}, \quad \frac{d\hat{b}}{ds} = -\tau \hat{n}, \quad \frac{d\hat{n}}{ds} = \tau \hat{b} - \kappa \hat{t}.$

Let $\vec{r} = \vec{f}(t)$ be a vector function.

$$\begin{aligned} \frac{d\vec{r}}{dt} &= \dot{\vec{r}} = \frac{d\vec{r}}{ds} \cdot \frac{ds}{dt} = \hat{t}\dot{s} \\ |\dot{\vec{r}}| &= |\hat{t}||\dot{s}| = |\dot{s}| \\ \ddot{\vec{r}} &= \frac{d\hat{t}}{ds}\dot{s}^2 + \hat{t}\ddot{s} = \kappa\hat{n}\dot{s}^2 + \hat{t}\ddot{s} \\ \ddot{\vec{r}} &= (\ddot{s} - \kappa^2\dot{s})\hat{t} + (3\dot{s}\ddot{s}\kappa + \dot{s}^2\kappa)\hat{n} + \dot{s}^3\kappa\tau\hat{b} \end{aligned}$$